An implementation provides a package that includes a first die including a bridging element, an analog/mixed-signal (ams) die, and a general die. The first die includes: a first photonic transceiver portion, a first die first interconnect region, and an optical interface (OI). The ams die includes a second photonic transceiver portion, an ams die first interconnect region on a first surface of the ams die electrically and physically coupled with the first die first interconnect region; and an ams die second interconnect region on a second surface of the ams die. The general die includes a third photonic transceiver portion, and a general die first interconnect region electrically and physically coupled with the second photonic transceiver portion.
|
1. A package comprising:
a first die, comprising:
a first photonic transceiver portion;
a first die first interconnect region;
an optical interface (OI);
a first photonic link from the first photonic transceiver portion to the OI;
a second photonic link from the OI to the first photonic transceiver portion;
an analog/mixed-signal die (an ams die) comprising:
a second photonic transceiver portion;
an ams die first interconnect region on a first surface of the ams die electrically and physically coupled with the first die first interconnect region via first electrical interconnects; and
an ams die second interconnect region on a second surface of the ams die different than the first surface of the ams die; and
a general die comprising:
a general die first interconnect region electrically and physically coupled with the second photonic transceiver portion via the ams die second interconnect region and second electrical interconnects.
2. The package of
the ams die is stacked on top of the first die and the general die is stacked on top of the ams die.
3. The package of
4. The package of
5. The package of
6. The package of
7. The package of
signals between the first photonic transceiver portion, the second photonic transceiver portion, and the third photonic transceiver portion use a bus protocol according to a UCIe and/or PCIe standard.
8. The package of
the first die is a photonic integrated circuit (PIC);
the ams die and the general die are electric integrated circuits (EICs); and
the first electrical interconnects are less than about two millimeters (2 mm) in length.
9. The package of
an optical multiplexer (MUX) optically coupled between MOD1 and GC along the first photonic link; and
an optical demultiplexer (DEMUX) optically coupled between OI and PD1 along the second photonic link.
10. The package of
the first die further comprises:
a second optical modulator (MOD2);
a second photodetector (PD2); and
a first die second interconnect region; and
and the package further comprises:
a second die with a second die first interconnection region electrically and physically coupled with the first die second interconnect region via third electrical interconnects.
11. The package of
a light engine configured to interface with the first die via fibers.
12. The package of
13. The package of
the OI is configured to interface with an external device optical interface.
|
This application is a divisional of U.S. patent application Ser. No. 18/243,474, entitled, “OPTICAL MULTI-DIE INTERCONNECT BRIDGE WITH OPTICAL INTERFACE”, filed on Sep. 7, 2023, which is a continuation of U.S. patent application Ser. No. 18/123,083, entitled, “OPTICAL MULTI-DIE INTERCONNECT BRIDGE (OMIB)”, filed on Mar. 17, 2023, now U.S. Pat. No. 11,835,777, which claims benefit and priority to U.S. provisional patent application No. 63/448,585, entitled “Optical, Multi-Die Interconnect Bridge (OMIB)”, filed on Feb. 27, 2023; U.S. provisional patent application No. 63/321,453, entitled “Photonic Memory Fabric for System Memory Interconnection”, filed on Mar. 18, 2022; U.S. provisional patent application No. 63/420,330, entitled “Thermally Stable Optical Modulation Elements Coupled to Electronic Elements”, filed on Oct. 28, 2022; and is related to U.S. patent application Ser. No. 17/903,455, filed on Sep. 6, 2022; U.S. patent application Ser. No. 17/807,694, filed on Jun. 17, 2022; U.S. patent application Ser. No. 18/293,673, filed Jan. 30, 2024, U.S. patent application Ser. No. 18/123,161, filed Mar. 17, 2023, U.S. patent application Ser. No. 18/123,170, filed Mar. 17, 2023, International Patent Application No. PCT/US23/15680, filed Mar. 20, 2023; and International Patent Application No. PCT/US22/42621, filed Sep. 6, 2022.
These priority applications are hereby incorporated by reference, in their entirety.
The disclosed implementations relate generally to devices and methods used in interconnecting semiconductor dies, and in particular to those for optical interconnection using integrated circuits and/or external chiplets.
Context
The subject matter discussed in this section should not be assumed to be prior art merely as a result of its mention in this section. Similarly, a problem mentioned in this section or associated with the subject matter provided as background should not be assumed to have been previously recognized in the prior art. The subject matter in this section merely represents different approaches, which in and of themselves can also correspond to implementations of the claimed technology.
Integrated circuits (ICs) with processors, especially those for executing artificial intelligence and machine learning functions, move large amounts of data among one or more processor ICs and one or more memory ICs. Chiplets may aid in the interconnection of processor dies, memory dies, and other circuits to increase the bandwidth, and decrease the latency and power dissipated in the process.
An implementation provides a package that includes a first die (580), an analog/mixed-signal (AMS) die, and a general die. The first die (580) includes: a first photonic transceiver portion, a first die first interconnect region, and an optical interface (OI). The AMS die includes a second photonic transceiver portion, an AMS die first interconnect region on a first surface of the AMS die (511A) electrically and physically coupled with the first die first interconnect region; and an AMS die second interconnect region on a second surface of the AMS die (511A). The general die (511B) includes a third photonic transceiver portion, and a general die first interconnect region electrically and physically coupled with the second photonic transceiver portion.
A further understanding of the nature and the advantages of particular implementations disclosed herein may be realized by reference of the remaining portions of the specification and the attached drawings.
The invention will be described with reference to the drawings, in which:
In the figures, like reference numbers may indicate functionally similar elements. The systems and methods illustrated in the figures, and described in the Detailed Description below, may be arranged and designed in a wide variety of different implementations. Neither the figures nor the Detailed Description are intended to limit the scope as claimed. Instead, they merely represent examples of different implementations of the invention.
Processing an AI workload often uses specialized hardware. Typical hardware bridges two chips with an electrical interconnect. The electrical interconnect consumes high power, has pin count limitations, and can only bring data to the edge of the chip. When the memory is in a central region of the chip it requires extra distance for signals to travel every time the memory is accessed by a processor sending a request to the edge of the chip from outside the chip. This is highly inefficient and makes it difficult for AI computing hardware to keep up with the demands required by an AI application.
