A kinetic fluid energy to mechanical energy conversion system includes hubs that are rotatable with respect to a hub carrier and support one or more independently controlled articulating energy conversion plates (“ECP”) and a track orientation control mechanism (“TOCM”) for alternating the independent control of each ECP in response to operating conditions. Each ECP has opposed surfaces and leading and trailing edges and may have one or more lips projecting from one of the opposed surfaces, wherein the one or more lips comprise at least an inboard end lip extending transversely from an inboard end of the plate. articulation of each ECP is controlled by a follower within a track that is rotatable with respect to the hub carrier, and service lines pass through a chase or bore passing through the hub carrier to bring power and/or control signals to the TOCM for effecting controlled, powered rotation of the track.
|
1. A system comprising:
a hub carrier;
two or more counter-rotating hubs configured to be rotatable with respect to the hub carrier about a hub axis of rotation, wherein each hub is configured to rotate in an opposite direction than an axially-adjacent hub;
a perimeter plate fixed to the hub carrier disposed between opposed sides of each hub and the axially-adjacent hub;
thrust bearings disposed between the perimeter plate and the hub and between the perimeter plate and the axially-adjacent hub;
one or more articulating plates extending radially from each hub and rotatable therewith, wherein each articulating plate is configured to be articulable about a plate articulation axis;
an articulation control system associated with each hub and configured to independently control orientation of each articulating plate of the associated hub with respect to the associated plate articulation axis, wherein each articulating plate is operably coupled to the articulation control system so that the articulation control system changes the orientation of the articulating plate as the associated hub rotates about the hub axis of rotation, wherein each articulation control system comprises:
a rotatable track assembly having a continuous track about its perimeter, wherein the continuous track circumscribes the hub axis of rotation, wherein the rotatable track assembly is rotatably mounted to the hub carrier for rotation with respect to the hub carrier about the hub axis of rotation, and wherein each articulating plate is coupled to the continuous track to change the orientation of the articulating plate as the associated hub rotates about the hub axis of rotation; and
a track orientation control mechanism operatively coupled to the rotatable track assembly of each articulation control system and configured to effect powered rotation of each rotatable track assembly to alter the rotational position of the continuous track with respect to the hub carrier, wherein each track orientation control mechanism comprises:
a first gear associated with each rotatable track assembly and arranged coaxially with the hub;
a second gear associated with each rotatable track assembly and operatively engaged with the first gear of the associated rotatable track assembly; and
a track motor operatively coupled to each second gear;
a chase or bore that passes through at least a portion of the hub carrier; and
service lines passing through the chase or bore, wherein the service lines comprise at least one of electric and/or signal cables and fluid pressure lines, and wherein the service lines provide power and/or control to each track orientation control mechanism.
2. The system of
3. The system of
4. The system of
5. The system of
6. The system of
7. The system of
|
This application is a continuation claiming the benefit under 35 U.S.C. § 120 of the filing date of non-provisional patent application Ser. No. 17/129,893 filed Dec. 21, 2020, which claims the benefit under 35 U.S.C. § 119(e) of the filing dates of provisional patent application Ser. Nos. 62/950,784 filed Dec. 19, 2019, 62/951,801 filed Dec. 20, 2019, and 62/953,122 filed Dec. 23, 2019, the respective disclosure of which are incorporated herein by reference.
This disclosure relates to kinetic fluid energy to mechanical energy conversion employing rotatable hubs supporting one or more independently controlled articulating energy conversion plates and systems and components for alternating the independent control of the energy conversion plates in response to operating conditions. Separator plates for controlling fluid flow with respect to the hub may be employed above and below the hub and may also be directionally altered in response to operating conditions.
No document is admitted to be prior art to the claimed subject matter.
Machines used for converting kinetic fluid energy to mechanical energy are known in the art and include horizontal axis wind turbines (“HAWT”), vertical axis wind turbines (“VAWT”), and water turbines used to convert stored energy, for example water retained by a dam, or convert energy from a channeled flow, for example from a higher elevation to a lower elevation, to mechanical energy. Challenges exist within HAWTs whereby their blades are monolithic, industrial-scale units with blades weighing upwards of 30 tons each, and, in many cases, the blades require months to transport from their place of manufacture to their installation site. Up to a year of logistical planning for the transport of a single 32-ton blade is not uncommon. Another challenge exists with HAWTs whereby the gearbox/generator assembly, which can weigh more than 30 tons, is located within the nacelle upon a tower assembly. In addition, the high rotational tip speed of industrial-scale turbine blades can approach 200 mph, and, consequentially HAWTs kill an estimated 300,000 birds per year. Industrial scale HAWTs high rotational tip speed also produces what some describe as unbearable low-frequency noise for persons living within 3,200 feet of such machines and consequential related headaches, ear pain, nausea, blurred vision, anxiety, memory loss, and an overall feeling of unsettledness. These negative effects upon people have prompted legislators in the United States, Canada and Australia to seek minimum distance requirements for which industrial scale HAWTs can be located from residential housing. Challenges also exist with VAWTs, such as the Savonius Rotor, whereby energy converted by their airfoils, while moving in the direction of the wind, is largely canceled out when the airfoil completes its rotation while moving against the wind. With respect to the Darrieus Turbine (VAWT), which comprises vertical wing-like blades, challenges exist whereby the machine is not self-starting. Once started, however, the turbine also has a high rotational speed which can be fatal to birds. Additionally, the energy conversion of VAWTs is less than a HAWT relative to the volumetric area within which VAWTs operate as compared to HAWTs. Neither HAWTs nor VAWTs have designs or features to effectively protect them from winds that far exceed their rated capacity and neither turbine type works in water. Likewise, water turbines do not work in wind.
The following presents a simplified summary in order to provide a basic understanding of some aspects described herein. This summary is not an extensive overview of the claimed subject matter. It is intended to neither identify key or critical elements of the claimed subject matter nor delineate the scope thereof. Its sole purpose is to present concepts in a simplified form as a prelude to the more detailed description that is presented later.
In accordance with examples described herein a system includes first and second hubs, one or more articulating plates, an articulation control system, a separator plate, a top separator plate, and a bottom separator plate. Each of the first and second hubs is axially adjacent with respect to a hub axis of rotation to the other hub, each hub is rotatable about the same hub axis of rotation, and the first hub is configured to rotate in an opposite direction than the second hub. The one or more articulating plates extend radially from each hub and are rotatable therewith, each articulating plate is configured to be articulable about a plate articulation axis that is oriented radially with respect to the hub axis of rotation, and each plate has opposed surfaces, a leading edge, and a trailing edge. An articulation control system is associated with each hub and is configured to independently control orientation of each plate of the associated hub with respect to the associated plate articulation axis. Each plate is operably coupled to the articulation control system so that the articulation control system changes the orientation of the plate as the associated hub rotates about the hub axis of rotation. The articulation control system is configured to orient each plate in a slipstream orientation in which the opposed surfaces of the plate are generally parallel to the plane of rotation of the hub for a first portion of each rotation of the associated hub and in a working orientation in which the opposed surfaces are not parallel to the plane of rotation of the hub for a second portion of each rotation of the associated hub. The separator plate is disposed between the first and second hubs and includes a first portion and a second portion, and the first and second portions of the separator plate are oriented radially with respect to the hub axis of rotation and are disposed at different axial locations with respect to the hub axis of rotation. The top separator plate is disposed at an opposite axial side of the first hub from the separator plate and includes a first portion and a second portion, and the first and second portions of the top separator plate are oriented radially with respect to the hub axis of rotation and are disposed at different axial locations with respect to the hub axis of rotation. The bottom separator plate is disposed at an opposite axial side of the second hub from the separator plate and includes a first portion and a second portion, and the first and second portions of the top separator plate are oriented radially with respect to the hub axis of rotation and are disposed at different axial locations with respect to the hub axis of rotation.
In some examples, the articulation control system of the first hub and the articulation control system of the second hub are configured so that the first portion and second portion of each rotation of the first hub are different than the first portion and second portion of each rotation of the second hub.
In some examples, an axial spacing between the first portion of the top separator plate and the first portion of the separator plate is less than an axial spacing between the second portion of the top separator plate and the second portion of the separator plate, and an axial spacing between the first portion of the bottom separator plate and the first portion of the separator plate is greater than an axial spacing between the second portion of the bottom separator plate and the second portion of the separator plate.
In some examples, the articulating plates of the first hub pass between the first portion of the top separator plate and the first portion of the separator plate during the first portion of rotation of the first hub, the articulating plates of the first hub pass between the second portion of the top separator plate and the second portion of the separator plate during the second portion of rotation of the first hub, the articulating plates of the second hub pass between the first portion of the top separator plate and the first portion of the separator plate during the second portion of rotation of the second hub, and the articulating plates of the second hub pass between the second portion of the bottom separator plate and the second portion of the separator plate during the first portion of rotation of the second hub.
In some examples, the separator plate, the top separator plate, and the bottom separator plate each have a transition between their respective first and second portions.
In some examples, system further includes first and second upper connector plates extending in an axial direction with respect to the hub axis of rotation between the separator plate and the upper separator plate, wherein each of the first and second upper connector plates is disposed on an opposite side of the hub axis of rotation and first and second lower connector plates extending in an axial direction with respect to the hub axis of rotation between the separator plate and the lower separator plate, wherein each of the first and second lower connector plates is disposed on an opposite side of the hub axis of rotation.
In some examples, the system further includes at least one counter-rotating transmission between the first and second hubs to rotationally couple the first hub to the second hub. The counter-rotating transmission includes a ring gear on each hub and the axially-adjacent hub, wherein each ring gear is coaxially arranged with respect to the hub axis of rotation, and a plurality of pinion gears angularly spaced about the hub axis of rotation. Each pinion gear is rotatable about a pinion axis that is oriented radially with respect to the hub axis of rotation, and the pinion gears are disposed between the ring gears on the first hub and the second hub, such that rotation of the first hub about the hub axis of rotation in a first direction causes a corresponding rotation of the second hub in a second direction about the hub axis of rotation opposite the first direction.
In some examples, the system further includes comprising a vertical support structure supporting the separator plate, the top separator plate, and the bottom separator plate.
In some examples, the support structure may include a coupling fixed in an axial position with respect to the hub axis of rotation and a plurality of structural supports, and each structural support is connected at one end to the coupling and at an opposite end to one of the separator plate, the top separator plate and the bottom separator plate.
In some examples, the coupling is configured to be rotatable about the hub axis of rotation.
In accordance with other examples described herein, a system includes at least one hub rotatable about a hub axis of rotation, one or more articulating plates; an articulation control system, and a track orientation control mechanism. The one or more articulating plates extend radially from each hub and are rotatable therewith, each articulating plate is configured to be articulable about a plate articulation axis that is oriented radially with respect to the hub axis of rotation, and each articulating plate may include a shaft rotatably mounted to the hub and defining the articulation axis of the associated articulating plate. An articulation control system is associated with each hub and is configured to independently control orientation of each articulating plate of the associated hub with respect to the associated plate articulation axis. Each articulating plate is operably coupled to the articulation control system so that the articulation control system changes the orientation of the articulating plate as the associated hub rotates about the hub axis of rotation. Each articulation control system includes a rotatable track assembly and a follower assembly. The rotatable track assembly is rotatable about the hub axis of rotation and has a continuous track about its perimeter, and the continuous track circumscribes the hub axis of rotation. The follower assembly is coupled to each shaft of the associated hub and traverses the continuous track as the associated hub and articulating plate rotate about the hub axis of rotation to vary the orientation of the articulating plate with respect to the articulation axis of the articulating plate. The continuous track includes a first section, a second section, and first and second transition sections between the first and second sections. As the follower assembly traverses the first section of the track, engagement of the follower assembly with the first track section causes the associated articulating plate to assume a first orientation with respect to the articulation axis of the articulating plate. As the follower assembly traverses the second section of the track, engagement of the follower assembly with the second track section causes the associated articulating plate to assume a second orientation with respect to the articulation axis of the articulating plate. As the follower assembly traverses the first transition section of the track, engagement of the follower assembly with the first transition section causes the associated articulating plate to transition from the first orientation with respect to the articulation axis of the articulating plate to the second orientation with respect to the articulation axis of the articulating plate. And as the follower assembly traverses the second transition section of the track, engagement of the follower assembly with the second transition section causes the associated articulating plate to transition from the second orientation with respect to the articulation axis of the articulating plate to the first orientation with respect to the articulation axis of the articulating plate. The track orientation control mechanism is operatively coupled to the rotatable track assembly of each articulation control system and is configured to effect powered rotation of each rotatable track assembly to alter the rotational positions of the first section, the second section, the first transition section, and the second transition section about the hub axis of rotation.
In some examples, the track orientation control mechanism may include a first gear associated with each rotatable track assembly and arranged coaxially with the hub axis of rotation and a second gear associated with each rotatable track assembly and operatively engaged with the first gear of the associated rotatable track assembly.
In some examples the first gear may include a ring gear and the second gear may include a pinion gear.
In some examples, the first gear and the second gear are located internally to the associated rotatable track assembly.
In some examples, the first gear and the second gear are located externally to the associated rotatable track assembly.
In some examples, the track orientation control mechanism may further include a rotary encoder coupled to the rotatable track assembly.
In some examples, the track orientation control mechanism may further include at least one motor, an orientation control shaft operatively coupled to the at least one motor, a coupling gear associated with each second gear to transmit rotation of the orientation control shaft into rotation of the second gear.
In some examples, the orientation control shaft is oriented generally parallel to the hub axis of rotation and each second gear is oriented radially with respect to the hub axis of rotation.
In some examples, the motor is operatively coupled to the orientation control shaft by respective bevel gears associated with each of the motor and the orientation control shaft.
In some examples, the coupling gear associated with each second gear may include a bevel gear associated with the second gear and operatively engaged with a bevel gear of the orientation control shaft.
In some examples, the motor may include an electric motor or a hydraulic motor.
In some examples, the track orientation control mechanism may further include a track motor operatively coupled to each second gear.
In some examples, each second gear includes a shaft oriented radially with respect to the hub axis of rotation.
In some examples, each second gear includes a shaft oriented generally parallel to the hub axis of rotation.
In some examples, the track motor may include an electric, hydraulic, or pneumatic motor.
