A vehicle includes a crash impact absorbing arrangement including a front structure having a lower portion attached to the frame and an upper portion arranged between the cabin and the front end of the vehicle. The front structure is configured to collapse towards a rear end of the vehicle when a force directed towards the rear end of the vehicle acting on the upper portion of the front structure reaches a threshold force. A rear structure having a lower portion attached to the frame and an upper portion, the rear structure being configured to withstand a force directed towards the rear end of the vehicle acting on the upper portion of the rear structure exceeding the threshold force. At least one deformable energy absorbing structure is arranged between the upper portion of the front structure and the upper portion of the rear structure.
|
1. A heavy-duty vehicle comprising a frame; a cabin; a forward compartment extending from the cabin towards a front end of the vehicle; and a crash impact absorbing arrangement at least partly arranged in the forward compartment, wherein the crash impact absorbing arrangement comprises:
a front structure having a lower portion attached to the frame and an upper portion arranged between the cabin and the front end of the vehicle, the front structure being configured to collapse towards a rear end of the vehicle when a force directed towards the rear end of the vehicle acting on the upper portion of the front structure reaches a threshold force;
a rear structure having a lower portion attached to the frame and an upper portion, the rear structure being configured to withstand a force directed towards the rear end of the vehicle acting on the upper portion of the rear structure exceeding the threshold force; and
at least one deformable energy absorbing structure arranged between the upper portion of the front structure and the upper portion of the rear structure, and configured to transfer a force directed towards the rear end of the vehicle acting on the upper portion of the front structure to the upper portion of the rear structure, while being deformed to allow movement of the upper portion of the front structure towards the upper portion of the rear structure,
wherein the upper portion of the rear structure is arranged between the cabin and the upper portion of the front structure.
2. The vehicle according to
3. The vehicle according to
4. The vehicle according to
5. The vehicle according to
6. The vehicle according to
8. The vehicle according to
9. The vehicle according to
10. The vehicle according to
the vehicle comprises a cooling system including a front fan; and
the upper portion of the front structure surrounds the front fan.
11. The vehicle according to
|
This application is a U.S. National Stage application of PCT/EP2021/053331, filed Feb. 11, 2021 and published on Sep. 10, 2021, as WO 2021/175560, which claims the benefit of Indian Patent Application No. 202041009049, filed Mar. 3, 2020, all of which are hereby incorporated by reference in their entireties.
The invention relates to a vehicle comprising a frame; a cabin; a forward compartment extending from the cabin towards the front end; and a crash impact absorbing arrangement at least partly arranged in the forward compartment.
The invention can be applied in heavy-duty vehicles, such as trucks, buses and construction equipment. Although the invention will be described with respect to a truck, the invention is not restricted to this particular vehicle, but may also be used in other vehicles, for instance pick-up trucks or relatively large and high passenger cars.
A particularly difficult crash scenario for a truck, bus or other high vehicle is a forward collision into the back of the trailer of a heavy vehicle. In a conventional truck with a forward compartment accommodating the engine, the engine absorbs much of the energy of the impact, transfers it to the chassis frame and slows down the vehicle. This facilitates a design in which the deformation of the cabin can be minimized, which in turn reduces the risk of injury of the driver in the cabin.
JP H08 230724 discloses a cab over truck with an energy absorbing member for absorbing a shock energy applied to the cab at the time of a collision is disposed between the cab disposed on an under carriage frame and the under carriage frame.
In a fully electric vehicle, however, there is no engine in the forward compartment, which means that safety in the event of a crash scenario, including the above-described forward collision needs to achieved by other means.
An object of the invention is to provide for an improved crash safety in a vehicle lacking an internal combustion engine in its forward compartment.
According to the invention, this object is achieved by a vehicle comprising a frame; a cabin; a forward compartment extending from the cabin towards a front end of the vehicle; and a crash impact absorbing arrangement at least partly arranged in the forward compartment, wherein the crash impact absorbing arrangement comprises: a front structure having a lower portion attached to the frame and an upper portion arranged between the cabin and the front end of the vehicle, the front structure being configured to collapse towards a rear end of the vehicle when a force directed towards the rear end of the vehicle acting on the upper portion of the front structure reaches a predefined threshold force; a rear structure having a lower portion attached to the frame and an upper portion, the rear structure being configured to withstand a force directed towards the rear end of the vehicle acting on the upper portion of the rear structure exceeding the predefined threshold force; and at least one deformable energy absorbing structure arranged between the upper portion of the front structure and the cabin, and configured to transfer a force directed towards the rear end of the vehicle acting on the upper portion of the front structure to the upper portion of the rear structure, while being deformed to allow movement of the upper portion of the front structure towards the upper portion of the rear structure.