This document discloses an optical multi-die interconnect bridging element (OMIB). OMIBs can be used as bridges between semiconductor dies, e.g., electrical integrated circuits (EICs). A bridge can include the OMIB alone, or in combination with a substrate that is coupled to the OMIB or that has the OMIB embedded within it. The use of OMIBs for multi-die processing systems solves many of the problems associated with processing an AI workload, including latency, power, and bandwidth. A photonic receiver may comprise two portions, for example a first portion in the OMIB, including a modulator and/or a photodetector, and a second portion in the EIC, including an AMS block as described later herein.
In various arrangements, the OMIB can transmit or receive a photonic signal to transport data. A memory, such as a cache, can be positioned at a central region of the EIC die within two millimeters (2 mm) from an AMS block, such that the photonic transceiver in the OMIB is proximate to an edge of the memory directly above or below the portion of the die where the edge of the memory is positioned. The central region may intersect the center of the EIC die. Compute elements such as central processing units (CPUs), graphic processing units (GPUs), tensor processing units (TPUs) can also be beneficially arranged at the central region of the die within two millimeters (2 mm) of where the photonic transceivers are positioned, or in a spatial association with the memory. Photonic ICs have avoided reaching the center of the die of connecting chips because of the heat produced by the connecting chips. Photonic chips may have a limited temperature range in which modulators perform within specifications. One reason an OMIB in the disclosed technology can reach the center of the die is that it uses temperature-stabilized modulators as described in U.S. provisional patent application Ser. No. 63/420,330, entitled “Thermally Stable Optical Modulation Elements Coupled to Electronic Elements.”
As a result, the OMIB is faster and uses less power when compared to a traditional system. Latency is improved by carrying the data photonically to the point of compute rather than to the edge of the die. This allows the die to save electrical pipeline stages and also utilizes less electrical connections to carry the data from the edge of the chip to the interior where the memory is located. The electrical movement of the data from the edge of the die to the interior requires a path for the data that is slower and more power hungry. If an exemplary system is used to train an AI model, the benefit of moving the data photonically to the point of compute is repeated continuously, resulting in substantial savings and/or enabling the feasibility of these types of complex AI systems.
The description may use perspective-based descriptions such as top/bottom, in/out, over/under, and the like. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of implementations described herein to any particular orientation.
As used herein, the phrase “one of” should be interpreted to mean exactly one of the listed items. For example, the phrase “one of A, B, and C” should be interpreted to mean any of: only A, only B, or only C.
As used herein, the phrases “at least one of” and “one or more of” should be interpreted to mean one or more items. For example, the phrase “at least one of A, B, and C” or the phrase “at least one of A, B, or C” should be interpreted to mean any combination of A, B, and/or C.
Unless otherwise specified, the use of ordinal adjectives “first”, “second”, “third”, etc., to describe an object, merely refers to different instances or classes of the object and does not imply any ranking or sequence.
The term “coupled” is used in an operational sense and is not limited to a direct or an indirect coupling. “Coupled to” is generally used in the sense of directly coupled, whereas “coupled with” is generally used in the sense of directly or indirectly coupled. “Coupled” in an electronic system may refer to a configuration that allows a flow of information, signals, data, or physical quantities such as electrons between two elements coupled to or coupled with each other. In some cases, the flow may be unidirectional, in other cases the flow may be bidirectional or multidirectional. Coupling may be galvanic (in this context meaning that a direct electrical connection exists), capacitive, inductive, electromagnetic, optical, or through any other process allowed by physics.
The term “connected” is used to indicate a direct connection, such as electrical, optical, electromagnetic, or mechanical, between the things that are connected, without any intervening things or devices.
The term “configured to” perform a task or tasks is a broad recitation of structure generally meaning “having circuitry that” performs the task or tasks during operation. As such, the described item can be configured to perform the task even when the unit/circuit/component is not currently on or active. In general, the circuitry that forms the structure corresponding to “configured to” may include hardware circuits, and may further be controlled by switches, fuses, bond wires, metal masks, firmware, and/or software. Similarly, various items may be described as performing a task or tasks, for convenience in the description. Such descriptions should be interpreted as including the phrase “configured to.”
As used herein, the term “based on” is used to describe one or more factors that affect a determination. This term does not foreclose the possibility that additional factors may affect the determination. That is, a determination may be solely based on specified factors or based on the specified factors as well as other, unspecified factors. Consider the phrase “determine A based on B.” This phrase specifies that B is a factor that is used to determine A or that affects the determination of A. This phrase does not foreclose that the determination of A may also be based on some other factor, such as C. This phrase is also intended to cover an implementation in which A is determined based solely on B. The phrase “based on” is thus synonymous with the phrase “based at least in part on.”
A “processor” includes any suitable hardware system, mechanism or component that processes data, signals or other information. A processor can include a system with a general-purpose central processing unit, multiple processing units, dedicated circuitry for achieving functionality, or other systems. Examples of processing systems can include servers, clients, end user devices, routers, switches, networked storage, etc. A “computer” may be any processor in communication with a memory. The memory may be any suitable processor-readable storage medium, such as random-access memory (RAM), read-only memory (ROM), magnetic or optical disk, or other tangible media suitable for storing instructions for execution by the processor.
The terms “substantially”, “close”, approximately”, “near”, and “about” refer to being within minus or plus 10% of an indicated value, unless explicitly specified otherwise.
The following terms or acronyms used herein are defined at least in part as follows:
A channel is one or more lanes that may be bonded together.
A lane includes a serializer, a link, and a deserializer.
A link in the context of this patent document is the combination of a modulator, a photonic path (in an optical transmission medium), and a photodetector.
A processing device, processor, compute device, or compute element may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
A waveguide is an implementation of a unidirectional photonic path in an optical transmission medium.
Implementations herein relate to resolving power, latency, or pin-count concerns by providing various OMIB configurations and various packages that include at least one OMIB.