In some examples, the track motor may include a hydraulic or pneumatic motor, and the track orientation control mechanism may further include at least one pressure pump for generating hydraulic or pneumatic pressure, as applicable, and pressure lines connecting each track motor to the at least one pressure pump.
In some examples, the pressure lines may include input pressure lines and output pressure lines.
In some examples, the rotatable track assembly may include a stationary hub section and a movable hub section, wherein the track orientation control mechanism may include a track motor mounted to a motor mounting plate and configured to rotate the second gear, and wherein the system may further include a linear actuator mounted to the motor mounting plate and engaged with the movable hub section so as to permit relative rotation between the rotatable track assembly and the linear actuator.
In some examples, the linear actuator may include a ball screw motor mounted to the motor mounting plate and a ball screw extending into an annular groove formed in the movable hub section and wherein the ball screw is fixed against axial movement with respect to the annular groove and is configured to move circumferentially within the annular groove.
In some examples, the movable hub section includes a female conical mating surface and the stationary hub section includes a male conical mating surface, so that the stationary track member and the movable track member are self aligning.
In some examples, each plate has opposed surfaces, a leading edge, and a trailing edge, and wherein the articulation control system is configured to orient each plate in a slipstream orientation in which the opposed surfaces of the plate are generally parallel to the plane of rotation of the hub for a first portion of each rotation of the hub and in a working orientation in which the opposed surfaces are not parallel to the plane of rotation of the hub for a second portion of each rotation of the hub. The linear actuator is configured to axially separate the stationary hub section from the movable hub section to disengage the follower assembly of each articulating plate from the fixed track of the rotatable track assembly; and the system may further include an articulation override system configured to override the articulation control system and orient each plate in its slipstream orientation at any angular position about the hub axis of rotation. In some examples, the articulation override system may include rocker arms coupling the movable hub section to a primary override ring that is coaxially oriented with respect to the hub axis of rotation so that axial movement of the movable hub section causes a corresponding axial movement of the primary override ring and an actuator cam attached to the shaft of each articulating plate configured to be contacted by the axially moving primary override ring and retain each articulating plate at its slipstream orientation.
In some examples, the system may further include a separator plate disposed adjacent the at least one hub, wherein the separator plate is configured to be rotatable with respect to the hub axis of rotation and wherein the separator plate is operably coupled to a motor for selectively effecting powered rotation of the separator plate with respect to the hub axis of rotation.
In some examples, the separator plate includes a first portion and a second portion, and wherein the first and second portions of the separator plate are oriented radially with respect to the hub axis of rotation and are disposed at different axial locations with respect to the hub axis of rotation.
In some examples, the system may further include a cowling surrounding the at least one hub, wherein the cowling is fixed to the separator plate and rotatable therewith.
In some examples, the powered rotation of the separator plate is synchronized with the powered rotation of the rotatable track assembly.
In some examples, the system may further include a motor and a gear driven by the motor and a gear fixed to the separator plate and operatively engaged with the gear driven by the motor.
In some examples, the motor is mounted in a fixed position with respect to the hub axis of rotation, the gear driven by the motor is a pinion gear, and the gear fixed to the separator plate is a beveled ring gear arranged coaxially with respect to the hub axis of rotation.
In some examples, the motor is mounted to a motor mounting plate in the fixed position with respect to the hub axis of rotation, and the system may further include dual bearing races comprising an upper bearing between the motor mounting plate and a separator plate assembly including the separator plate and a lower bearing between the motor mounting plate and the hub.
In some examples, the system may further include a fluid flow direction sensor and a computer controller configured to control operation of the track orientation control mechanism to alter the rotational positions of the first section, the second section, the first transition section, and the second transition section about the hub axis of rotation based at least in part on a signal from the fluid flow sensor.
In accordance with other examples described herein, a system includes at least one hub, one or more articulating plates, and an articulation control system. The at least one hub is rotatable about a hub axis of rotation. The one or more articulating plates extend radially from each hub and are rotatable therewith, each articulating plate is configured to be articulable about a plate articulation axis that is oriented radially with respect to the hub axis of rotation, and each plate has opposed surfaces, a leading edge, and a trailing edge and one or more lips projecting transversely with respect to one of the opposed surfaces. An articulation control system associated with each hub and configured to independently control orientation of each plate with respect to the associated plate articulation axis, and each plate is operably coupled to the articulation control system so that the articulation control system changes the orientation of the plate as the associated hub rotates about the hub axis of rotation.
In some examples, the one or more lips may include one or more of a leading edge lip extending transversely from the leading edge of the plate, a trailing edge lip extending transversely from the trailing edge of the plate, and an inboard end lip extending transversely from an inboard end of the plate.
In some examples, each plate has opposed surfaces, a leading edge, and a trailing edge, and wherein the articulation control system is configured to orient each plate in a slipstream orientation in which the opposed surfaces of the plate are generally parallel to the plane of rotation of the associated hub for a first portion of each rotation of the hub and in a working orientation in which the opposed surfaces are not parallel to the plane of rotation of the associated hub for a second portion of each rotation of the hub.
In some examples, the system may include a plurality of articulating plates disposed at angularly-spaced positions about each hub, adjacent articulating plates that are in their slipstream orientations overlap one another, each articulating plate has a leading edge pocket of reduced thickness on a first surface of the plate and a trailing edge pocket of reduced thickness on a second surface of the plate, and the leading edge pocket of one articulating plate nests with the trailing edge pocket of an adjacent overlapped articulating plate when the plates are in their slipstream orientations.
In some examples, the one or more lips may include a leading edge lip extending transversely from the leading edge of the plate, and the leading edge lip includes a rounded surface extending across the width of the leading edge lip.
In accordance with other examples described herein, a system includes at least one hub rotatable about a hub axis of rotation, one or more articulating plates, an articulation control system, and a cowling surrounding the at least one hub. The one or more articulating plates extend radially from the hub and are rotatable therewith, each articulating plate is configured to be articulable about a plate articulation axis that is oriented radially with respect to the hub axis of rotation, and each plate has opposed surfaces, a leading edge, and a trailing edge. The articulation control system is configured to independently control orientation of each plate with respect to the associated plate articulation axis, each plate is operably coupled to the articulation control system so that the articulation control system changes the orientation of the plate as the hub rotates about the hub axis of rotation, and the articulation control system is configured to orient each plate in a slipstream orientation in which the opposed surfaces of the plate are generally parallel to the plane of rotation of the hub for a first portion of each rotation of the hub and in a working orientation in which the opposed surfaces are not generally parallel to the plane of rotation of the hub for a second portion of each rotation of the hub. A part of the cowling associated with each hub is closed on a side of the cowling corresponding to the first portion of the hub's rotation and includes an intake port and an exhaust port on a side the cowling corresponding to the second portion of the hub's rotation, and the cowling is operably coupled to a motor for selectively effecting powered rotation of the cowling with respect to the hub axis of rotation.
Other examples described herein include a method for regulating output of an energy conversion system. The energy conversion system includes at least one hub rotatable about a hub axis of rotation and one or more articulating plates extending radially from each hub and rotatable therewith. Each articulating plate is configured to be articulable about a plate articulation axis that is oriented radially with respect to the hub axis of rotation, and each articulating plate is operably coupled to a cam track extending around the hub axis of rotation to change the orientation of the articulating plate with respect to its plate articulation axis as the hub rotates about the hub axis of rotation. The method includes the step of rotating the cam track about the hub axis of rotation to vary the rotational positions at which each articulating plate changes its orientation with respect to its plate articulation axis.
In some examples, the cam track is part of a rotatable track assembly that is rotatable about the hub axis of rotation, and rotating the cam track may include operatively engaging a first gear associated with the rotatable track assembly with a second gear associated with the rotatable track assembly.
In some examples, the first gear may include a ring gear and the second gear may include a pinion gear, and the ring gear and pinion gear are internal to the rotatable track assembly.
In some examples, the first gear may include a ring gear and the second gear may include a pinion gear, and the ring gear and pinon gear are external to the rotatable track assembly.
In some examples, the method may further include operatively coupling a motor to the second gear.
In some examples, operatively coupling the motor to the second gear may include operatively coupling the motor to an orientation control shaft to transmit rotation by the motor to the orientation control shaft and operatively coupling the orientation control shaft to the second gear to transmit rotation of the orientation control shaft to rotation of the second gear.
In some examples, operatively coupling the motor to the second gear may include operatively coupling a track motor to each second gear.
In some examples, each track motor is fixed with respect to the hub axis of rotation and the track motor is a fluid pressure motor, and the method may further include transmitting fluid pressure from a pump that is fixed with respect to the hub axis of rotation to each track motor.
In some examples, the method may further include monitoring a rotational position of the cam track with a rotary encoder.
Other examples described herein include a system for powering or controlling articulation control systems for one or more rotating hubs, and one of the articulation control systems is associated with each hub, wherein. The system includes a chase or bore that passes through the one or more hubs and service lines passing through the chase or bore. The service lines include electric and/or signal cables and/or fluid pressure lines, and the service lines provide power and/or control to each articulation control system without rotatable couplings.
In some examples, each articulation control mechanism may include a rotatably track assembly, a first gear associated with each rotatable track assembly and arranged coaxially with the hub, and a second gear associated with each rotatable track assembly and operatively engaged with the first gear of the associated rotatable track assembly.
In some examples, the first gear may include a ring gear, and the second gear may include a pinion gear.
In some examples, the system, may further include a pinion motor operatively coupled to each pinion gear, wherein each pinion motor may include one of an electric motor, a hydraulic motor, and a pneumatic motor, and the service lines may include one of electrical cables connected to the electric motor, hydraulic lines connected to the hydraulic motor, and pneumatic lines connected to the pneumatic motor, as applicable.
In some examples, the system may further include a track motor operatively coupled to each pinion gear, and each track motor may include a fluid pressure motor, and the service lines may include fluid lines connected to each fluid pressure motor, and the system may further include at least one fluid pressure pump connected to the fluid pressure motors via the fluid lines.
In some examples, the system may further include a hub carrier defining a hub axis of rotation on which the one or more rotating hubs are rotatably mounted for rotation with respect to the hub carrier about the hub axis of rotation and a motor associated with each articulation control system and fixed with respect to the hub carrier, and the service lines pass through the hub carrier to each motor.
In some examples, the articulation control mechanism may include a rotatable track assembly, a first gear associated with each rotatable track assembly and arranged coaxially with the one or more rotating hubs, and a second gear associated with each rotatable track assembly and operatively engaged with the first gear of the associated rotatable track assembly, wherein the second gear is operatively coupled to the motor.
In some examples, the first gear comprises a ring gear, and the second gear comprises a pinion gear.
In some examples, the motor may include one of an electric motor, a hydraulic motor, and a pneumatic motor, and the service lines may include one of electrical cables connected to the electric motor, hydraulic lines connected to the hydraulic motor, and pneumatic lines connected to the pneumatic motor, as applicable.
In some examples, the motor may include a fluid pressure motor and the service lines may include fluid lines, the system may include at least one pump fixed with respect to the hub carrier, and the fluid lines connect the pump to the fluid pressure motor
In some examples, the one or more rotating hubs may include two or more counter-rotating hubs configured to be rotatable in opposite directions about the hub axis of rotation.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
The novel features of the preferred embodiments are set forth with particularity in the claims. A better understanding of the features and advantages of the present embodiments will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the preferred embodiments are utilized, and the accompanying drawings of which:
Unless defined otherwise, all terms of art, notations and other technical terms or terminology used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this disclosure belongs. If a definition set forth in this section is contrary to or otherwise inconsistent with a definition set forth in the patents, applications, published applications, and other publications that are herein incorporated by reference, the definition set forth in this section prevails over the definition that is incorporated herein by reference.
Unless otherwise indicated or the context suggests other-wise, as used herein, “a” or “an” means “at least one” or “one or more.”
This description may use relative spatial and/or orientation terms in describing an absolute or relative position and/or orientation of a component, apparatus, location, feature, or a portion thereof. Unless specifically stated, or otherwise dictated by the context of the description, such terms, including, without limitation, top, bottom, above, below, under, on top of, upper, lower, left of, right of, in front of, behind, next to, adjacent, between, horizontal, vertical, diagonal, longitudinal, transverse, radial, axial, etc., are used for convenience in referring to such component, apparatus, location, feature, or a portion thereof in the drawings and are not intended to be limiting.
Furthermore, unless otherwise stated, any specific dimensions mentioned in this description are merely representative of an exemplary implementation of a device embodying aspects of the disclosure and are not intended to be limiting.
As used herein, the terms “fixedly linked,” “operationally connected,” “operationally coupled,” “operationally linked,” “operably connected,” “operably coupled,” “operably linked,” “operably couplable” and like terms, refer to a relationship (mechanical, linkage, coupling, etc.) between elements whereby operation of one element results in a corresponding, following, or simultaneous operation or actuation of a second element. It is noted that in using such terms to describe inventive embodiments, specific structures or mechanisms that link or couple the elements are typically described. However, unless otherwise specifically stated, when one of such terms is used, the term indicates that the actual linkage or coupling take a variety of forms, which in certain instances will be readily apparent to a person of ordinary skill in the relevant technology.
As used herein, the term “KFECS”, refers to any embodiment of a kinetic fluid energy conversion system described herein, including without limitation, embodiments used for converting wind energy or water energy to mechanical energy, irrespective of the orientation of the longitudinal axis (axis of rotation) of the hub carrier relative to the land or land-based structure upon which the KFECS is located, or the water surface under which the KFECS is located.
As used herein, the term “bearing” refers to a component used to support and/or guide a rotating, oscillating, articulating or sliding shaft, pivot, wheel or assembly. Irrespective of the bearing described or shown, it may take on numerous forms, including without limitation sealed, unsealed, roller, ball, angular, needle and thrust. However, unless otherwise specifically stated, when such term is used, the term indicates that the actual linkage or coupling take a variety of forms, which in certain instances will be readily apparent to a person of ordinary skill in the relevant technology.
As used herein, the descriptions and depictions of meshed and/or otherwise mating gears, such as ring gear and pinion gear, bevel gear and pinion or pinion gear, bevel gear and pinion and any other similar use of such terms and depictions specifically related to gear types and styles, are not intended to be limiting but rather describe the transfer of mechanical motion between inter-engaged mechanical components in a particular embodiment shown. Such transfers of mechanical motion may occur through an operable coupling of two or more gears via a (i) rotational motion to a translational motion or vice versa, (ii) rotational motion to rotational motion, (iii) linear motion to linear motion, (iv) rotational motion to translational motion, (v). or otherwise transfer of mechanical motion through a gear set, irrespective of the type or style of gear depicted or described.