The present invention is based on the realization that the energy absorbing functionality of a forward mounted internal combustion engine can be fulfilled by a crash impact absorbing arrangement with a relatively weak front structure, a relatively strong rear structure and at least one deformable energy absorbing structure connecting upper portions of the front structure and the rear structure. With the provision of such a crash impact absorbing arrangement, the present inventor has found that the safety in the event of a crash scenario, including a forward collision, can be maintained or improved in the absence of a forward mounted internal combustion engine. Furthermore, the crash impact absorbing arrangement comprised in the vehicle according to various embodiments of the present invention may also reduce the tendency of the vehicle to pitch forward in the event of a forward collision, which also provides for improved integrity of the cabin.
According to embodiments, the upper portion of the rear structure may be arranged between the cabin and the upper portion of the front structure. This configuration may provide for further improved integrity of the cabin space.
According to embodiments of the present invention, the vehicle may be a relatively high vehicle, such as a truck or a bus, and the crash impact absorbing arrangement may then be particularly effective for handling a forward collision into the back of another high vehicle, particularly a trailer, such as corresponding to a Trailer back vehicle impact testing situation.
For particularly efficient handling of this kind of forward collision, the upper portion of the front structure may be arranged at least 0.5 meter above road level. More advantageously, the upper portion of the front structure may be arranged at least 1 meter above road level. This high arrangement of the upper portion of the front structure increases the probability that the upper portion of the front structure can start to absorb energy of the collision at an early stage from an upper barrier impact and transfer load to the chassis frame, providing for improved safety.
In embodiments, furthermore, the upper portion of the rear structure may be arranged at least 0.5 meter above road level. More advantageously, the upper portion of the rear structure may be arranged at least 1 meter above road level. In particular, the upper portion of the rear structure may advantageously be arranged at substantially the same height as the upper portion of the front structure. This configuration may further improve the load transfer dynamics in the event of a forward collision, and reduce the tendency of the vehicle to pitch forward.
The front structure may be configured in various ways for it to collapse backwards when the upper portion thereof is subjected to a sufficiently large force. According to one embodiment, the lower portion of the front structure may be attached to the frame by an attachment structure designed to fail when a force directed towards the rear end of the vehicle acting on the upper portion of the front structure reaches the predefined threshold force. The attachment structure may be any suitable attachment structure, such as bolts, brackets, welds, or any other attachment structure used in vehicle manufacturing. As an alternative or complement, the front structure itself may be dimensioned to be deformed when a sufficiently large force is acting on the upper portion thereof.
According to embodiments, the lower portion of the rear structure may be attached to the frame by an attachment structure designed to remain intact when a force directed towards the rear end of the vehicle acting on the upper portion of the rear structure reaches the predefined threshold force. The attachment structure may be any suitable attachment structure, such as bolts, brackets, welds, or any other attachment structure used in vehicle manufacturing.
In embodiments, the attachment structure attaching the front structure to the frame and the attachment structure attaching the rear structure to the frame may be different. For instance, the front structure may be attached to the frame by bolts and the rear structure may be attached to the frame by welds, or both the front and rear structures may be attached to the frame by welds, but a larger number of welds may be used for attaching the rear structure, etc.
According to various embodiments, furthermore, the crash impact absorbing arrangement may further comprise at least one strut arranged between the upper portion of the rear structure and the frame. This at least one strut may act to ensure that the rear structure withstands a backwards force acting on the upper portion of the rear structure exceeding the predefined threshold force. As an alternative or complement, the rear structure of the crash impact absorbing arrangement may be made of high-strength steel.
In embodiments, the longitudinal distance between the upper portion of the front structure and the upper portion of the rear structure may be at least 0.5 meter. More advantageously, the longitudinal distance between the upper portion of the front structure and the upper portion of the rear structure may be at least 1 meter. This minimum distance may facilitate the design of the at least one deformable energy absorbing structure arranged between the upper portion of the front structure and the upper portion of the rear structure.
To achieve efficient use of the space in the forward compartment, and also to protect the cooling system of the vehicle, the upper portion of the front structure may surround at least a portion of the cooling system, such as a front fan of the cooling system.
In summary, embodiments of the present invention thus relate to a vehicle comprising a crash impact absorbing arrangement including a front structure having a lower portion attached to the frame and an upper portion arranged between the cabin and the front end of the vehicle, the front structure being configured to collapse towards a rear end of the vehicle when a force directed towards the rear end of the vehicle acting on the upper portion of the front structure reaches a threshold force; a rear structure having a lower portion attached to the frame and an upper portion, the rear structure being configured to withstand a force directed towards the rear end of the vehicle acting on the upper portion of the rear structure exceeding the threshold force; and at least one deformable energy absorbing structure arranged between the upper portion of the front structure and the upper portion of the rear structure.
With reference to the appended drawings, below follows a more detailed description of embodiments of the invention cited as examples.