The OMIB can be formed in a second process using a second wafer (not shown) in a manner analogous to the fabrication of the die 102. The OMIB is a photonic integrated circuit (PIC) and has optical components fabricated therein, as opposed to the die 102 which is an electronic integrated circuit (EIC) and typically has electronic elements fabricated therein. The OMIB can be embedded into a package substrate. The package substrate may be considered to be a cored or coreless substrate. The package substrate may include one or more layers of a dielectric material which may be organic or inorganic. The package substrate may further include one or more conductive elements such as vias, pads, traces, microstrips, strip lines, and the like. The conductive elements may be internal to, or on the surface of, the package substrate. Generally, the conductive elements may allow for the routing of signals through the package substrate or between elements coupled to the package substrate. In some implementations the package substrate may be, for example, a printed circuit board (PCB), an interposer, a motherboard, or some other type of substrate.
In some implementations, the wafer 100 or the die 102 may include a memory device, a compute device, or both (examples include, but are not limited to, a random-access memory (RAM) device, (such as a static RAM (SRAM) device, a magnetic RAM (MRAM) device, a resistive RAM (RRAM) device, or a conductive-bridging RAM (CBRAM) device), a logic device (e.g., an AND, OR, NAND, NOR, or EXOR gate), a NAND flash memory, a solid-state drive (SSD) memory, a NOR flash memory, a CMOS memory, a thin film transistor-based memory, a phase-change memory (PCM), a storage class memory (SCM), a magneto-resistive memory (MRAM), a resistive RAM, a DRAM, a high bandwidth memory (HBM), a DDR-based DRAM, a DIMM memory, a CPU, a GPU, an MPU, a tensor engine, a load/store unit (LDSU), a neural compute engine, a dot-product and/or convolution engine, a field-programmable gate array (FPGA), an AI accelerator, or any other suitable circuit element. Multiple ones of these devices may be combined on a single die 102. For example, die 102 may include a memory comprising multiple memory arrays, one or more processors, other logic, communication circuits, and power management functions, and execute instructions stored in the memory array, or otherwise interact with the memory array using the processors on die 102.
Various implementations can use different types of light engines. The light engine can be external or integrated into the OMIB. Example implementations can use the following light engines to bring an optical signal to and from a package that includes OMIB 330: laser diodes—these are highly coherent light sources that produce a narrow beam of light, and that are widely used in photonic chips for data communication and sensing applications; light-emitting diodes (LEDs)—a type of diode that emits light when a current passes through it (they are low-cost, compact, and have a long lifetime, making them a popular choice for photonic chips); superluminescent diodes (SLDs)—SLDs are similar to LEDs, but they emit a wider, broadband light spectrum (SLDs are used for applications such as optical amplification, wavelength division multiplexing, and fiber optic sensing); vertical-cavity surface-emitting lasers (VCSELs)—these are lasers that emit light perpendicular to the chip surface, making them ideal for applications in photonics (VCSELs are widely used in data communication and sensing applications, such as 3D sensing, LiDAR, and data center interconnects); and silicon photonics-devices that use the light-carrying properties of silicon to produce light sources on silicon chips (silicon photonics has the potential to revolutionize photonics by reducing the size, cost, and power consumption of photonic components). These are some of the most commonly used light sources with a package that includes an OMIB 330. The choice of light engine depends on the specific requirements of the implementation, such as wavelength, power, and modulation speed.
The light engine may be located locally on OMIB 330 or connect to OMIB 330 via fiber 360. When integrated onto the PIC, distributed fiber Bragg (DFB) lasers or quantum dot lasers can be attached during processing or integrated in the native technology where possible. When remote, any packaged continuous wave (CW) laser suitable in power and spectrum for the modulation technology may be used. In one implementation, the light source is a set of DFB lasers attached to a silicon interposer and connected to the PIC via optical fibers.
The optical interface 350 is used to terminate optical fibers at the edge or the top of OMIB 330 for optical input and/or output to occur from external processes or devices that are communicatively coupled to package 300 via the fibers. The choice of OI depends on the specific requirements of the implementation, such as the wavelength of light, the coupling efficiency, and the cost. Optical interface 350, and any other optical interfaces in and on OMIB 330, can include any means for optical interfacing between a fiber and a photonic IC, for example: an edge coupler; a grating coupler (CG); a graded index (GRIN) lens coupler, a fiber Bragg grating (FBG) coupler, a micro-lens array (MLA) coupler, an evanescent wave (EW) coupler, an adiabatic coupler, a wavelength division multiplexing (WDM) coupler, a prism coupler, a butt coupler, an end-fire coupler, and a V-groove coupler.
In one implementation, optical interface 350 includes a fiber array unit (FAU) to connect the OMIB optically to a light source and/or an optical I/O unit. The FAU is a device used in optical communication systems that combines or separates optical signals from multiple fibers into a single optical signal or multiple optical signals, respectively. The FAU can be used for a variety of applications, such as wavelength division multiplexing (WDM), parallel optical interconnects, and optical sensing. There are two main types of fiber array units that can be used: linear and circular. Linear FAUs combine or separate optical signals along a straight line, while circular fiber array units combine or separate optical signals in a circular configuration. Both types of fiber array units are typically made from a precision-molded optical plastic or ceramic material and can have anywhere from a few to hundreds of fibers arranged in a specific pattern. The choice of FAU depends on the specific requirements of an application, such as the number of fibers, the arrangement of the fibers, the wavelength of light being used, and the coupling efficiency desired. Each die can have an associated analog/mixed-signal (AMS) block associated with a portion of the OMIB it is coupled to and one or more transistors or supporting circuitry to route electrical signals to the transistors, or some other IC component.
OMIB 330 may further include one or more electrical interfaces (Els). OIs and EIs may be affixed to a surface of the OMIB, either between the bridged dies 102 or offset in a region in the x or y direction where a die 102 does not extend. The EI has a function analogous to the OI, except it gives the OMIB the capability to transmit data to and from the dies via electrical connections instead of optical ones and can connect the external I/O block to the OMIB, for instance, via a wire from the EI to the external I/O block. Different types of electrical connections are possible including wires, RDLs and the like. The electrical connection typically transmits and receives data electrically across the electrical interconnection using known standards or bus protocols between the EI and any of the dies bridged by the OMIB or the EI and the external I/O block. The electrical pathways between the EI and the dies can be routed through the OMIB, through the substrate, or both (or in the case of an RDL through one of the layers of the OMIB and/or substrate).