As used herein, terms used to describe or depict components in a particular alignment or spatial orientation, including, but not limited to, co-planar, planar, parallel, coaxial, transverse, longitudinal, angular, vertical, horizontal or other orientation, unless specifically otherwise stated, and are used to describe or depict a general spatial orientation and/or position or concept and are intended to encompass variations from the stated term that one of ordinary skill in the art would consider as a reasonable amount of deviation to the stated term (i.e., having the equivalent function or result) in the context of the present disclosure.
As used herein, the terms “computer,” “computer-controlled” and like terms refer to a computer and/or redundant computer(s) within or connected to the KFECS, irrespective of its physical location, that may include one or more uninterruptible power supplies.
As used herein, the term “land-based system” refers to a KFECS that is intended to convert kinetic fluid energy from a moving gas or gaseous mixture, including, without limitation, air, to mechanical energy.
As used herein, the term “water-based system” refers to a KFECS that is intended to convert kinetic fluid energy from a moving liquid, or liquid mixture, including without limitation, water, to mechanical energy.
As used herein, the term “independent control” in describing articulation of an energy conversion plate refers to the rotation of an energy conversion plate, relative to its articulation axis, independent of, and unrelated to, any other energy conversion plate included within the KFECS.
As used herein, the term “clutch/gearbox/electrical generator/pump assembly” refers to any device or assembly of components that may be operably coupled to the KFECS and which may be driven by mechanical energy that flows from the KFECS.
As used herein, the term “energy conversion plate” when used in a land-based system, are commonly known as airfoils, and when used in a water-based system, are commonly known as hydrofoils.
As used herein, the term “ECP” refers to an energy conversion plate.
As used herein, the term “nesting ECP” refers to an ECP that, when all ECPs are in their slipstream orientation, are configured such that the ECP's leading edge parallel to the ECP's axis overlaps and nests with the ECP that is immediately ahead of it in its direction of rotation about the longitudinal axis of the hub carrier.
As used herein, the term “lipped ECP” refers to an ECP or nesting ECP that has one or more lips that extend from the ECP in a direction that is not co-planar with a fluid impingement side of the ECP.
As used herein, the term “working mode” refers to the orienting of an energy conversion plate whereby opposed, planar surfaces of the plate are not parallel to—and may be perpendicular to—the fluid flow and will convert kinetic fluid energy to mechanical energy when subjected to an oncoming fluid flow.
As used herein, the term “slipstream orientation” refers to the orienting of energy conversion plates whereby opposed, planar surfaces of the plate are parallel to an oncoming fluid flow and will not convert kinetic fluid energy to mechanical energy when subjected to an oncoming fluid flow.
As used herein, the term “AOS” refers to an articulation override system that comprises multiple redundant systems that enable the KFECS to articulate all ECPs to their slipstream position and stop the rotations of the hubs.
As used herein, the term “AOS standby mode” refers to the operation of the AOS system whereby it (i) is monitoring the KFECS for conditions incompatible with the KFECS working mode, and (ii) all moving parts of the AOS are retracted or otherwise in a position or state where such parts are not subjected to mechanical wear.
As used herein, the term “AOS active mode” refers to the operation of the AOS whereby all energy conversion plates are moved to and/or retained in their slipstream orientations.
As used herein, the term “stopped mode” refers to the reorienting of all energy conversion plates (i) to their parallel to the flow (slipstream) orientations whereby they will not convert kinetic fluid energy to mechanical energy when subjected to a fluid flow, (ii) to a position whereby the KFECS can withstand fluid speeds and pressures far in excess of its design limit, and (iii) whereby the rotation of the KFECS is stopped for maintenance or any other purpose.
As used herein, the term “AOS Triggering Event” refers to any event or condition that causes an AOS active mode operation to occur. Triggering events include, without limitation, a signal received by the computer indicating (i) the fluid speed exceeds the KFECS's design specification, (ii) an error condition is detected by one or more sensors within the KFECS where such error condition require the KFECS's rotations to cease, (iii) maintenance of, or relating to, the KFECS is required or requested by the AOS or a maintenance crew, or (iv) any other specified condition is met.
As used herein, term “hydraulic/pneumatic” means any system or that could be controlled and/or actuated via hydraulic or pneumatic pressure.
The preferred embodiments will now be described with reference to the accompanying figures, wherein like reference numerals, including reference numerals followed by alphabetic characters” refer to like elements (e.g., identical and/or functionally equivalent elements) throughout the disclosure. The terminology used in the descriptions below, including without limitation the words “upper” and “lower,” are not to be interpreted in any limited or restrictive manner simply because it is used in conjunction with detailed descriptions of certain specific embodiments. Furthermore, the preferred embodiments include numerous novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the preferred embodiments described. Furthermore, many components described herein and shown within the drawings, and which are drawn as solid components, are done so for ease of understanding the drawings. All such components may be manufactured using conventional (i) assembly techniques whereby a single component may be split into multiple parts and, when reassembled, embody the characteristics of the component described herein and/or shown in the drawings, and (ii) weight saving methods, including without limitation designing all such components, including without limitation ECP 10, ECP 20, hub 120, hub carrier 130, hub 180, perimeter plate 215, brake housing 121, base 900 and cowling 1000, in multiple sub-assemblies, which can be assembled with conventional assembly techniques, into the particular component as shown. All components, at the designer's choice, may also have an interior lattice-like, or other non-solid interior design with strengthened and/or thickened areas where required, for example at areas in contact with bearings, and an external skin whereby such components may appear to be solid when in fact they need not be to achieve their desired functionality.
Provided herein and shown on accompanying figures are configurations of a kinetic fluid energy to mechanical energy conversion system (KFECS) based on one or more independently controlled energy conversion plates operationally coupled to one or more counter-rotating hubs, with all hubs operationally coupled to an integral hub carrier.
Provided herein and shown on accompanying figures are configurations of hubs capable of being operably coupled to one or more counter-rotating adjacent hubs, with each hub including one or more independently controlled articulating energy conversion plates.
Embodiments disclosed herein and shown on accompanying figures support the configuration of one or more clutch/gearbox/electric generator and/or pump assemblies on or near the ground, for a land-based KFECS, and near or above the water surface, for a water-based KFECS.
Embodiments disclosed herein and shown on accompanying figures permit positioning a longitudinal axis of a hub carrier as described herein in any orientation relative to the land or land-based structure upon which the KFECS is erected, or water in which the KFECS is erected, including without limitation, horizontal, or vertical. Irrespective of the orientation of the hub carrier's axis to the land or water surface as the case may be, the operably coupled clutch/gearbox/electrical generator or pump assembly(ies) may be located at or near the ground, or floor as the case may be, for a land-based KFECS, and at or near the water surface, for a water-based KFECS.
Embodiments disclosed herein and shown on accompanying figures are also related to the independent control of an energy conversion plate by articulation of it about a rotational axis that is substantially parallel to the plane of the ECP to achieve optimal energy conversion, while an energy conversion plate is moving in the direction of the fluid flow and to encounter minimal drag while moving against the fluid flow. In some embodiments, adjustment of the energy conversion plate articulation can be automatically overridden by an Articulation Override System (AOS) which causes each energy conversion plate, irrespective of the angular position about the hub carrier where it is located or traveling, to articulate to a position parallel to the fluid flow, and then causes all hubs and to cease rotating about the hub carrier (KFECS stopped position).
Embodiments disclosed herein permit multiple configurations of size and shape of KFECS components, including without limitation (i) differing aspect ratios of ECPs, and (ii) KFECS vertical, horizontal or their orientations relative to the ground or water bottom. Moreover, the descriptions and drawings are not intended to be limiting with respect to a KFECS physical shape, size, installation location or fluid type in which a KFECS is operating.
System Overview Hub and Energy Conversion Plate Assemblies—
The kinetic fluid energy conversion system (“KFECS”) is based upon an integral hub carrier, with one or more rotating operationally coupled hubs rotating around the hub carrier, with each hub having equally-spaced, independently-articulating, fully controlled energy conversion plates (“ECP”) located around the hub's perimeter. The hub carrier remains oriented directly to the oncoming fluid flow, or any other computer-controlled orientation, via a hub orientation control system comprising, in an embodiment, one or more computer-controlled hub orientation control motors.
Each energy conversion plate is independently controlled from within its respective hub and synchronized with the system's revolutions, such that each energy conversion plate can be oriented for optimum overall energy conversion while moving in the direction of the fluid flow, and then articulated to be oriented for minimum drag, while the energy conversion plate is blocked from the fluid flow or moving against the flow.
Different numbers of hubs can be configured in different aspect ratios (height to width) to support a variable range of installation conditions and/or designer's choice, including without limitation fluid speed, fluid type, ECP types and shapes. Different numbers ECPs can be configured in multiple desired geometric shapes to achieve overall KFECS operating characteristics, including without limitation the desired aspect ratio of the energy conversion system, mechanical energy output desired, and the overall energy conversion system size. All KFECS hub embodiments may be operably coupled to one or more power take-offs, including without limitation clutch/gearbox/generator or pump assemblies. The operable couplings, including without limitation clutches, may be computer controlled to selectively and individually couple and decouple to the KFECS to achieve a range of loads enabling the KFECS to operate in a wide range of fluid speeds. For example, only one of the multiple gearbox/generator assemblies may be coupled, for example by an engaged clutch, to the KFECS during low fluid speed operating conditions while two or more or all of the gearbox/generator assemblies may be coupled to the KFECS during relatively high fluid speed operating conditions.
KFECS embodiments may have a lower cut-in speed (the minimum speed at which a fluid energy conversion system begins to convert energy, typically by rotating or moving, sufficiently to rotate a generator or pump). KFECS lower cut-in speed results from the much larger square area of fluid conversion surface (ECPs) that may be configured in a given volumetric area, and the time over which the ECPs are in contact with the fluid flow as described herein, as compared to traditional wind and water kinetic energy conversions systems configured within the same volumetric area.
KFECS embodiments may also have a higher cut-out speed (the speed at which wind powered kinetic energy conversion systems, such as conventional horizontal and vertical axis wind turbines, are either attempted to be brought to rest or otherwise subjected to a lesser amount of dynamic pressure in an attempt to prevent damage to such systems. The embodiments described herein permit higher cut-out speeds as a result of its integral internal supporting structure and hub design, the plurality of which may be configured to be greater than twenty percent of the total area exposed to an oncoming fluid flow.
Embodiments described herein include an ECP tip speed that may never exceed the fluid speed and consequently rotates at a low RPM thereby (i) reducing wear on energy conversion components and related parts, and (ii) possibly reducing the risk of moving parts injuring birds and other flying animals, when used in air, or marine life, when used in water.
The embodiment used in this summary, as shown in
Articulation Control—
The articulation and orientation of each energy conversion plate is controlled at all times by components within its respective hub. In an embodiment, as shown in
The stationary and moveable sections of the track assembly are connected by splines around its circumference, as shown in
In one embodiment, each section of the track assembly, and the follower assembly that travel within it, are magnetically charged and arranged so a spherical magnetic assembly levitates within the spherical magnetic track. As the fluid pressure increases upon an energy conversion plate, while in an orientation perpendicular to the fluid flow and moving with it, the energy conversion plate will cause the operably coupled hub to rotate about the hub carrier in the direction of the fluid flow and consequently, the energy conversion plate, operably linked shaft and operably coupled hub will rotate around the track assembly. As the follower assembly moves into a spline within the magnetic track, in this example,
Counter-Rotating Hub—
Each hub may be operably coupled to one or more counter-rotating hubs thereby transferring mechanical energy between them to a clutch/gearbox/electrical generator or pump assembly. One coupling method is achieved via a synchronous gear mesh. In this embodiment, each hub is fitted with a ring gear, with pinion gears meshed between each ring gear. This arrangement embodies a counter-rotating transmission which enables an evenly distributed load across the hub carrier and a synchronized counter-rotation of the meshed hubs. The counter-rotating transmission is designed and configured to work in any hub carrier longitudinal axis orientation, including horizontal, and vertical. However, when used in a vertical axis orientation, all gear surfaces can be immersed in a reservoir suitable for holding liquid lubricant, while not requiring any seals about rotating shafts or between components located under the liquid lubricant level.
Articulation Override System—
A computer-controlled articulation override system (“AOS”) provides a series of failsafe mechanisms to automatically override the articulation control of all energy conversion plates in the event the fluid speed exceeds the design specification, error conditions are detected, maintenance is required, or any other specified condition is met, and stop the rotation of the energy conversion system. Moveable and lockable rings, and related components, contained within each hub remain in their respective retracted position during normal operations whereby they are not subjected to any wear. When actuated, the rings travel along the hub carrier axis and engage, through the counter-rotating hubs, and may slide against and move against any cam operably linked to an energy conversion plate shaft that is not in a slipstream orientation. Simultaneously, the operationally coupled cam track separates to permit each follower assembly to travel to its slipstream orientation, irrespective of the radian about the hub carrier's longitudinal axis it is moving through or is at which it is stopped.
1. Hub & Energy Conversion Plate Assembly—Working Principles—
Referring now to
During rotation of a hub 120 or 180 and its corresponding ECPs 10 in the presence of a fluid flow in a direction transverse to the longitudinal axis of the hub carrier 130, each hub/ECP assembly will be rotating with the direction of the fluid flow for half of its rotation and against the direction of the fluid flow for the other half of its rotation. To harness the motive power of the fluid flow, each ECP 10 is articulated so as to maximize the surface area exposed to the fluid flow during at least part of the rotation in the direction of the fluid flow and is articulated to minimize the surface area exposed to the fluid flow during at least part of the rotation in the direction against the fluid flow. In the embodiment illustrated in
In an embodiment, the hub carrier 130 and the KFECS 100 remain oriented directly toward the oncoming fluid flow while in its working mode via a hub orientation control system that may include one or more fluid direction and speed sensors 810 and one or more computer-controlled hub orientation control motors (“hub orientation control motors”) 710 having drive gears engaged with the orientation gear 700 attached to the hub carrier 130 (see
The articulation of each ECP 10 about the longitudinal axis (plate articulation axis) of its respective shaft 140 (and thus the ECP's orientation) is independently, fully and continuously controlled by an articulation control system that, in various embodiments, is located within the respective hub 120 or 180. Each ECP 10 is also synchronized with its respective hub's revolutions about the hub carrier 130, such that each ECP 10 can be oriented by the articulation control system for energy conversion while such ECP 10 is moving in the direction of the fluid flow, and then articulated to be oriented by the articulation control system for minimum drag while such ECP 10 is blocked from the fluid flow or moving against the fluid flow.