In the drawings:
Referring now to
As is schematically shown in
The front structure 13 is configured to collapse towards a rear end of the truck 1 when a force directed towards the rear end of the truck 1 acting on the upper portion 17 of the front structure 13 reaches a predefined threshold force Fth. The rear structure 19 is configured to withstand a force directed towards the rear end of the truck 1 acting on the upper portion 23 of the rear structure 19 exceeding the predefined threshold force Fth. The energy absorbing structures 25a-b are arranged between the upper portion 17 of the front structure 13 and the upper portion 23 of the rear structure 19 for transferring a force directed towards the rear end of the truck 1 acting on the upper portion 17 of the front structure 13 to the upper portion 23 of the rear structure 19, while being deformed to allow movement of the upper portion 17 of the front structure 13 towards the upper portion 23 of the rear structure 19, following (and during) collapse of the front structure 13.
This crash impact absorbing arrangement 9 not only absorbs the impact energy of a forward collision in a controlled way, but also prevents pitching of the truck 1 which would change the impact height of the cabin 3 to the upper barrier in the case of a Trailer back vehicle impact test scenario.
As will be described in greater detail further below, this crash impact absorbing arrangement 9 can functionally replace the internal combustion engine of a conventional truck in terms of protecting the integrity of the cabin 3 in the event of a forward collision, in particular a forward collision into the back of a trailer.
In the example configuration of
In
Furthermore, the struts 27a-b in
When the truck 1 collides with the upper barrier 33 with sufficient speed, the upper portion 17 of the front structure 13 will be subjected to a force in excess of the above-mentioned threshold force Fth. This should result in collapse of the front structure 13. One convenient way of achieving this desired collapse may be to mount the lower portion 15 of the front structure 13 to the frame 11 using bolts 35 designed to fail at a critical load corresponding to the above-mentioned threshold force Fth acting on the upper portion 17. As the front structure 13 collapses, the rear structure 19 should remain substantially undeformed throughout the collision event. This may be achieved by one or several design measures. Some such exemplary design measures are schematically indicated in
When, during the forward collision, the front structure 13 collapses while the rear structure 19 remains substantially undeformed, the energy of the collision is mainly absorbed by deformation of the deformable energy absorbing structures 25a-b. This is schematically illustrated in
Referring first to
In
Finally, in
In the example configuration of the crash impact absorbing arrangement 9 indicated here, the energy absorbing structures 25a-b have been provided in the form of tubes with spaced apart recesses to guide the tube to bend sideways when loaded longitudinally. As is well known to those of ordinary skill in the art, there are many other ways to achieve the desired behavior of the energy absorbing structures 25a-b, such as by using a conventional crash box configuration.
It is to be understood that the present invention is not limited to the embodiments described above and illustrated in the drawings; rather, the skilled person will recognize that many changes and modifications may be made within the scope of the appended claims. For example, the crash impact absorbing arrangement 9 may comprise one or several additional structures arranged between the front structure 13 and the rear structure 19.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10654530, | Dec 30 2015 | Nikola Corporation | Wrap around vehicle windshield |
10780922, | Jun 02 2017 | ArcelorMittal | Longitudinal member for a heavy goods vehicle |
11565578, | Oct 30 2018 | Toyota Jidosha Kabushiki Kaisha | Vehicle front portion structure |
6099039, | Mar 10 1997 | AMERICAN IRON & STEEL INSTITUTE | Frame structure for sport utility vehicle or light truck |
6533348, | Oct 16 1997 | Cosma International Inc. | Modular space frame |
7416243, | Dec 11 2003 | Daimler Truck AG | Driver's cab supporting structure for a commercial vehicle having a safety cell |
7472946, | Jul 14 2005 | Volvo Lastvagnar AB | Truck architecture |
8459728, | Jan 20 2011 | Honda Motor Co., Ltd. | Vehicle front portion structure |
9855914, | Jul 08 2016 | Toyota Jidosha Kabushiki Kaisha | Deformable energy absorber structures for front hood assemblies of vehicles |
20030230443, | |||
20090129860, | |||
20100102596, | |||
20100140967, | |||
20120248820, | |||
20160039461, | |||
20160039463, | |||
20160257360, | |||
20240217584, | |||
CN109421498, | |||
CN208842487, | |||
DE102005028770, | |||
IN3294MUM2012, | |||
JP11240463, | |||
JP2008513629, | |||
JP2016094135, | |||
JP5047796, | |||
JP5222374, | |||
JP8230724, | |||
WO2009057379, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 11 2021 | Volvo Truck Corporation | (assignment on the face of the patent) | / | |||
Sep 21 2022 | SOHAL, SATBIR | Volvo Truck Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061317 | /0445 |
Date | Maintenance Fee Events |
Aug 26 2022 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Oct 15 2027 | 4 years fee payment window open |
Apr 15 2028 | 6 months grace period start (w surcharge) |
Oct 15 2028 | patent expiry (for year 4) |
Oct 15 2030 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 15 2031 | 8 years fee payment window open |
Apr 15 2032 | 6 months grace period start (w surcharge) |
Oct 15 2032 | patent expiry (for year 8) |
Oct 15 2034 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 15 2035 | 12 years fee payment window open |
Apr 15 2036 | 6 months grace period start (w surcharge) |
Oct 15 2036 | patent expiry (for year 12) |
Oct 15 2038 | 2 years to revive unintentionally abandoned end. (for year 12) |