A photonic path may be implemented in an optical transmission medium. The optical transmission medium may include a waveguide on a PIC, an optical fiber or other optical transmission medium (such as free space optics or glass-etched waveguide), or some combination of the foregoing. Examples of optical modulators include, but are not limited to, electro-absorption modulators (EAMs), micro-ring resonators, or any suitable optical component with sufficient thermal stability.
Light engine 570 transmits light via the fiber array unit FAU and grating coupler GC (or any other OI configured to receive light on an OI input and to pass the received light on an OI output) into splitter SP inside OMIB 530. Splitter SP distributes the light over two different photonic paths 531 and 532 towards modulator MOD1 and modulator MOD2. In some implementations, the splitter, or a splitter tree, distributes the light over more than two different photonic paths to feed additional modulators. A photonic path may be implemented with any suitable optical transmission medium, and may include a mixture of waveguides and fibers.
Modulator MOD1 modulates the light it receives from the splitter SP with information from driver DRV1, and transmit the modulated light to photodetector PD2 via photonic path 533. Photodetector PD2 converts the received light to an electrical signal for second die 520. Modulator MOD2 modulates light it receives from the splitter SP with information from driver DRV2, and transmit the modulated light to photodetector PD1 via photonic path 534. Photodetector PD1 converts the received light to an electrical signal for first die 510. Jointly with a serializer (not shown) in first die 510, driver DRV1, transimpedance amplifier TIA2, and a deserializer (not shown) in second die 520, modulator MOD1, photonic path 533, and photodetector PD1 form a data channel from first die 510 to second die 520.
OMIB 530, a photonic IC, includes a first interconnect region, a second interconnect region, and an offset region. The first interconnect region includes a bondpad pattern located over MOD1 and PD1 that matches a bondpad pattern on first die 510 located under DRV1 and TIA1, or is otherwise configured to form an electrical interconnection between the respective components. The second interconnect region includes a bondpad pattern located over PD2 and MOD2 that matches a bondpad pattern on second die 520 located under TIA2 and DRV2, or is otherwise configured to form an electrical interconnection between the respective components. The offset region, which is further illustrated in
Photonic paths 533 and 534 include waveguides or other suitable optical transmission media to carry the optical signals from a modulator to a photodetector. The modulators in OMIB 530 are coupled with drivers in the AMS parts of the first or second die via a copper pillar or other suitable electrical interconnect. The photodetectors in OMIB 530 are coupled with transimpedance amplifiers in the AMS parts of the first or second die via a copper pillar or other suitable electrical interconnect. Photonic paths in OMIB 530 may be unidirectional, so that a pair of photonic paths in opposite directions can be comprised in a single bidirectional information channel.
An electrical interconnect is shown as making a coupling (or abutted coupling) between elements in the AMS parts and the corresponding elements in OMIB 530. In one implementation, the interconnect is a copper pillar no longer than 2 millimeters. In other implementations, the electrical interconnects can be solder bumps that are formed of a material such as tin, silver, or copper. If solder bumps are used for the interconnects, then the solder bumps may be flip-chip bumps. In yet other implementations, the interconnects may be elements of a ball-grid array (BGA), pins of a pin grid array (PGA), elements of a land grid array (LGA), or some other type of interconnect. Generally, the interconnects may physically and electrically couple the AMS blocks to OMIB 530. For example, one or more of the interconnects may physically couple with, and allow electrical signals to pass between, pads of the dies and pads of substrate 540 and/or OMIB 530. The interconnects 525 may not have a uniform size, shape, or pitch. A finer pitch of interconnects may be desirable to allow a denser communication pathway between elements coupled to the OMIB. In implementations, the size, shape, pitch, or type of one or more of the interconnects may be different than depicted in the figures, or different than others of the interconnects. The specific type, size, shape, or pitch of the interconnects may be based on one or more factors such as use case, materials used, design considerations, and manufacturing considerations.
A light engine 970, which can be internal or external, provides light of multiple wavelengths (e.g., between 2 and 16 wavelengths), such as four wavelengths λb1, λb2, λb3, λb4, as shown, to OMIB 930. A splitter tree SPT (e.g., similar to that of
Although the implementation discussed above is directed to a photonic channel showing four optical links in one direction and a WDM multiplexer receiving four different wavelengths, in other implementations, two or more optical links and a WDM multiplexer receiving two or more different wavelengths may be used. The WDM demultiplexer would, accordingly, output two or more different wavelengths corresponding to these alternative implementations.
Using intra-OMIB and inter-OMIB photonic channels, e.g., as described above, generally including one or more links per direction, the processors in the EIC(s) in a single package can be connected into electro-photonic networks. The resulting network topology generally depends on the selection of pairs of dies that are coupled via an associated photonic channel; various example topologies are known in the art. Note that, while this document generally refers to bidirectional photonic channels, which, as compared with unidirectional photonic channels, result in network structures providing greater flexibility for implementing ML and other computational models, electro-photonic networks can in principle also be formed with unidirectional photonic channels, and such networks may retain any of the benefits discussed herein (e.g., power savings due to photonic data transfer over longer distances).
As previously stated, a photonic channel includes at least two unidirectional sets of one or more links, capable of making a bidirectional channel. Examples of such a channel include, but are not limited to, the photonic channel between two dies, when bridged by an OMIB and the photonic channel between an OI on an OMIB and an external device optical interface. The nature of the external device optical interface can vary so long as it has the optical capability to receive messages sent from the OMIB and/or send messages that can be received and used by the OMIB or any dies using the OMIB as a bridge.
The messages can be in the form of variably sized packets.
In one implementation, information is modulated at 56 Gb/s in a non-return-to-zero (NRZ) code, but more spectrally efficient modulation schemes such as PAM-4 or PAM-8 or higher-order pulse amplitude modulation may be used to allow higher-bandwidth and lower-latency links.