Such a KFECS 100 converts kinetic fluid energy to positive mechanical energy when a fluid flow acts upon an ECP 10 that is (i) not parallel to the fluid flow, including without limitation perpendicular to it, and (ii) positioned and/or moving in the direction of the fluid flow, thereby causing the fluid pressure against the ECP 10 to rise. Such ECP 10 causes its respective hub 120 or hub 180, as the case may be, to rotate about the longitudinal axis of the hub carrier 130. Positive mechanical energy is transferred to the hub 120 and hub 180 during any period in which the angle of attack of one or more of its respective ECPs 10 is not parallel to the fluid flow and moving in the direction of the fluid flow referred to herein as “working mode.”
In an embodiment, the articulation control system is configured so that when the fluid flow to an ECP 10 is blocked by a following, adjacent ECP 10, or an ECP 10 reaches the 180° position about the hub carrier 130, where the ECP 10 transitions from moving with the fluid flow to moving against the fluid flow, the ECP 10 will be articulated by the articulation control system described in Sections 2 and 9 herein about its respective shaft 140 axis from its energy converting working orientation (e.g., the ECP 10 surface is not parallel to and may be perpendicular to the fluid flow, or not parallel, and possibly perpendicular to, the plane of rotation of the hub) to its parallel to the flow “slipstream” orientation (or parallel to the plane of rotation of the hub), independently of all other ECPs 10, whereby the ECP 10 is oriented to generate minimal drag as it rotates about the longitudinal axis of the hub carrier 130 in a direction against the fluid flow.
Different numbers of (i) hubs 120 and 180 can be configured per hub carrier 130, and (ii) different numbers of ECPs 10 can be configured per hub 120 and 180, based upon the designer's choice for satisfying performance and installation requirements, including without limitation the desired aspect ratio (height to width) of the KFECS 100, its mechanical energy output and overall size. The embodiment shown in
Referring now to
When a hub 180 is rotating in a counterclockwise rotation, as a first ECP 10 in this embodiment (i.e., a five-ECP hub) moves in a counterclockwise rotation about the longitudinal axis of the hub carrier 130, after it passes the 0° position it will be traveling in the direction of the fluid flow. As the first ECP 10 passes the 0° position, the articulation control system will orient the ECP so as to maximize surface exposure to the oncoming fluid by the time the ECP 10 reaches an angular position of about 355° (measuring backwards from 360°) and will begin to convert kinetic fluid energy to mechanical energy. As the ECP 10 approaches the 180° position transitioning from moving with the flow to moving against the flow, the ECP 10 is then articulated by the articulation control system, as described in Sections 2 and 9, to its slipstream orientation where the ECP 10 will be parallel to the fluid flow. Once the ECP 10 passes the 180° position, it will remain in its parallel to the flow (slipstream) orientation while it rotates against the oncoming fluid flow or until it otherwise reaches the angular position where it is configured to begin its controlled articulation to its perpendicular to the fluid flow (working) orientation.
Clockwise rotating hub 120, not shown in
2. Articulation Control System—Working Principle
Referring now to
In the embodiment shown in
Referring now to
For example, as shown in
Features of an embodiment of the follower assembly 254 are shown in
In an alternate configuration, the ECP 10 is in its slipstream orientation when the follower assembly is in the upper track portion and is in its working orientation when the follower assembly is in the lower track assembly, depending on how the follower assembly is operatively attached to the shaft 140 of the ECP 10.
The follower assembly 254 may include a linkage fixedly attached to the shaft 140 with a follower head 253 at a free end of the linkage disposed within the track 255 of the cam track assembly 250. In an embodiment, the follower head 253 is spherical in shape and the track has circular transverse cross-sectional shape generally conforming to, but having a larger diameter than, the follower head 253.
In an embodiment, the upper section 251 and the lower section 252 are magnetically charged with opposite poles facing each other, and together comprise a magnetic track. The upper and lower sections can be magnetically charged by any suitable means, such as machining the upper and lower sections from permanent magnetic materials, embedding magnetic materials within nonmagnetic sections 251 and 252, or by application of electromagnetism. In this embodiment, the spherical follower head 253 is also magnetically charged and travels within the magnetic track whereby like poles of the follower head 253 are oriented nearest its like pole in the magnetic track, thereby resulting in the follower head 253 levitating within the magnetic track and forming a magnetic bearing.
3. Counter-Rotating Hub—Working Principle—
Referring now to
In an embodiment, transmission 240 comprises a ring gear 200 attached or otherwise operatively coupled to hub 120 and a ring gear 230 attached or otherwise operatively coupled to hub 180 (see Section 3 and
The transmission 240 will operate irrespective of the orientation of the longitudinal axis the hub carrier 130, including without limitation, horizontal and vertical. However, when used in a KFECS 100 with a hub carrier 130 that has a vertical axis orientation, all gear surfaces can be immersed in a reservoir suitable for holding liquid lubricant, while not requiring any seals about rotating shafts or between components located under the liquid lubricant level.
4. Articulation Override System Working Principle—
Referring now to
While the KFECS 100 is in its working mode, the AOS is in its standby mode (AOS Standby Mode) whereby the AOS continuously monitors sensors for any AOS active mode triggering event. When the AOS detects such triggering event, the AOS changes its status to active mode (AOS Active Mode). Such triggering events include without limitation the computer's receipt of a signal indicating (i) the fluid flow speed exceeds the KFECS's 100 design specification, (ii) an error condition is detected by one or more sensors within the KFECS 100 where such error condition require the hub 120 and 180 rotations to cease, (iii) maintenance of, or relating to, the KFECS 100 is required or requested by the AOS or a maintenance crew, or (iv) any other specified condition is met. All AOS components, other than external kinetic fluid energy direction and speed sensors 810, may be enclosed within the counter-rotating hubs 120 and 180, hub carrier 130 or other areas of the KFECS 100 and do not come in contact with the fluid flow.
An embodiment of the AOS includes moveable and lockable rings (see Section 10 and
Exemplary embodiments of an articulation control system are described below. All such embodiments are compatible with the AOS to achieve its functions of articulating the ECPs 10 to, and/or retaining them in, a slipstream orientation (AOS Active Mode) until the AOS determines it is safe return the ECP 10 articulation control to the Primary Articulation Control System. The AOS controls any embodiment of ECP, including, without limitation, nesting ECP 20 as described in Section 13.3. The detailed operations of the AOS are described in Section 10.
5. Energy Conversion and Flow—
Referring now to
Still referring to
6. Hub Assembly Detail—
Referring to
Referring now to
Referring now to
7. Counter-Rotating Transmission—
Referring to
The hub 180 has a conical pinion carrier relief 185 formed therein that accepts the pinion carrier 210 with sufficient clearance to rotate around the pinion carrier 210 without contacting it. The transmission well recess 235 housing the transmission 240 may be filled with a lubricating fluid, thereby permitting the transfer of mechanical energy between two counter-rotating hubs without the need for any fluid seals for rotating components or components located below the fluid level when the longitudinal axis of the hub carrier 130 is oriented vertically, and consequently, all ECP 10 control shafts 140 can be articulated without the need for lubricant seals related to the ring gear and pinion assembly.
Proximity sensors 585 located on a perimeter plate 215 of the pinion carrier 210 can be used to determine KFECS 100 operations, including without limitation, the distance between hubs and potential wear of hub carrier bearings 135. Exemplary proximity sensors 585 include digital inductive, 2-wire amplified, digital CMOS laser, photo-electric, pattern matching and optical. Hub carrier bearing 135 wear can be detected when one or more proximity sensors 585 detect a distance between the perimeter plate 215 and its adjacent hub 120 or hub 180 that is out of a predetermined tolerance.
8. Independent Energy Conversion Plate Articulation—Working Mode—
Referring now to
8.1. ECP Articulation Offsets
Referring now to
As shown in
As shown in
Referring now to
The angle of the spline and angular extent over which it is applied are design parameters which can be set. For example, in the illustrated embodiment, on the back side (i.e., down flow side) of the hub 120 or 180 at which the ECPs 10 are substantially blocked from the fluid flow, the spline 262 of the cam track assembly 250 may be set at a relatively shallow angle, as there is no particular benefit to a rapid articulation of the ECP 10 and so as to minimize twisting moment applied to the follower assembly 254 and the ECP shaft 140. On the other hand, on the front side (i.e., inflow side) of the hub 120 or 180 at which the ECPs 10 are exposed to maximum fluid flow, spline angle 261 may be set at a steeper angle to effect a rapid articulation of the ECP into its power generating orientation.
ECPs 10 could likewise be transitioned to their working position prior to 0°, and in fact, it has been determined mathematically that ECPs 10 produce more overall power through an entire 360° rotation if the articulation from slipstream mode to working mode begins at approximately 355° and has completed its transition to working mode by 5°. In this example, although the ECP 10 starts to encounter drag from 355° due to its working surface starting to transition while moving against the flow from 355°-0° (half of its transition), the inventor has determined that the positive power from 0°-5° more than offsets the negative power from 355°-0°.
As each ECP rotates about its respective hub, its shaft 140 remains at a substantially fixed axial position with respect to the hub axis of rotation centered between the upper track section 260 and the lower track section 270. While the follower head 253 of the follower assembly 254 of each ECP is traversing the upper track section 260 or the lower track section 270, the radial distance between the hub axis of rotation and the position on the connecting rod 145 at which the shaft 256 is inserted or otherwise attached or coupled to the connecting rod 145 remains unchanged. Due to the offset of the follower ahead 253 with respect to the axis of rotation of shaft 140, however, as the follower head 253 traverses the transition section 261 or transition section 262 while shaft 140 remains centered between the upper track section 260 and the lower track section 270, the radial distance between the hub axis of rotation and the connecting rod 145 will change. In one example, the radial distance will increase until it reaches the midpoint of the transition section of the upper and lower track, and then it moves back in toward the hub axis as it nears the end of the transition section. To accommodate that radial variation, the shaft 256 and follower head 253 may be configured to be movable in an axial direction (relative to shaft 256) with respect to the connecting rod 145, thereby varying the distance between the follower head 253 and the connecting rod 145, while the radial distance between the track 255 and the hub axis of rotation remains constant through the transition areas 261, 262. Alternatively, to accommodate that radial variation, the shaft 256 and follower head 253 may be fixed with respect to the connecting rod 145, while the radial distance between the continuous track 255 and the hub axis of rotation varies through the transition areas 261, 262.
Other articulation control systems described in this disclosure may also include comparable provisions for accommodating variation in the radial positioning of a follower assembly with respect to the hub axis of rotation as the follower assembly traverses a transition section of a follower orientation control feature. These provisions may include alternate embodiments of connecting rod 145, similar to connecting rod 146 (see
It should be appreciated that the articulation offsets and related synchronization described herein functions the same irrespective of if a KFECS 100 embodiment of nesting ECPs 20 as described in Section 13.3 are used in lieu of sets of ECP 10.
9. Primary Articulation Control—Multiple Embodiments
Still referring to
It should be appreciated that primary articulation control embodiments described herein functions the same irrespective of if a KFECS 100 embodiment of nesting ECPs 20 as described in Section 13.3 are used in lieu of sets of ECP 10.
9.1 Interior Magnetic Cam Track Assembly—
Referring now to
The spherical magnetic follower head 253 is operably coupled to, e.g., mounted on a shaft 256, which may be a sacrificial shaft as described below, of the follower assembly 254, which is operably linked to a shaft 140 of an ECP 10. The geometry of the continuous track 255 controls the position of each ECP 10 relative to the fluid flow throughout the ECP's 10 entire 360° rotation about the longitudinal axis of the hub carrier 130.
Referring now to
C=S/(cos((90−Theta)/2)),
In this embodiment, as the spherical magnetic follower head 253 travels through the track 255 around the magnetic cam track assembly 250, (i) while traveling through the upper track 260 it causes the operably coupled ECP 10 to remain in an orientation perpendicular to the fluid flow (working position), (II) while traveling through a spline it causes the operably coupled ECP 10 to articulate 90°, and (iii) while traveling through the lower track section 270 it causes the related ECP 10 to remain in an orientation parallel to the fluid flow (slipstream).
It should be appreciated the magnetic levitation method described herein will function regardless of which track section has a particular pole, North or South, nearest the track 255, provided the spherical magnetic follower head 253 is assembled within the magnetic cam track assembly 250 with its poles facing like poles of the magnetic cam track assembly 250, and each track section 251 and 252 has an opposing magnetic pole nearest the its respective track 255 half.
It should be further appreciated that the greater the circumference of the magnetic cam track assembly 250, and follower head 253 and/or the greater length of the connecting rod 145 embodied, or alternate embodiments of these components, including without limitation as described in Sections 9.2 and 9.4, the greater the twisting moment the respective follower head can support.
It should be further appreciated that the words “upper” and “lower” are used herein and throughout Section 9 to orient the reader to the related drawings contained herein but do not limit the relative positions in which the hub carrier 130 and magnetic cam track assembly 250 are configured within the KFECS 100 or relative to the ground, or bottom of body of liquid, as the case may be.
9.2 Interior Lubricant-Filled Cam Track Assembly—
Referring now to
A spherical bearing travels in a circular track 303 and is operably linked to a shaft 317 rotationally supported in a bearing 315. The bearing 315 is operably coupled to an inner magnetic coupling 321 which glides over an interior surface of the membrane 322, but does not contact it, during normal operations. An outer magnetic coupling 323 glides over the exterior of the membrane 322, but does not contact it during normal operations, and is operably coupled to its associated inner magnetic coupling 321 via magnetic attraction of sufficient magnetic force, through the membrane 322 to permit the transfer of torque necessary to articulate the associated ECP 10. It should be appreciated that this arrangement permits the transfer of torque through the magnetic field in a seal-less configuration. It should also be appreciated that the perimeter plate 215 may comprise computer monitored sensors, as further described in Sections 9.5 and 11, that would detect a leak in the membrane 322 thereby resulting in one or more computer-controlled operations, including without limitation, triggering the AOS. The outer magnetic coupling 323 is operably linked via a shaft 317, which may be a sacrificial shaft as described below, to a shaft 140 of the associated an ECP 10.