The AMS transmit and receive blocks can take an optical signal to the central region of either die (e.g., to a memory controller to access a memory in the central region) from any external device optical interface that is connected by an inter-OMIB link to the OMIB or from and AMS transmit and receive block that has an inter-OMIB connection within the bridge. The OI of each OMIB can also be connected by a fiber although this is not required. A first side of an AMS transmit block 1413 or an AMS receive block 1414 (e.g., the right side) is aligned with a first side (e.g., the right side) of the central region (e.g., central region 1412). The first side of the central region being proximate and/or touching a compute element 1411 such as a CPU, GPU, TPU and the like. A second side of the AMS transmit block 1413 or an AMS receive block 1414 (e.g., the left side) is aligned with the left side of the OMIB. The alignment of the sides is approximate and need not be exact but typically the alignment is in at least two dimensions to allow for abutment between optical and electrical elements in the OMIB and AMS blocks respectively.
As shown in the following, one OMIB can bridge four dies. For example, the OMIB is used to bridge dies both vertically and horizontally, which results in 4 interconnect regions on each OMIB to correspond to four AMS blocks on the respective dies. An OMIB in this arrangement may provide channels in six directions, including two horizontally, two vertically, and two diagonally.
Operation 1510—fabricating a bridge including a photonic link from a first interconnect region to a second interconnect region, wherein the photonic link includes a first electrical interconnect, a modulator coupled with the first electrical interconnect, an optical transmission medium coupled with the modulator, a photodetector coupled with the optical transmission medium, and a second electrical interconnect. In some implementations, the modulator is configured to be temperature stabilized by applying a stabilization voltage to the modulator, wherein the stabilization voltage is related to a die temperature, and wherein the stabilization voltage induces a change in an electrical absorption in the modulator.
Operation 1520—positioning the interconnect regions to enable an electrical interconnect and/or abutted coupling to AMS blocks in the dies.
Operation 1530—fabricating an intra-OMIB connection between the interconnect regions.
Operation 1540—fabricating an inter-OMIB connection between the two interconnect regions and an optical interface.
System 1600 may include one or more processing devices 1602. Processing device 1602 may include one or more digital signal processors (DSPs), application-specific integrated circuits (ASICs), central processing units (CPUs), graphics processing units (GPUs), tensor processing units (TPUs), AI accelerators, fixed-gate programmable arrays (FPGAs), load/store units (LDSUs), neural compute engines (NCEs), dot-product and/or convolution engines, server processors, or any other suitable processing devices. System 1600 may include a memory 1604, which may itself include one or more memory devices such as volatile memory, nonvolatile memory, flash memory, solid state memory, and/or a hard drive, including but not limited to: a random-access memory (RAM) device, (such as static RAM (SRAM) device, a magnetic RAM (MRAM) device, a resistive RAM (RRAM) device, or a conductive-bridging RAM (CBRAM) device), a logic device (e.g., an AND, OR, NAND, or NOR gate), A NAND Flash memory, a solid-state drive (SSD) memory, a NOR Flash memory, a CMOS memory, a thin film transistor-based memory, a phase change memory (PCM), a storage class memory (SCM), a magneto-resistive memory (MRAM), a resistive RAM, a DRAM, a high bandwidth memory (HBM), a DDR-based DRAM, a DIMM memory. In some implementations, the memory 1604 may include memory that shares a die with the processing device 1602. This memory may be used as cache memory and may include embedded dynamic RAM or spin transfer torque magnetic RAM.
In some implementations, system 1600 may include a communication chip 1612. For example, communication chip 1612 may be configured for managing wireless communications for the transfer of data to and from the device.
Communication chip 1612 may implement any of a number of wireless standards or protocols, including but not limited to Institute for Electrical and Electronic Engineers (IEEE) standards including Wi-Fi (IEEE 802.11 family), IEEE 802.16 standards (e.g., IEEE 802.16-2005 Amendment), Long-Term Evolution (LTE) project along with any amendments, updates, and/or revisions (e.g., advanced LTE project, ultra-mobile broadband (UMB) project (also referred to as “3GPP2”), and others). IEEE 802.16 compatible Broadband Wireless Access (BWA) networks are generally referred to as WiMAX networks, an acronym that stands for Worldwide Interoperability for Microwave Access, which is a certification mark for products that pass conformity and interoperability tests for the IEEE 802.16 standards. Communication chip 1612 may operate in accordance with a Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Evolved HSPA (E-HSPA), or LTE network. Communication chip 1612 may operate in accordance with Enhanced Data for GSM Evolution (EDGE), GSM EDGE Radio Access Network (GERAN), Universal Terrestrial Radio Access Network (UTRAN), or Evolved UTRAN (E-UTRAN). Communication chip 1612 may operate in accordance with Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Digital Enhanced Cordless Telecommunications (DECT), Evolution-Data Optimized (EV-DO), and derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. Communication chip 1612 may operate in accordance with other wireless protocols in other implementations. System 1600 may include an antenna 1622 to facilitate wireless communications and/or to receive other wireless communications (such as AM or FM radio transmissions).
In some implementations, communication chip 1612 may manage wired communications, such as electrical, optical, or any other suitable communication protocols (e.g., the Ethernet or USB). As noted above, the communication chip 1612 may include multiple communication chips. For instance, a first communication chip 1612 may be dedicated to shorter range wireless communications such as Wi-Fi or Bluetooth, and a second communication chip 1612 may be dedicated to longer-range wireless communications such as EDGE, GPRS, CDMA, WiMAX, LTE, EV-DO, or others. In some implementations, a first communication chip 1612 may be dedicated to wireless communications, and a second communication chip 1612 may be dedicated to wired communications.
System 1600 may include battery/power circuitry 1614. The battery power circuitry 1614 may include one or more energy storage devices (e.g., batteries or capacitors) and/or circuitry for coupling components of system 1600 to an external energy source (e.g., AC line power). System 1600 may include a display device 1606 (or corresponding interface circuitry, as discussed above). The display device 1606 may include any visual indicators, such as a heads-up display, a computer monitor, a projector, a touchscreen display, a liquid crystal display (LCD), a light-emitting diode display, a flat panel display, a virtual reality headset, an augmented reality headset, etc. System 1600 may include an audio output device 1608 (or corresponding interface circuitry, as discussed above). The audio output device 1608 may include any device that generates an audible indicator, such as speakers, headsets, earbuds, vibration elements, piezo crystals, etc. System 1600 may include an audio input device 1624 (or corresponding interface circuitry, as discussed above). The audio input device 1624 may include any device that generates a signal representative of a sound, such as microphones, microphone arrays, or digital instruments (e.g., instruments having a pickup or a musical instrument digital interface (MIDI) output).