Track 303 has a circular transverse cross-section to receive the spherical bearing 310. The geometry of the track 303 controls the position of each ECP 10 relative to the fluid flow throughout its entire 360° rotation about the longitudinal axis of the hub carrier 130. The track 303 geometry may be configured to control the start and end of each articulation, with the start, end and duration of each articulation limited only by the diameter of the spherical bearing 310 relative to the steepest angle of the splines 261 and 262 (see
C=S/(cos((90−Theta)/2)),
In this embodiment, as the bearing 310 moves through the track 303 around the cam track assembly 300, (i) while traveling through the upper track 325 it causes the operably coupled energy conversion plate 10 to be articulated perpendicular to the fluid flow, and (ii) while traveling through the lower track section 326 causes the associated energy conversion plate 10 to rotate to an orientation parallel to the fluid flow.
9.3 Magnetic Array Assembly—
Referring now to
It should be appreciated that magnetic array assembly 370, during AOS slipstream mode, does not require any sacrificial parts due to mechanical failure, for example a failed split track operation as described in Section 10.4. Consequently, shaft 257 (see
9.4 Triple Cam Track Assembly—
Referring now to
A triple follower assembly 490 is comprised of a linkage 491, shafts 492, follower heads 253, one or more bearings 493 (see also
In various embodiments, the triple cam track assembly 460 is fixedly linked to the hub carrier 130. The ECP shaft 140, the triple follower assembly 490, and the center track assembly 473 are configured and arranged so that the axis of each ECP shaft 140 is equidistant from the upper track and lower track of the center track assembly 473 (i.e., the axis of each ECP shaft 140 bisects center track assembly 473). The triple follower assembly 490 includes three follower heads 253 (or three spherical bearings 310 if the triple cam track assembly is configured as a liquid-lubricant filled cam track assembly (see
The coplanar alignment is an essential element of the geometry necessary for proper operation of the triple follower assembly 490 and prevents it from binding within the respective tracks 463, 473 and 483.
The triple cam track assembly 460, like the magnetic cam track assembly 250 and lubricant filled cam track assembly 300, uses the splined hub 280 when it moves from its closed position, shown in
9.5 Hub Carrier and Perimeter Plate Detail
Referring now to
The perimeter plate 215 is fixed to the pinion carrier 210 (connected to each other or a single, integral component) which is fixed to the hub carrier 130. Consequently, any Transport System that runs through the hub carrier chase 132 may branch off through the perimeter plate 215 to serve numerous systems, including without limitation, electronic sensors, motor, vacuum, and pressure lines. Additionally, rotatable electrical couplings, including without limitation brush slip rings may be configured between the perimeter plate 215 and the adjacent hubs 120 and 180 thereby permitting the transfer of high voltage routed from the hub chase 132 to each ECP shaft 140 that serves a respective ECP 10 or 20. This provides a means of energizing heating elements within the ECPs that could be controlled by computer, as described in Section 9.6, to reduce potential icing of the ECPs 10 and 20 during icing conditions that sometimes occur. A KFECS 100 embodiment with more than two hubs 120 and 180 may include an additional perimeter plate 215, and related transmission as described in Section 7, between each additional hub.
Referring now to
As shown in
9.5.1 Perimeter Plate—Multi-Function Alternate Embodiment
Referring now to
Perimeter plate 215-A includes outer pinion openings 222 formed in an annular support flange 228 at angularly spaced positions about the perimeter plate 215-A. A pinion shaft receiver bore 223 is aligned with each outer pinion opening 222. Each shaft receiver bore 223 receives a shaft of an outer pinion 224 having a gear head that is disposed in an associated outer pinion opening 222.
Perimeter plate 215-A is configured to be used with alternate embodiments of hub 120 (120-A) and hub 180 (180-A), whereby the counter rotating hubs 120-A and 180-A are rotationally coupled by the outer pinions 224, optionally in combination with pinions 220 (inner pinions) of transmission 240.
In an embodiment, transmission 245 comprises a ring gear 225 attached or otherwise operatively coupled to hub 120-A (to the top of hub 120-A as shown in
Two thrust bearings 227, referred to herein as perimeter hub bearings, may be provided and located against the perimeter plate 215-A, with one thrust bearing 227 positioned between the top of the perimeter plate 215-A and the bottom of top hub 180-A, and another thrust bearing 227 positioned between the bottom of the perimeter plate 215-A and the top of bottom hub 120-A (see
As shown in
The brake housing thrust bearing 731 permits rotation of the hub end 121-A and the hubs 120-A and 180-A with respect to the brake housing 730-A about the hub carrier 130. Brake housing thrust bearing 731 at the outer radial periphery of the of the brake housing 730-A and hub end 121-A also transfers lateral and vertical loads acting upon the hubs 120-A and 180-A through the hub end 121-A to the brake housing 730-A. Because the brake housing thrust bearing 730-A is located at the outer radial periphery of the of the brake housing 730-A and hub end 121-A, it is able to withstand a greater lateral moment than only the hub carrier bearings 135 positioned between the hub end 121-A and the hub carrier 130.
Similarly, perimeter hub bearings 227 positioned on opposite sides of the perimeter plate 215-A between the hubs 180-A, 120-A and at the outer radial periphery of the of the perimeter plate 215-A and hubs 180-A, 120-A, transfers lateral and vertical loads acting upon the hubs 120-A and 180-A through the hubs and to the hub end 121-A. Because the perimeter hub bearings 227 are at the outer radial periphery of the of the perimeter plate 215-A and hubs 180-A, 120-A, they are able to withstand a greater lateral moment than only the hub carrier bearings 135 positioned between the hubs 120-A, 180-A and the hub carrier 130.
Thus, the hubs 120-A, 180-A, hub end 121-A, and hub carrier 130, and all components operably or fixedly linked to the hub carrier 130, are able to withstand greater vertical and lateral loads than could be withstood without brake housing thrust bearing 731 disposed between the brake housing 730-A and the hub end 121-A.
In addition, because the perimeter plate 215-A and counter-rotating transmission 245 provides support points near the radially outer peripheries of the perimeter plate and hubs 120-A and 180-A (i.e., radially outer support points provided by outer pinions 224 and ring gears 225 and 226), whereas transmission 240 (see
Unless otherwise noted or evident from the context, one or more of hubs 120-A, 180-A, perimeter plate 215-A, hub end 121-A, and/or brake housing 730-A could be substituted for one or more of hubs 120, 180, perimeter plate 215, hub end 121, and brake housing 730, as applicable, in any descriptions in this disclosure.
9.6 Perimeter Motor Driven Assembly—
Referring now to
10. Articulation Override System—Standby Mode—
Referring now to
One of the sections 251, 252 of the magnetic cam track assembly 250, for example, the moveable track section 252, is designed to move with respect to the other stationary track section 251 when directed by the AOS to go into AOS active mode to thereby decouple the follower assembly 254 and ECP 10 from the magnetic cam track assembly 250.
As shown in
In an embodiment, none of the operably coupled AOS components move or are subjected to any mechanical wear at any time other than when the AOS switches into active mode. In an embodiment, all operably coupled parts that come in contact with an actuator cam 590 or any other movable AOS components are constructed of materials with inherent low friction properties designed to slide without lubricant, such as Delrin®, or low friction coatings, such as Tungsten Disulfide. In an embodiment, the AOS is designed to rotate all ECPs 10 to their slipstream orientation in less time than is required for a hub 120 or 180 to make one revolution about the longitudinal axis of the hub carrier 130.
During normal KFECS 100 operations, the AOS remains in a standby mode whereby linear actuators, such as motorized ball-screw assemblies 530 (which may be computer controlled, as described in further detail below), apply pressure to the moveable cam track section 252 in the direction of the stationary cam track section 251 causing both sections to act as a single contiguous track 255. Similarly, in embodiments with a triple cam track assembly 460, motorized ball screw assemblies 534 apply pressure to the movable track sections 462, 472 and 482 causing all three sections, in combination with their associated fixed track section 461, 471, and 481, respectively, to act as contiguous tracks 463, 473 and 483, respectively.
It should be appreciated that it is the designer's choice as to the lifter style that may be used, lifters 565 or 581, in alternate embodiments of the (i) AOS, (ii) perimeter plate 215 or 215-A (see Section 9.5), and (iii) hubs 120 and 180 as adequate space exists in all components that may be operably coupled to either lifters 565 or 581.
10.1 Active Mode—Primary System—
Referring now to
The mechanical movement of the moveable magnetic cam track section 252, and the parts to which it is operably coupled, are conceptually identical in function to the splitting movement of the liquid-lubricant filled cam track assembly 300, and triple cam track assembly 460, irrespective of whether or not the triple cam track assembly is used in a magnetic embodiment or liquid lubricant embodiment.
10.2 Self-Aligning Track Hub Assembly—
Referring now to
10.3 Redundant Active Modes 1-3—
Referring now to
Each actuator group may be supported on an actuator plate 500, which may comprise a circular plate arranged coaxially with, oriented radially to, and rotationally fixed to the hub carrier 130. Accordingly, the actuator plate 500 may act as an extension of the hub carrier and move with the hub carrier when the hub carrier is rotated about its longitudinal axis by hub orientation control system. Actuator groups may be comprised of multiple actuator types, including without limitation, pneumatic 508, pyrotechnic 510, hydraulic and electronic solenoid actuators, each capable of extending an integral actuator element, such as a piston, when activated.
When activated, each actuator of a backup actuator group, such as one comprising pneumatic actuators 508 and/or pyrotechnic actuators 510, will simultaneously extend its respective actuator piston toward the primary articulation control ring 560, and function as a backup to, and replacement for, the rocker arms 550 that failed to operate or fully operate as a result of a failed split-track operation. In an embodiment, the extent of axial movement of the primary articulation control ring 560 caused by the actuator group is equal or substantially equal to the movement of primary articulation control ring 560 caused by rocker arms 500, and primary articulation control ring 560 thereafter actuates secondary articulation control ring 570 and the tertiary control ring 580, as described above. Consequently, during any redundant AOS mode one or more sacrificial parts will break or become de-coupled as further described in Section 10.4.
It should be appreciated that the AOS functions described herein operate on any ECP 10 type, including without limitation, nesting-ECPs 20 as described in Section 13.3.
10.4 Sacrificial Parts
Referring now to
11. Computer Controlled Functions and Sub-Systems
Referring now to
Using inputs from the sensors, the computer controls numerous KFECS 100 functions, irrespective if it is a land-based KFECS 100 or water-based KFECS 100, including without limitation, the KFECS's 100 orientation to the fluid flow, the ECP's working and slipstream orientations during AOS operations and motorized articulation control, braking operations of the KFECS 100, and equalizing the time that each clutch/gearbox/electrical generator/pump assembly is engaged and converting mechanical energy to electricity, a compressed gas, or pressurized fluid.
In various embodiments, computer monitored conditions and operations that are exclusive to KFECS 100 water-based installations include but are not limited the KFECS' 100 yaw, pitch, and depth relative to the water surface. Using these inputs, the computer controls numerous functions, as further described below.
12. Orientation Control and Conversion Unit—
12.1 Hub Orientation Control
Referring now to
Exemplary hub orientation motor locations on other KFECS 100 embodiments are shown in
The computer receives input from any number of sensors and sources, including without limitation a fluid direction and speed sensor 810 (see
12.2 Brakes—
Still referring to
12.3 Mechanical Energy Transfer to Gearbox/Electrical Generator/Pump Assemblies—
Referring to
Referring now to
13. Energy Conversion Plates—
13.1. General
Referring now to
In the embodiments shown, each ECP 10 leading horizontal (X coordinate) edge 14, and the leading vertical (Y coordinate) edge 15 may be tapered or beveled. Similarly, each ECP 20 leading horizontal (X coordinate) edge 24, and the leading vertical (Y coordinate) edge 29 may be tapered or beveled. Each ECP 10 and nesting ECP 20 may also be comprised of one or more sections, each connected to its adjacent section(s). The non-nesting ECP 10 may include an inboard section 11, an extension section 12, and an outboard section 13, each of which, may include on or more integral air chambers 16, that when used in a water-based KFECS 100 may be used to obtain a neutral buoyancy for the ECP 10, thereby reducing the radial load on the ECP 10 and operably coupled and fixedly linked components. All ECP sections, when assembled, act as a single ECP 10 or nesting ECP 20 as described in Section 13.3. The design of the ECP 10 and nesting ECP 20, including without limitation, its aspect ratio (width to height), number of sections used to comprise it, and surface finish, are within a designer's choice for satisfying performance and installation requirements. It should be appreciated that the aspect ratios are only constrained by the overall size of the KFECS 100, the dimensions of its hubs 120 and 180, and material's properties. It should also be appreciated that any ECP 10 referenced within Sections 1-12 could be replaced by a nesting ECP 20.
13.2. Non-Nesting Energy Conversion Plate—
Still referring to
13.3. Nesting Energy Conversion Plate—
Referring now to
Referring now to
13.4. Energy Conversion Plate—Surface Detail
Referring now to
13.5. Energy Conversion Plates—Ancillary Features
Referring now to
It should be appreciated that performance improvements attributable to the lip 1502, 1505 1510 may be in other implementations of pressure plates, such as paddle wheels for propelling watercraft, skin diving, scuba diving and swimming fins, oars, and mixers.
14. Superstructure Embodiments—General—
Referring now to
The hub carrier 130 can be supported and/or stabilized at its ends and/or at one or more positions intermediate to the ends, for example at the perimeter plate 215. The hub carrier 130, together with the overall design of the KFECS 100, permits the KFECS 100 to be mounted with the longitudinal axis 131 of the hub carrier 130 (see
In various embodiments, irrespective of the non-nesting ECP 10 or nesting ECP 20 embodiment used, all ECP types may be in their slipstream orientation between 130° and 210° (see
It should be appreciated that in various embodiments it is the designer's choice as to when an ECP 10 or nesting ECP 20 may be in its slipstream, transition, or working orientation to the flow throughout the ECP's 360° rotation about the longitudinal axis 131 of the hub carrier 130 as further described in Section 9.
14.1. Superstructure—Land-Based Vertical—
Still referring to
14.2. Superstructure—Land-Based Horizontal—
Referring now to
The orientation of the turntable style base assembly 908 may be varied by one or more hub orientation control motors 710 which are operably linked to a turntable-style base assembly 908 and are also operably coupled to the turntable ring gear 912 by a operably coupled pinion 720. The turntable-style base assembly 908 is also operably linked to the ground or ground-based structure. This configuration enables the computer-controlled hub orientation motors 710 to cause the KFECS 100 to be continuously optimally oriented relative to the oncoming fluid flow, or any other computer-controlled direction, based upon the inputs received by one or more fluid direction and speed sensors 810 or any other computer input.
In an embodiment electricity, high pressure fluid and/or high pressure gaseous mixture converted by, or compressed by, as the case may be, the clutch/gearbox/electrical generator/pump assembly(ies) 620 do not require rotatable coupling as the computer controlled hub orientation control motors 710 are configured so that KFECS 100 is never rotated about the center point of the turn-table style base assembly 908 by more than a 360° rotation in either a clockwise or counterclockwise movement. If necessary to accommodate KFECS 100 reorientation due to fluid flow direction change, the AOS may be temporarily activated to avoid an overspeed condition while the KFECS 100 is being reoriented to the changed fluid flow direction.
Referring now to
The orientation of the turntable mounting plate 910 may be varied by one or more hub orientation control motors 710. Hub orientation control motors 710 are mounted to the turntable-style base assembly 908 and are also operably coupled to a turntable ring gear 912 surrounding turntable mounting plate 910 by a operably coupled pinion 720. The turntable-style base assembly 908 may be mounted or otherwise supported by the ground or ground-based structure. This configuration enables the hub orientation control motors 710 to cause the KFECS 100 to be continuously optimally oriented relative to the oncoming fluid flow, or any other desired direction. Hub orientation control motors 710 may be computer controlled in accordance with a control algorithm and computer-monitored sensor inputs, including, for example, one or more fluid direction and speed sensors 810 or any other sensor or computer input.
In an embodiment, electricity, high pressure fluid and/or high pressure gaseous mixture converted by, or compressed by, as the case may be, the clutch/gearbox/electrical generator/pump assembly(ies) 620 do not require rotatable coupling to external electric or fluid transmission components as the hub orientation control motors 710 are configured so that KFECS 100 is never rotated about the center point of the turn-table style base assembly by more than a 360° rotation in either a clockwise or counterclockwise movement. If necessary to accommodate KFECS 100 reorientation due to fluid flow direction change, the AOS may be temporarily activated to avoid an overspeed condition while the KFECS 100 is being reoriented to the changed fluid flow direction.
14.3. Superstructure—Water-Based Vertical—
Referring now to
The gearbox/winch assemblies, 962, pulleys 963, cables 964, pulleys, 967-A, ballasts 966, and components fixedly and/or operably linked or operably coupled thereto comprise an example of a deep water mounting system, capable of being computer controlled, with a depth limited only by the (i) gearbox/winch assemblies' 962 capacity to store cables 964, (ii) length and physical characteristics of cables 964, and (iii) space between the cover 950 and the superstructure 960 (see
Referring now to
The superstructure 960 is also operably linked to the fluid orientation motor housing 750-A, which is operably linked to plate 902, which is operably linked to hub orientation control motors 710, which are operably coupled to pinions 720, which are operably coupled to the linked to the plate 902, which is operable linked to and are also operably coupled to the orientation gear 700, which is operably linked to the hub carrier 130. This configuration enables the hub orientation control motors 710 to cause the KFECS 100 to be continuously optimally positioned relative to the oncoming fluid flow, or any other computer-controlled direction, based upon the inputs received by one or more fluid direction and speed sensors 810 or any other computer input.
The brake disc 770 (see
Electricity, high pressure fluid and/or high pressure gaseous mixture converted by, or compressed by, as the case may be, the clutch/gearbox/electrical generator/pump assembly(ies) 620 (See
14.4. Superstructure—Water-Based Horizontal—
Referring now to
The superstructure 972 is also operably linked to (i) gearbox/winch assemblies 962, which may be computer controlled, and pulleys 963. Each gearbox/winch assembly 962 is also operably coupled to each respective pulley 963, by a respective cable 964, which is operably linked to ballast mounting attachment 967, such as a pulley as shown, which is operably linked to a respective ballast 966.
The computer controlled gearbox/winch assemblies 962 control the tension of each respective operably linked cable 964. The computer controlled gearbox/winch assemblies 962 consequently can control (i) the X and Y orientation of the KFECS 100 relative to a plumb position and (ii) the depth of the KFECS 100 relative to the water surface by selectively increasing or decreasing the amount cable 964 contained within any or all gearbox/winch assemblies 962. The computer controlled gearbox/winch assemblies 962 enable releasing sufficient cable 964 to permit the KFECS 100 to raise in the water to a point that the superstructure 972 of the KFECS 100 is at or above the water surface, or optionally, to permit raising and/or removing the KFECS 100 out of the water by conventional lifting equipment.
The plurality of the KFECS 100 gearbox/winch assemblies, 962, cables 964, ballasts 966 and components fixedly and/or operably linked or operably coupled thereto, comprise another embodiment of a deep water mounting system with a depth limited only by the gearbox/winch assemblies' 962 capacity to store cables 964, the length and physical characteristics of cables 964, and the space between the cover 950 and the superstructure 972.
One or more hub orientation control motors 710 are operably linked to the superstructure 972 and are also linked to a pinion 720, which is operably coupled to turntable ring gear 974, which is operably linked to generator mounting plate 978. The generator mounting plate 978, is located upon a low friction perimeter bearing 973-A (see
Mechanical energy is transferred from hub 120 and hub 180 via one or more hub extension spokes 122 which are operably linked to a ring gear 606, which is operably linked to pinion 606-A, which are operably coupled with one or more clutch/gearbox/electrical generator/pump assemblies 620.
Electricity, high pressure fluid and/or high pressure gaseous mixture converted by, or compressed by, as the case may be, the clutch/gearbox/electrical generator/pump assembly(ies) 620 flows through the hub carrier 130 and operably linked umbilical cord 970 to their respective destination, including but not limited to land-based connection points such as an electrical grid, hydraulic pump(s) and/or compressed air tank(s) (not shown). The hub carrier 130 design, including the hub carrier chase 132 (see
15. Cowling
Referring now to
The cowling 1000 may include a lower intake port 1010 and an upper intake port 1020 formed in the front wall 1012 and aligned with the respective ECPs 10, or 20 (when using nesting ECPs), of the upper and lower hubs 120-A, 180-A (see
Referring now to
The separator plate 1070 may be located between any two counter-rotating hub assemblies, for example hubs 120 and 180, and extends from intake port 1010 to exhaust port 1015 and from intake port 1020 to exhaust port 1025. The separator plate 1070 improves the characteristics of the oncoming fluid flow that contacts the counter-rotating ECPs 10 or 20 in part by preventing the fluid flow that contacts ECPs 10 or 20 attached to hub 120 from disturbing the flow that contacts ECPs 10 or 20 attached to hub 180, and vice versa (e.g., separator plate 1070 prevents the turbulence from one hub interfering with the axially adjacent hub).
Referring now to
It should be appreciated that the cowling 1000 provides sufficient area to support embodiments that could block the fluid flow from intake ports 1010 and 1020, and exhaust ports 1025 and 1015, thereby supporting another embodiment of overspeed protection or maintenance purposes whereby it is desirable to control, restrict or block the fluid flow from contacting ECPs 10 or 20.
Separator plate 1070 may be disposed at different axial positions (relative to the hub axis of rotation) for adjacent hubs to accommodate the width of the respective ECPs 10 or 20 while in their working modes. For example, as shown in
15.1 Separator Plates—Alternate Arrangement
Referring now to
In one arrangement, a top separator plate 1075 may be fixedly linked to hub carrier 130 above hub 180 via a cylindrical extension 1076 to boss 1077 so that separator plate 1075 remains operatively aligned and oriented with (i) the hub carrier and (ii) the hub 180 and ECPs 10 and 20 rotating beneath it. Even without one or more of top wall 1110, top plate 1105, base 1005, bottom plate 1050, front wall 1012, side wall 1014, and/or rear wall 1016 of cowling 1000, top separator plate 1075 may improve the characteristics of the oncoming fluid flow beneath it and largely restricts flow from slipping over the top of a working ECP 10 or 20 thereby increasing the dynamic pressure on the working ECPs of hub 180.
Top separator plate 1075 may be disposed at different axial positions (relative to the hub axis of rotation) for the adjacent top hub 180 to accommodate the width of the respective ECPs 10 or 20 while in their working modes. For example, as shown in
When top separator plate 1075 is used together with a separator plate 1070, independently of one or more of top wall 1110, top plate 1105, base 1005, bottom plate 1050, front wall 1012, side wall 1014, and/or rear wall 1016 of cowling 1000, the separator plates 1070 and 1075 may improve flow characteristics similarly to when used with a cowling 1000 and (i) may improve the characteristics of the oncoming fluid flow that contacts the counter-rotating ECPs 10 or 20 in part by preventing the fluid flow that contacts ECPs 10 or 20 attached to hub 120 from disturbing the flow that contacts ECPs 10 or 20 attached to hub 180, and vice versa (e.g., separator plate 1070 prevents the turbulence from one hub interfering with the axially adjacent hub), and (ii) may increase the dynamic pressure on the ECPs attached to hub 180 by, for example, concentrating flow impinging on the working ECPs 10 or 20 and confining the flow between the separator plates 1070, 1075, such that flow largely cannot slip over or under each working ECP of the hub 180. In this regard, the gaps between the top and bottom edges of each ECP 10, 20 of hub 180 and the separator plates 1075, 1070, respectively, while the ECP is in its working mode, is preferably as small as possible to minimize fluid slippage between the ECP and the separator plates while avoiding contact between the ECP and the separator plates. In addition, the lateral width of each separator plate 1070, 1075 may be larger than the diameter of the hub 180 (including the associated ECPs) to minimize cross-hub flow and turbulence (e.g., flow and turbulence from hub 180 affecting the flow of an adjacent hub).
A shown in
Similarly, as shown in
As shown in
Bottom separator plate 1080 may be disposed at different axial positions (relative to the hub axis of rotation) for the adjacent bottom hub 120 to accommodate the width of the respective ECPs 10 or 20 while in their working modes. For example, as shown in
The inventor has determined that when bottom separator plate 1080 is used together with a separator plate 1070, independently of one or more of top wall 1110, top plate 1105, base 1005, bottom plate 1050, front wall 1012, side wall 1014, and/or rear wall 1016 of cowling 1000, the separator plates 1070 and 1080 improve flow characteristics similarly to, and, in some instances, better than, when used with a cowling 1000. In one respect, separator plates 1070 and 1080 prevent the fluid flow that contacts ECPs 10 or 20 attached to hub 180 from disturbing the flow that contacts ECPs 10 or 20 attached to hub 120, and vice versa (e.g., separator plate 1070 prevents the turbulence from one hub interfering with the axially adjacent hub). Separator plates 1070, 1080 also increase the dynamic pressure on the ECPs attached to hub 120 by, for example, concentrating flow impinging on the working ECPs 10 or 20 and confining the flow between the separator plates 1070, 1080 such that flow largely cannot slip over or under each working ECP of the hub 120. In this regard, the gaps between the top and bottom edges of each ECP 10, 20 of hub 120 and the separator plates 1070, 1080, respectively, while the ECP is in its working mode, are preferably as small as possible to minimize fluid slippage between the ECP and the separator plates while avoiding contact between the ECP and the separator plates. In some instances, the (i) gap between separator plate 1070 and the working mode ECPs may be different than the gap between separator plate 1080 and the working mode ECPs and (ii) gap between separator plate 1070 and the working mode ECPs may be different than the gap between separator plate 1075 and the working mode ECPs, although in other instances the gaps may be same. In addition, the lateral width of each separator plate 1070, 1080 (front to back and/or side to side) may be larger than the diameter of the hub 120 (including the associated ECPs) to minimize cross-hub flow and turbulence (e.g., flow and turbulence from hub 120 affecting the flow of an adjacent hub) or otherwise increase KFECS performance.
A shown in
In one arrangement, separator plate 1070, 1075, and 1080 are fixed with respect to hub carrier 130 and rotate with the hub carrier 130 to orient the separator plates in any controlled orientation relative to the oncoming fluid flow and to prevents any ECPs 10 or 20 from coming in contact with the separator plates.
The shape of the separator plates 1070, 1075, 1080 as shown (i.e., with a semi-circular forward portion and a rectangular rear portion having a width matching the diameter of the semi-circular portion) is not limiting, and other shapes, such as circular, may be employed.
15.2 Separator Plates—Motorized with Roller Bearings
Referring now to
As shown in
15.3 Separator Plates—Motorized with Magnetic Bearings
Referring now to
Referring now to
Rotatable coupling 1079 is intended for use with a separator plate assembly on a KFECS 100 configured with any motorized track assembly (see Section 16) where the separator plate assembly is rotatably coupled to the hub carrier 130. Embodiments in which separator plate assemblies are not configured together with a rotatable track assembly, may be non-rotatably attached to hub carrier 130. For such a configuration, coupling 1079 would not be required to be rotatable with respect to hub carrier 130, but would be identical in all other respects to coupling 1079, e.g. its attachment method to hub carrier 130 attachment of structural supports 1079-A.