System 1600 may include a positioning device 1618 (or corresponding interface circuitry), such as according to the global positioning system (GPS), Galileo, GLONASS, BeiDou, IRNSS, NavIC, and/or QZSS. The positioning device 1618 may be in communication with a satellite-based system and may receive a location of system 1600, as known in the art. System 1600 may include another output device 1610 (or corresponding interface circuitry, as discussed above). Examples of the other output device 1610 may include an audio codec, a video codec, a printer, a wired or wireless transmitter for providing information to other devices, or an additional storage device. System 1600 may include another input device 1620 (or corresponding interface circuitry, as discussed above). Examples of another input device 1620 include an accelerometer, a gyroscope, a compass, an image capture device, a keyboard, a cursor control device such as a mouse, a stylus, a touchpad, a bar code reader, a Quick Response (QR) code reader, any sensor, or a radio frequency identification (RFID) reader.
System 1600 may have any desired form factor, such as a handheld or mobile device (e.g., a cell phone, a smartphone, a tablet computer, a laptop computer, an Internet-of-Things (IoT) device, a netbook computer, an ultrabook computer, a mobile internet device, a music player, a personal digital assistant (PDA), an ultra-mobile personal computer, and others), a desktop electrical device, a server device or other networked computing component, a printer, a scanner, a monitor, a settop box, an entertainment control unit, a vehicle control unit, a digital camera, a digital video recorder, or a wearable electrical device. In some implementations, system 1600 may be any other electronic device that processes data.
Thermal Behavior
The close spacing and abutment of an EIC and a PIC chiplet (less than 2 millimeters and often within 50 microns) creates a thermal challenge for an OMIB. Depending on the type of modulators used, the temperature range for operation within specifications may be less than thirty degrees Celsius. However, the die temperature of an EIC can vary significantly more, dependent on the ambient temperature, load conditions, supply voltage, and other factors. Modulator types include Mach-Zehnder interferometer (MZI), ring modulator, and electro-absorption modulator (EAM). Ring modulators have a very narrow temperature range (less than one degree Celsius), whereas MZI and EAM may have an operating range of more than thirty degrees Celsius. Both the modulator temperature and bias voltage may affect the frequency (wavelength) at which the modulator's efficiency peaks. The laser's wavelength may be unaffected, or differently affected, by these parameters. Thus, a change in temperature will result in a difference between the laser wavelength and the modulator's efficiency peak wavelength, thus affecting the modulation depth.
Implementations may include modulators that are inherently optimal over a desired temperature range. Alternatively, an implementation may provide temperature compensation including a temperature sensing or predicting capability. The temperature compensation may be fully incorporated in the OMIB, or partially in the OMIB and partially in a connecting die.
In
In
In
Some modulators can provide stable operation over a wide temperature range of modulation for optical components, for example when incorporated into an OMIB, even without the addition of temperature compensation. Modulators may utilize the Franz-Keldysh effect for electrically-induced changes in optical absorption. A variety of materials may be used in the modulators, including germanium and its alloys, silicon and its alloys, III-V materials, such as those based on indium phosphide (InP) or gallium arsenide (GaAs) material systems. For example, one or more implementations described herein involve chip hardware including features and functionality that provide a thermally stable optical modulation element(s) coupled to electronic element(s) (e.g., a driver in an AMS transmit block). In one or more implementations, the hardware is an apparatus that includes an electronic-integrated circuit (EIC) and a photonic-integrated circuit (PIC). The PIC may be electrically interconnected in a coupling or an abutted coupling with the EIC. Each of the transmit units may include a thermally-stable optical modulator in a portion that resides in the PIC. The data may be moved optically in the PIC via an optical carrier between one of the thermally stable optical modulators in a first portion of the OMIB and one of the receive units in or interconnected with a second portion of the OMIB. In one or more implementations, a thermally stable optical modulator operates in a temperature range larger than thirty degrees Celsius. In this example, the thermally stable optical modulator may further include materials selected from a group including of germanium, silicon, an alloy of germanium, an alloy of silicon, a III-V material based on indium phosphide (InP), and a III-V material based on gallium arsenide (GaAs). In one or more implementations, the optical modulator is an electro-absorption modulator (EAM) which uses the Franz-Keldysh effect for an electrically induced charge in an optical absorption.
In one or more implementations, the thermally stable optical modulator is an EAM that operates in a temperature range smaller than thirty degrees Celsius. In this example, the thermally stable optical modulator may include (e.g., include of) materials selected from a group including germanium, silicon, an alloy of germanium, an alloy of silicon, a III-V material based on indium phosphide (InP), and a III-V material based on gallium arsenide (GaAs). In one or more implementations, the thermally stable optical modulator uses a quantum-confined stark effect (QCSE) for an electrically induced change in an optical absorption. In one or more implementations, the thermally stable optical modulator has an output that has a high optical modulation amplitude. In this example, the thermally stable optical modulator may include materials selected from a group including germanium, silicon, an alloy of germanium, an alloy of silicon, a III-V material based on indium phosphide (InP), and a III-V material based on gallium arsenide (GaAs). In one or more implementations, the thermally stable optical modulator uses a quantum confined stark effect (QCSE) for an electrically induced change in an optical absorption. In one or more implementations, the thermally stable optical modulator is configured for stable operation over a wide temperature range. In this example, the thermally stable optical modulator may include materials selected from the group including of germanium, silicon, an alloy of germanium, an alloy of silicon, a III-V material based on Indium Phosphide (InP), and a III-V material based on gallium arsenide (GaAs). In one or more implementations, the modulator uses a Franz-Keldysh effect for an electrically induced change in an optical absorption.
Fabrication
Considerations
Although the description has been described with respect to particular implementations thereof, these particular implementations are merely illustrative, and not restrictive. The description may reference specific structural implementations and methods, and does not intend to limit the technology to the specifically disclosed implementations and methods. The technology may be practiced using other features, elements, methods and implementations. Implementations are described to illustrate the present technology, not to limit its scope, which is defined by the claims. Those of ordinary skill in the art recognize a variety of equivalent variations on the description above.