Referring now to
15.4 Separator Plates—Motorized Cowling Embodiment
Referring now to
Section 16—KFECS Orientation Control—Motorized Hub Orientation
16.1 General
In addition to the hub orientation control system described in Section 12.1, in various embodiments, the KFECS 100 includes redundant and/or alternate methods to orient the KFECS 100 to a desired orientation, e.g., an optimal orientation relative to the oncoming fluid flow or any other controlled position, including adjusting the location about the hub carrier 130 at which an ECP articulates to working mode. This function can be used to regulate the power conversion during periods of high fluid speed and low grid demand, or any other reason, for example, as controlled by a computer. These alternate orientation control embodiments include rotation of cam track assemblies 250 (see
All track orientation control systems in this Section 16 may (i) be configured with split cam track assemblies as described in Section 2 and (ii) interface with the AOS System as described in Section 10. Consequently, all of the orientation control systems described in this Section 16 may operate with the AOS System and (i) operate a split cam track assembly as shown in Section 16.4, whereby ball screws 506-A rotate (see
Each rotatable track assembly in this Section 16 operates by rotating a track—e.g., track 255 or 303, within which a follower coupled to each ECP moves to control the articulation of the ECP during rotation of the hub and, in an embodiment may embody any split-track or other articulation override embodiment described in Section 10.
Each rotatable track assembly in this Section 16 includes a track orientation control mechanism operatively coupled to one or more rotatable track assemblies and is configured to effect powered rotation of the rotatable track assembly to alter the rotational positions of the sections of the articulation control track about the hub axis of rotation.
Each rotatable track assembly in this Section 16 is or may be configured and/or operated to orient the KFECS 100 to the optimum fluid flow from an oncoming fluid flow direction as in
It should be appreciated that the computer may receive inputs from one or more (i) encoder sensors located within any motor, or located within or adjacent to any rotatable track assembly, whether shown or not shown, (ii) proximity sensors 585 (see
It should be appreciated that all motors described in this Section 16 may have internal encoders, all configured to monitor, e.g., generate/transmit a signal relating to, the rotational position of the rotatable track assembly to which they are physically or optically coupled. Exemplary encoders include linear, rotary, position and optical encoder types, such as optical linear encoders or optical shaft encoders. The rotational encoder ensures that control inputs to the track orientation control mechanism, e.g., orientation control motor(s) 1220 and 1221 (see
16.2 Motorized Track Orientation Control—In-Direct Track Actuation
Referring now to
Each motorized track rotation assembly 1300 and 1301 may include components that are internal to the rotatable track assemblies 1306-A, 1306-B and may include one or more orientation control motors (e.g., electric, hydraulic, or pneumatic motors), such as upper orientation control motor 1220 and lower orientation control motor 1221 operably coupled with a ring gear 1315 of upper rotatable track assembly 1306-A and with a ring gear 1315 of lower rotatable track assembly 1306-B. Ring gear 1315 of each rotatable track assembly 1306-A, 1306-B may be supported on a ring gear boss 1320, which is attached to or an integral component of the associated rotatable track assembly 1306-A, 1306-B. Orientation motors 1220 and 1221 effect powered rotation of rotatable track assemblies 1306-A, 1306-B. Orientation motors 1220 and 1221 may operate synchronously and redundantly as shown. Alternatively, motors 1220 and 1221 may operate individually in opposite directions (asynchronously) if shaft 1265 is configured in two parts that are, uncoupled between track rotation assembly 1300 and 1301 or are operably coupled with an electric, hydraulic or pneumatic clutch (not shown) configured to selectively couple or uncouple the two parts to enable synchronous or asynchronous operation of the motors 1220 and 1221. The clutch may be computer controlled, and such computer control is driven by inputs from the (i) encoders described herein and (ii) the AOS (see Section fluid direction and speed sensors 810 (See Section 15 and
Track rotation assemblies 1300 and 1301 may, for example, comprise continuous track 255 of cam track assembly 250 described above, or track assembly may comprise a circular track 303 of liquid-lubricant filled cam track assembly 300 described above, and follower 310 may comprise shaft 317 and inner magnetic coupling 321 of the liquid-lubricant filled cam track assembly 300 (
Operation of orientation control motors 1220 and 1221, or any orientation control motors within the KFECS 100, including, without limitation, all orientation motors within Section 16, may be controlled by inputs that are generated by a control algorithm that implements a predefined KFECS 100 performance profile or otherwise controls and modifies KFECS 100 performance in a control looped system based on readings from sensors monitoring KFECS performance and/or environmental conditions or from inputs entered by an operator.
A bearing housing 1222 houses bearings 1240 (see
Orientation control shaft 1265 is supported by bearings 1270 within an axial channel 133-C formed in the hub carrier 130-C.
Orientation control shaft 1265 includes a bevel gear 1280 that is operably coupled to a bevel gear 1282 to drive pinion gear 1285 via linked shaft 1283. Orientation control shaft 1265 further includes a bevel gear 1290 that is operably coupled to a bevel gear 1291 to drive a pinion gear 1285-A via linked shaft 1283-A. Bevel gear 1280 and bevel gear 1282 are disposed within a gear chamber 1205, and bevel gear 1290 and bevel gear 1291 are disposed within gear chamber 1210. Gear chambers 1205 and 1210 each penetrate the hub carrier 130-C at different axial positions along the length of the hub carrier 130-C. Pinion gear 1285 is operably coupled to ring gear 1315 of associated upper rotatable track assembly 1306-A, and pinion gear 1285-A is operably coupled to ring gear 1315 of associated lower rotatable track assembly 1306-B.
A cover 1302 coupled to each of the rotatable track assemblies 1306-A and 1306-B may be provided to protect the pinion gears 1285 and ring gear 1315 from debris.
Thus, when either orientation control motor 1220 or 1221 rotates, the motorized track rotation assemblies 1300 and 1301 rotate the associated rotatable track assemblies 1306-A and 1306-B in any direction, or degree, about the longitudinal axis of the hub carrier 131 and results in moving the transition splines between the upper track section 1354 and lower track section 1352 that cause the ECPs 10 and 20 to transition between their working orientation to their slipstream orientation. When more than one hub 120 and 180 is configured as shown, a single orientation control motor 1220 or 1221 may control both hubs 120 and 180, or any number of additional hubs 120 and 180. This arrangement results in all hubs in a multi-hub system moving synchronously in the optimum direction of the oncoming flow or any other computer-controlled direction. One or more additional orientation control motor(s) may be provided for redundancy.
In an alternate embodiment, in a KFECS 100 with more than one hub 120 or 180, orientation control shaft 1265 can be split at any point between track rotation assemblies 1300 and 1301 (not shown). This split will permit each orientation control motor 1220 and 1221 to operate independently, thereby have the effect of delaying the time when the ECPs will articulate to their working mode to reduce the KFECS's energy conversion as directed by the computer, e.g. including without limitation during any periods of lower desired output, including during periods of lower electrical grid demand or during wind speed conditions that exceed a computer-controlled parameter.
16.3 Track Orientation Control—Direct Track Actuation
Referring to
Fluid lines 1351 and 1355 extend through hub carrier 130 and may extend through an integral chase within the hub carrier 130, such as chase 132 described in Section 9.5 above. As track motors 1360, 1361 and pumps 1349, 1350 are fixed (non-rotatable) with respect to the hub carrier 130, fluid pressure may be transmitted from pumps 1349, 1350 (or one pump if a redundant pump is not employed) to and from the track motors 1360, 1361 via lines 1351, 1352 without requiring a rotating fluid pressure coupling.
Where track motors 1360, 1361 are electric motors, power and/or control signals may be transmitted to the track motors via electrical cables (not shown) configured to transmit power and/or control signals. Such electrical cables may extend through hub carrier 130 and may extend through an integral chase within the hub carrier 130, such as chase 132 described in Section 9.5 above. As track motors 1360, 1361 are fixed (non-rotatable) with respect to the hub carrier 130, electric power and/or control signals may be transmitted to the track motors 1360, 1361 via lines such electric cables without requiring a rotating electrical coupling.
Upper rotatable track assembly 1341 and lower rotatable hub assembly 1342 each include a ring gear 1315 that may be supported on a ring gear boss 1345, and which is attached to or an integral component of the associated rotatable track assembly 1341, 1342.
Upper track motor 1360 drives a pinion gear 1360-A and lower track motor 1361 drives a pinion gear 1361-A, and each pinion gear 1360-A and 1361-A are operably coupled to the ring gear 1315 of the associated upper or lower rotatable track assembly 1341, 1342.
The track orientation control system is configured to rotate the rotatable track assemblies 1341, 1342 having the same result of the hub orientation control motors 710 (see
A method of reducing energy conversion/output of a KFECS 100, irrespective of its number of hubs 120 or 180, is by reorienting the KFECS 100 so that transitioning of the ECPs 10 and 20 of the respective hub(s) between their working and slipstream orientations does not occur at a rotational position of the associated hub that is optimized for the direction of the oncoming fluid flow. In this embodiment, such reorienting is effected by the orientation control motors 1360 and 1361 (see
16.4 Track Orientation Control—External Hub Control
Referring to
Rotatable track assembly 280-B is an alternate embodiment of splined hub assembly 280 described above (see Section 9.1). Rotatable track assembly 280-B accepts bearings 284 that enables track assembly 280-B to rotate about the hub carrier axis 131. Upper rotatable track assembly 280-B includes a lower, stationary hub section 251-A and an upper, moveable hub section 252-A. In a mirror image arrangement, lower rotatable track assembly 280-C includes an upper, stationary hub section and a lower, moveable hub section.
Rotatable track assembly 280-B includes an lifting ring 1430 arranged coaxially with the hub carrier 130 and disposed within an annular groove 1431 formed in the upper, moveable section 252-A and open at its upper end. Lower splined hub assembly 280-C includes a lifting ring arranged coaxially with the hub carrier 130 and disposed within an annular groove formed in the lower, moveable section and open at its lower end. The annular groove has a lower section 1432 that is wider than an upper section. One or more linear actuators, such as ball screw motors 505-A, which drive ball screws 506-A, are mounted to a motor mounting plate 500 that is fixed to the hub carrier 130 above the upper rotatable track assembly 280-B. One or more linear actuators, such as ball screw motors and associated ball screws, are mounted to a motor mounting plate 500 that is fixed to the hub carrier 130 below the lower rotatable track assembly 280-C.
A distal end of each ball screws 506-A is captured within an associated lifting ring boss 1435 disposed within annular groove 1431 of upper splined hub assembly 280-B and attached to, or integral with, lifting ring 1430. Lifting ring boss 1435 and lifting ring 1431 are fixed within groove 1431, e.g., by a radial flange 1432 engaged with a radial shoulder 1433 formed in the groove 1431, to prevent the lifting ring boss 1435 and lifting ring 1431 from moving axially with respect to the groove 1431. In an embodiment, an end of the ball screw 506-A has a radial flange 506-B captured within an oversized counter-bore 1436 formed in the lifting ring boss 1435 to prevent the associated ball screw 506-A from separating from the lifting ring boss 1435 and enabling end of the ball screw 506-A to rotate within lifting ring boss 1435. Accordingly, ball screw 506-A is axially fixed within the groove 1431 to the lifting ring 1430 and lifting ring boss 1435.
Lifting ring 1430 and lifting ring boss 1435 are configured to slide circumferentially within the wider lower section 1432 of the groove 1431. In an embodiment lifting ring 1430 and lifting ring boss 1435 are configured to slide circumferentially without lubricant by (i) use of appropriate low-friction material for the construction of the groove 1431 and/or lifting ring 1430, such as Delrin® or of other materials with a low friction coating, such as Tungsten Disulfide. from which the lifting ring 1430 and groove 1431 may be made, and (ii) and relative dimensions of the ring 1430, the boss 1435, and the groove 1431. Accordingly, upper rotatable track assembly 280-B is able to rotate about hub carrier 130 while the ball screw 506-A and ball screw motor 505-A operatively engaged with the hub carrier 130 remain fixed with respect to the hub carrier 130.
Lower rotatable track assembly 280-C has a similarly, mirror-image arrangement of a fixedly mounted linear actuator (e.g., ball screw and ball screw motor), connected to a lifting ring 1430 and lifting ring bosses 1435 slidably disposed within an annular groove formed in the lower, moveable hub section of the lower rotatable track assembly 280-C.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
While the subject matter of this disclosure has been described and shown in considerable detail with reference to certain illustrative embodiments, including various combinations and sub-combinations of features, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the preferred embodiments. It should be understood that various alternatives to the embodiments described herein may be employed in practicing the preferred embodiments. It is intended that the following claims define the scope of the preferred embodiments and that methods and structures within the scope of these claims and their equivalents be covered thereby.
One or more of the following features and benefits may be encompassed by or achievable by embodiments described herein.
1. A system comprising:
2. The system of embodiment 1, wherein the articulation control system of the first hub and the articulation control system of the second hub are configured so that the first portion and second portion of each rotation of the first hub are different than the first portion and second portion of each rotation of the second hub.
3. The system of embodiment 1 or 2, wherein an axial spacing between the first portion of the top separator plate and the first portion of the separator plate is less than an axial spacing between the second portion of the top separator plate and the second portion of the separator plate, and wherein an axial spacing between the first portion of the bottom separator plate and the first portion of the separator plate is greater than an axial spacing between the second portion of the bottom separator plate and the second portion of the separator plate.
4. The system of any one of embodiments 1 to 3, wherein:
5. The system of any one of embodiments 1 to 4, wherein the separator plate, the top separator plate, and the bottom separator plate each have a transition between their respective first and second portions.
6. The system of any one of embodiments 1 to 5, further comprising:
7. The system of any one of embodiments 1 to 6, further comprising at least one counter-rotating transmission between the first and second hubs to rotationally couple the first hub to the second hub, wherein the counter-rotating transmission comprises:
8. The system of any one of embodiments 1 to 7, further comprising a vertical support structure supporting the separator plate, the top separator plate, and the bottom separator plate.
9. The system of embodiment 8, wherein the support structure comprises a coupling fixed in an axial position with respect to the hub axis of rotation and a plurality of structural supports, wherein each structural support is connected at one end to the coupling and at an opposite end to one of the separator plate, the top separator plate and the bottom separator plate.
10. The system of embodiment 9, wherein the coupling is configured to be rotatable about the hub axis of rotation.
11. A system comprising:
12. The system of embodiment 11, wherein the track orientation control mechanism comprises:
13. The system of embodiment 12, wherein the first gear comprises a ring gear and the second gear comprises a pinion gear.
14. The system of embodiment 12 or 13, wherein the first gear and the second gear are located internally to the associated rotatable track assembly.
15. The system of embodiment 12 or 13, wherein the first gear and the second gear are located externally to the associated rotatable track assembly.