For example, many examples in this document couple a fiber to a photonics IC using a grating coupler. However, many of the implementations work well using other means for optical interfacing between a fiber and a photonic IC, such as described with reference to
All features disclosed in the specification, including the claims, abstract, and drawings, and all the steps in any method or process disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. Each feature disclosed in the specification, including the claims, abstract, and drawings, can be replaced by alternative features serving the same, equivalent, or similar purpose, unless expressly stated otherwise.
Although the description has been described with respect to particular implementations thereof, these particular implementations are merely illustrative, and not restrictive. For instance, many of the operations can be implemented on a printed circuit board (PCB) using off-the-shelf devices, in a System-on-Chip (SoC), application-specific integrated circuit (ASIC), programmable processor, a coarse-grained reconfigurable architecture (CGRA), or in a programmable logic device such as a field-programmable gate array (FPGA), obviating the need for at least part of any dedicated hardware. Implementations may be as a single chip, or as a multi-chip module (MCM) packaging multiple semiconductor dies in a single package. All such variations and modifications are to be considered within the ambit of the disclosed technology the nature of which is to be determined from the foregoing description.
Any suitable technology for manufacturing electronic devices can be used to implement the circuits of particular implementations, including CMOS, FinFET, BiCMOS, bipolar, JFET, MOS, NMOS, PMOS, HBT, MESFET, etc. Different semiconductor materials can be employed, such as silicon, germanium, SiGe, GaAs, InP, GaN, SiC, graphene, etc. Circuits may have single-ended or differential inputs, and single-ended or differential outputs. Terminals to circuits may function as inputs, outputs, both, or be in a high-impedance state, or they may function to receive supply power, a ground reference, a reference voltage, a reference current, or other. Although the physical processing of signals may be presented in a specific order, this order may be changed in different particular implementations. In some particular implementations, multiple elements, devices, or circuits shown as sequential in this specification can be operating in parallel.
Particular implementations may be implemented by using a programmed general-purpose digital computer, application-specific integrated circuits, programmable logic devices, field-programmable gate arrays, optical, chemical, biological, quantum or nanoengineered systems, etc. Other components and mechanisms may be used. In general, the functions of particular implementations can be achieved by any means as is known in the art. Distributed, networked systems, components, and/or circuits can be used. Communication, or transfer, of data may be wired, wireless, or by any other means.
It will also be appreciated that one or more of the elements depicted in the drawings/figures can also be implemented in a more separated or integrated manner, or even removed or rendered as inoperable in certain cases, as is useful in accordance with a particular application.
Thus, while particular implementations have been described herein, latitudes of modification, various changes, and substitutions are intended in the foregoing disclosures, and it will be appreciated that in some instances some features of particular implementations will be employed without a corresponding use of other features without departing from the scope and spirit as set forth. Therefore, many modifications may be made to adapt a particular situation or material to the essential scope and spirit.
Aggarwal, Ankur, Winterbottom, Philip, Sahni, Subal, Bos, Martinus, Lazovsky, David
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10026723, | Jan 04 2016 | Infinera Corporation | Photonic integrated circuit package |
10031287, | Feb 02 2017 | International Business Machines Corporation | Waveguide architecture for photonic neural component with multiplexed optical signals on inter-node waveguides |
10107959, | Feb 02 2017 | International Business Machines Corporation | Waveguide architecture for photonic neural component |
10117007, | Jul 18 2014 | HUAWEI TECHNOLOGIES CO , LTD | Routing node, optical switching network, and optical signal transmission method |
10185085, | Jun 12 2015 | HUAWEI TECHNOLOGIES CO , LTD | On-chip optical interconnection structure and network |
10225632, | Dec 12 2017 | International Business Machines Corporation | Planar photonic switch fabrics with reduced waveguide crossings |
10250958, | Dec 18 2014 | HUAWEI TECHNOLOGIES CO , LTD | Optical network-on-chip, optical router, and signal transmission method |
10281747, | Jan 25 2013 | The Trustees of Columbia University in the City of New York | Applications of wavelength-locking using dithering signals for microring resonators |
10365445, | Apr 24 2017 | MELLANOX TECHNOLOGIES, LTD. | Optical modules integrated into an IC package of a network switch having electrical connections extend on different planes |
10520672, | Jul 25 2017 | NOKIA SOLUTIONS AND NETWORKS OY | Optical hybrid |
10564512, | Feb 03 2017 | The George Washington University | Hybrid photonic non-blocking wide spectrum WDM on-chip router |
10598852, | May 29 2019 | XILINX, Inc. | Digital-to-analog converter (DAC)-based driver for optical modulators |
10651933, | May 23 2019 | XILINX, Inc. | Thermal calibration of a ring modulator |
10768659, | Jun 02 2016 | Massachusetts Institute of Technology | Apparatus and methods for optical neural network |
10784202, | Dec 01 2017 | International Business Machines Corporation | High-density chip-to-chip interconnection with silicon bridge |
10837827, | Mar 20 2020 | LUMINOUS COMPUTING, INC | System and method for photonic analog-to-digital conversion |
10872854, | Apr 25 2018 | ROCKLEY PHOTONICS LIMITED | Electro-optical package and method of fabrication |
10935722, | Sep 14 2019 | CMOS compatible material platform for photonic integrated circuits | |
10951325, | Mar 19 2020 | Dell Products L.P. | Use of siilicon photonics (SiP) for computer network interfaces |
10962728, | Apr 25 2018 | ROCKLEY PHOTONICS LIMITED | Co-packaged optics and transceiver |