16. The system of any one of embodiments 12 to 15, wherein the track orientation control mechanism further comprises a rotary encoder coupled to the rotatable track assembly.
17. The system of any one of embodiments 12 to 15, wherein the track orientation control mechanism further comprises:
18. The system of embodiment 17, wherein the orientation control shaft is oriented generally parallel to the hub axis of rotation and each second gear is oriented radially with respect to the hub axis of rotation.
19. The system of embodiment 17 or 18, wherein the motor is operatively coupled to the orientation control shaft by respective bevel gears associated with each of the motor and the orientation control shaft.
20. The system of any one of embodiments 17 to 19, wherein the coupling gear associated with each second gear comprises a bevel gear associated with the second gear and operatively engaged with a bevel gear of the orientation control shaft.
21. The system of any one of embodiments 17 to 20, wherein the motor comprises an electric motor or a hydraulic motor.
22. The system of embodiment 12, wherein the track orientation control mechanism further comprises a track motor operatively coupled to each second gear.
23. The system of embodiment 22, wherein each second gear includes a shaft oriented radially with respect to the hub axis of rotation.
24. The system of embodiment 22, wherein each second gear includes a shaft oriented generally parallel to the hub axis of rotation.
25. The system of any one of embodiments 22 to 24, wherein the track motor comprises an electric, hydraulic, or pneumatic motor.
26. The system of embodiment 22, wherein the track motor comprises a hydraulic or pneumatic motor, and wherein the track orientation control mechanism further comprises at least one pressure pump for generating hydraulic or pneumatic pressure, as applicable, and pressure lines connecting each track motor to the at least one pressure pump.
27. The system of embodiment 26, wherein the pressure lines comprise input pressure lines and output pressure lines.
28. The system of embodiment 12, wherein the rotatable track assembly comprises a stationary hub section and a movable hub section, wherein the track orientation control mechanism comprises a track motor mounted to a motor mounting plate and configured to rotate the second gear, and wherein the system further comprises a linear actuator mounted to the motor mounting plate and engaged with the movable hub section so as to permit relative rotation between the rotatable track assembly and the linear actuator.
29. The system of embodiment 28, wherein the linear actuator comprises a ball screw motor mounted to the motor mounting plate and a ball screw extending into an annular groove formed in the movable hub section and wherein the ball screw is fixed against axial movement with respect to the annular groove and is configured to move circumferentially within the annular groove.
30. The system of embodiment 28 or 29, wherein the movable hub section includes a female conical mating surface and the stationary hub section includes a male conical mating surface, so that the stationary track member and the movable track member are self aligning.
31. The system of any one of embodiments 28 to 30, wherein each plate has opposed surfaces, a leading edge, and a trailing edge, and wherein the articulation control system is configured to orient each plate in a slipstream orientation in which the opposed surfaces of the plate are generally parallel to the plane of rotation of the hub for a first portion of each rotation of the hub and in a working orientation in which the opposed surfaces are not parallel to the plane of rotation of the hub for a second portion of each rotation of the hub, wherein the linear actuator is configured to axially separate the stationary hub section from the movable hub section to disengage the follower assembly of each articulating plate from the fixed track of the rotatable track assembly; wherein the system further comprises an articulation override system configured to override the articulation control system and orient each plate in its slipstream orientation at any angular position about the hub axis of rotation, and wherein the articulation override system comprises:
32. The system of any one of embodiments 11 to 31, further comprising a separator plate disposed adjacent the at least one hub, wherein the separator plate is configured to be rotatable with respect to the hub axis of rotation and wherein the separator plate is operably coupled to a motor for selectively effecting powered rotation of the separator plate with respect to the hub axis of rotation.
33. The system of embodiment 32, wherein the separator plate includes a first portion and a second portion, and wherein the first and second portions of the separator plate are oriented radially with respect to the hub axis of rotation and are disposed at different axial locations with respect to the hub axis of rotation.
34. The system of embodiment 32 or 33, further comprising a cowling surrounding the at least one hub, wherein the cowling is fixed to the separator plate and rotatable therewith.
35. The system of any one of embodiments 32 to 34, wherein the powered rotation of the separator plate is synchronized with the powered rotation of the rotatable track assembly.
36. The system of embodiment 33 or 35, further comprising:
37. The system of embodiment 36, wherein the motor is mounted in a fixed position with respect to the hub axis of rotation, the gear driven by the motor is a pinion gear, and the gear fixed to the separator plate is a beveled ring gear arranged coaxially with respect to the hub axis of rotation.
38. The system of embodiment 37, wherein the motor is mounted to a motor mounting plate in the fixed position with respect to the hub axis of rotation, and the system further comprises dual bearing races comprising an upper bearing between the motor mounting plate and a separator plate assembly including the separator plate and a lower bearing between the motor mounting plate and the hub.
39. The system of any one of embodiments 11 to 38, further comprising:
40. A system comprising:
41. The system of embodiment 40, wherein the one or more lips comprise one or more of a leading edge lip extending transversely from the leading edge of the plate, a trailing edge lip extending transversely from the trailing edge of the plate, and an inboard end lip extending transversely from an inboard end of the plate.
42. The system of embodiment 40 or 41, wherein each plate has opposed surfaces, a leading edge, and a trailing edge, and wherein the articulation control system is configured to orient each plate in a slipstream orientation in which the opposed surfaces of the plate are generally parallel to the plane of rotation of the associated hub for a first portion of each rotation of the hub and in a working orientation in which the opposed surfaces are not parallel to the plane of rotation of the associated hub for a second portion of each rotation of the hub.
43. The system of embodiment 42, comprising a plurality of articulating plates disposed at angularly-spaced positions about each hub and wherein adjacent articulating plates that are in their slipstream orientations overlap one another, wherein each articulating plate has a leading edge pocket of reduced thickness on a first surface of the plate and a trailing edge pocket of reduced thickness on a second surface of the plate, and wherein the leading edge pocket of one articulating plate nests with the trailing edge pocket of an adjacent overlapped articulating plate when the plates are in their slipstream orientations.
44. The system of any one of embodiments 40 to 43, wherein the one or more lips comprise a leading edge lip extending transversely from the leading edge of the plate and wherein the leading edge lip includes a rounded surface extending across the width of the leading edge lip.
45. A system comprising:
46. A method for regulating output of an energy conversion system, wherein the energy conversion system comprises at least one hub rotatable about a hub axis of rotation and one or more articulating plates extending radially from each hub and rotatable therewith, wherein each articulating plate is configured to be articulable about a plate articulation axis that is oriented radially with respect to the hub axis of rotation, and wherein each articulating plate is operably coupled to a cam track extending around the hub axis of rotation to change the orientation of the articulating plate with respect to its plate articulation axis as the hub rotates about the hub axis of rotation, wherein the method comprises rotating the cam track about the hub axis of rotation to vary the rotational positions at which each articulating plate changes its orientation with respect to its plate articulation axis.
47. The method of embodiment 46, wherein the cam track is part of a rotatable track assembly that is rotatable about the hub axis of rotation, and wherein rotating the cam track comprises operatively engaging a first gear associated with the rotatable track assembly with a second gear associated with the rotatable track assembly.
48. The method of embodiment 47, wherein the first gear comprises a ring gear and the second gear comprises a pinion gear and wherein the ring gear and pinion gear are internal to the rotatable track assembly.
49. The method of embodiment 47, wherein the first gear comprises a ring gear and the second gear comprises a pinion gear and wherein the ring gear and pinion gear are external to the rotatable track assembly.
50. The method of embodiment 47, further comprising operatively coupling a motor to the second gear.
51. The method of embodiment 50, wherein operatively coupling the motor to the second gear comprises:
52. The method of embodiment 50, wherein operatively coupling the motor to the second gear comprises operatively coupling a track motor to each second gear.
53. The method of embodiment 52, wherein each track motor is fixed with respect to the hub axis of rotation and wherein the track motor is a fluid pressure motor, and the method further comprises transmitting fluid pressure from a pump that is fixed with respect to the hub axis of rotation to each track motor.
54. The method of any one of embodiments 46 to 53, further comprising monitoring a rotational position of the cam track with a rotary encoder.
55. A system for powering or controlling articulation control systems for one or more rotating hubs, wherein one of the articulation control systems is associated with each hub, wherein the system comprises:
56. The system of embodiment 55, wherein each articulation control mechanism comprises:
57. The system of embodiment 56, wherein the first gear comprises a ring gear, and the second gear comprises a pinion gear.
58. The system of embodiment 56, further comprising a track motor operatively coupled to each second gear, wherein each track motor comprises one of an electric motor, a hydraulic motor, and a pneumatic motor, and the service lines comprise one of electrical cables connected to the electric motor, hydraulic lines connected to the hydraulic motor, and pneumatic lines connected to the pneumatic motor, as applicable.
59. The system of embodiment 56, further comprising a track motor operatively coupled to each second gear, wherein each track motor comprises a fluid pressure motor and the service lines comprise fluid lines connected to each fluid pressure motor, and wherein the system further comprises at least one fluid pressure pump connected to the fluid pressure motors via the fluid lines.
60. The system of embodiment 59, further comprising:
61. The system of embodiment 60, wherein each articulation control mechanism comprises:
62. The system of embodiments 61, wherein the first gear comprises a ring gear, and the second gear comprises a pinion gear.
63. The system of embodiments 61 or 62, wherein each motor comprises one of an electric motor, a hydraulic motor, and a pneumatic motor, and the service lines comprise one of electrical cables connected to the electric motor, hydraulic lines connected to the hydraulic motor, and pneumatic lines connected to the pneumatic motor, as applicable.
64. The system of embodiments 61 or 62, wherein each motor comprises a fluid pressure motor and the service lines comprise fluid lines, and the system comprises at least one pump fixed with respect to the hub carrier, wherein the fluid lines connect the pump to the fluid pressure motor
65. The system of any one of embodiments 55 to 64, wherein the one or more rotating hubs comprise two or more counter-rotating hubs configured to be rotatable in opposite directions about the hub axis of rotation.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10767616, | Jun 20 2018 | SJK ENERGY SOLUTIONS, LLC | Kinetic fluid energy conversion system |
1527097, | |||
2069110, | |||
2397346, | |||
3902072, | |||
3920354, | |||
4186313, | Mar 01 1978 | Wind generator | |
4203707, | Mar 03 1975 | Windmill with automatic feathering control and storm protection | |
4348156, | Mar 17 1980 | United Technologies Corporation | Blade pitch actuation system |
4382190, | Jan 19 1981 | Wind motor having horizontally counter-rotating wind force collectors | |
4618312, | Jan 28 1985 | Wind operated apparatus | |
4648345, | Sep 10 1985 | KETEMA, INC , 2233 STATE RD , BENSALEM, PA 19020, A DE CORP | Propeller system with electronically controlled cyclic and collective blade pitch |
5083902, | Dec 18 1986 | Reverting wind wheel | |
5195871, | Sep 19 1991 | Self-restored windmill | |
6327994, | Jul 19 1984 | Scavenger energy converter system its new applications and its control systems | |
6543999, | Feb 15 2002 | Windmill | |
6619921, | Feb 27 2002 | WISE, DAVID ROLAND; HASSE, CHARLES JOSEPH | Driving vane assembly for a windmill |
7118341, | Mar 04 2004 | Self adjusting sail vertical shaft windmill | |
7284949, | Feb 15 2003 | ACCELERATED WIND ENERGY LIMITED | Vertical axis wind or water turbine |
744786, | |||
7696635, | Mar 07 2007 | Gravity-flap, savonius-type wind turbine device | |
794706, | |||
8004101, | Oct 11 2008 | Vertical axis variable geometry wind energy collection system | |
8164210, | Mar 07 2007 | Vertical axis wind turbine with angled braces | |
8382435, | Feb 18 2009 | Opposed tilting blade, vertical axis wind turbine power generator | |
8414266, | Sep 26 2008 | Traverse axis fluid turbine with controllable blades | |
8459949, | Mar 17 2010 | Wind power generation having variable windmill wings | |
8696313, | Feb 18 2009 | Opposed tilting blade, vertical axis wind turbine power generator | |
8894348, | Mar 03 2011 | Wind turbine | |
8963355, | May 27 2010 | High-performance wind turbine generator that can be driven in horizontal/vertical axis directions with the use of 3D active intelligent turbine blades | |
9366231, | Nov 29 2012 | Dean Russell, Maier; Wayne Olaf, Martinson; Sheryl, Skaalerud | Fluid apparatus with pitch adjustable vanes |
9377006, | Mar 23 2010 | Vertical wind turbine with articulated blades | |
985131, | |||
20020187038, | |||
20030161729, | |||
20040001752, | |||
20050074323, | |||
20050082838, | |||
20080075594, | |||
20080292460, | |||
20090035134, | |||
20090066088, | |||
20100080706, | |||
20100133838, | |||
20110223023, | |||
20120043782, | |||
20120074712, | |||
20120121379, | |||
20120134829, | |||
20120148403, | |||
20130241200, | |||
20140050583, | |||
20140140812, | |||
20150118050, | |||
20150292481, | |||
20150292482, | |||
20150308405, | |||
20190390644, | |||
20200102930, | |||
20210190037, | |||
FR614938, | |||
GB2463957, | |||
JP201477427, | |||
JP2016037954, | |||
NL9001343, | |||
WO2009060107, | |||
WO2009142514, | |||
WO2019246385, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 17 2021 | KANSTOROOM, STEVEN J | SJK ENERGY SOLUTIONS, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056913 | /0818 | |
Jul 15 2021 | SJK ENERGY SOLUTIONS, LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 15 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jul 28 2021 | SMAL: Entity status set to Small. |
Date | Maintenance Schedule |
Oct 01 2027 | 4 years fee payment window open |
Apr 01 2028 | 6 months grace period start (w surcharge) |
Oct 01 2028 | patent expiry (for year 4) |
Oct 01 2030 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 01 2031 | 8 years fee payment window open |
Apr 01 2032 | 6 months grace period start (w surcharge) |
Oct 01 2032 | patent expiry (for year 8) |
Oct 01 2034 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 01 2035 | 12 years fee payment window open |
Apr 01 2036 | 6 months grace period start (w surcharge) |
Oct 01 2036 | patent expiry (for year 12) |
Oct 01 2038 | 2 years to revive unintentionally abandoned end. (for year 12) |