10976491, | Nov 23 2016 | The Research Foundation for The State University of New York; The Trustees of Columbia University in the City of New York; ANALOG PHOTONICS, LLC; Arizona Board of Regents on Behalf of the University of Arizona | Photonics interposer optoelectronics |
11023377, | Feb 23 2018 | Intel Corporation | Application mapping on hardened network-on-chip (NoC) of field-programmable gate array (FPGA) |
11036002, | Mar 06 2019 | Lightmatter, Inc.; LIGHTMATTER, INC | Photonic communication platform |
11105988, | Jun 28 2019 | Hewlett Packard Enterprise Development LP | Dense wavelength division multiplexing (DWDM) photonic integration platform |
11107770, | Jun 27 2019 | Xilinx, Inc | Integrated electrical/optical interface with two-tiered packaging |
11165509, | Jun 05 2020 | CAVIUM INTERNATIONAL; Marvell Asia Pte Ltd | Method for co-packaging light engine chiplets on switch substrate |
11165711, | Apr 30 2019 | HUAWEI TECHNOLOGIES CO , LTD | Methods and apparatuses for transparent embedding of photonic switching into electronic chassis for scaling data center cloud system |
11233580, | Feb 14 2020 | AYAR LABS, INC | Pooled DRAM system enabled by monolithic in-package optical I/O |
11244938, | Dec 30 2016 | Samsung Electronics Co., Ltd. | Electronic device package |
11281972, | Jun 05 2018 | LIGHTELLIGENCE PTE LTD ; LIGHTELLIGENCE PTE LTD | Optoelectronic computing systems |
11327259, | Dec 07 2017 | Intel Corporation | Integrated circuit package with electro-optical interconnect circuitry |
11336376, | Jan 29 2021 | Alibaba Group Holding Limited | Flexible switch solution based on co-packaged optics |
11373088, | Dec 30 2017 | Intel Corporation | Machine learning accelerator mechanism |
11398871, | Jul 29 2019 | LIGHTMATTER, INC | Systems and methods for analog computing using a linear photonic processor |
11493714, | Sep 19 2018 | Psiquantum, Corp. | Quantum computing die assembly with thru-silicon vias and connected logic circuit |
11500153, | Oct 15 2019 | AYAR LABS, INC | Multi-chip packaging of silicon photonics |
11509397, | Dec 17 2020 | CELESTIAL AI INC | Balanced photonic architectures for matrix computations |
11536897, | Jan 30 2020 | PSIQUANTUM, CORP | Multi-chip photonic quantum computer assembly with optical backplane interposer |
11762155, | Aug 25 2021 | Cisco Technology, Inc. | Photonics packaging platform |
11769710, | Mar 27 2020 | Xilinx, Inc | Heterogeneous integration module comprising thermal management apparatus |
11817903, | Aug 06 2020 | CELESTIAL AI INC | Coherent photonic computing architectures |
11835777, | Mar 18 2022 | Celestial AI Inc. | Optical multi-die interconnect bridge (OMIB) |
4934775, | Jan 18 1989 | Verizon Laboratories Inc | Optical space switches using cascaded coupled-waveguide optical gate arrays |
5457563, | Jun 25 1992 | KONINKLIJKE KPN N V | Optical mixing device having one photodetector for a heterodyne receiver |
6249621, | May 08 1995 | inTest Corporation | Optical fiber interface for integrated circuit test system |
6684007, | Oct 09 1998 | Fujitsu Limited | Optical coupling structures and the fabrication processes |
6714552, | Aug 28 1996 | British Telecommunications public limited company | Communications network |
7034641, | Nov 27 2002 | Emcore Corporation | Substrate structure for photonic assemblies and the like having a low-thermal-conductivity dielectric layer on a high-thermal-conductivity substrate body |
7532785, | Oct 23 2007 | Hewlett Packard Enterprise Development LP | Photonic interconnects for computer system devices |
7570844, | Jan 18 2005 | Photonic integrated circuit device and elements thereof | |
7778501, | Apr 03 2007 | Hewlett Packard Enterprise Development LP | Integrated circuits having photonic interconnect layers and methods for fabricating same |
7889996, | Dec 21 2007 | Oracle America, Inc | Optical-signal-path routing in a multi-chip system |
7894699, | Oct 16 2006 | Hewlett Packard Enterprise Development LP | Photonic based interconnects for interconnecting multiple integrated circuits |
7961990, | Dec 21 2007 | Oracle America, Inc | Multi-chip system including capacitively coupled and optical communication |
8059443, | Oct 23 2007 | Hewlett Packard Enterprise Development LP | Three-dimensional memory module architectures |
8064739, | Oct 23 2007 | Hewlett Packard Enterprise Development LP | Three-dimensional die stacks with inter-device and intra-device optical interconnect |
8213751, | Nov 26 2008 | HUANG, YINGYAN | Electronic-integration compatible photonic integrated circuit and method for fabricating electronic-integration compatible photonic integrated circuit |
8260147, | Apr 30 2009 | STMicroelectronics S.r.l. | System-on-chip having optical interconnections |
8285140, | Feb 17 2010 | Oracle International Corporation | Shared-source-row optical data channel organization for a switched arbitrated on-chip optical network |
8288854, | May 19 2010 | Advanced Semiconductor Engineering, Inc. | Semiconductor package and method for making the same |
8326148, | Nov 04 2005 | The Trustees of Columbia University in the City of New York | Optical network |
8340517, | Apr 16 2007 | The Trustees of Columbia University in the City of New York | Systems and methods for on-chip data communication |
8447146, | Oct 11 2003 | Hewlett Packard Enterprise Development LP | Photonic interconnect method |
8611747, | May 18 2009 | Cirrex Systems, LLC | Method and system for multiplexing optical communication signals |
8831437, | Sep 04 2009 | Cisco Technology, Inc | Method and system for a photonic interposer |
8971676, | Oct 07 2013 | Oracle International Corporation | Hybrid-integrated photonic chip package |
9036482, | Dec 08 2011 | The Hong Kong University of Science and Technology | Bufferless nonblocking networks on chip |
9250403, | Apr 26 2013 | Oracle International Corporation | Hybrid-integrated photonic chip package with an interposer |
9331096, | Sep 04 2009 | Cisco Technology, Inc | Method and system for hybrid integration of optical communication systems |
9354039, | Jun 06 2014 | Massachusetts Institute of Technology | Methods, systems, and apparatus for programmable quantum photonic processing |
9369784, | Dec 09 2013 | Commissariat a l Energie Atomique et aux Energies Alternatives | Optical arbitration device and method in a network-on-chip system |
9391708, | May 21 2014 | STMicroelectronics S.r.l. | Multi-substrate electro-optical interconnection system |
9443824, | Mar 30 2015 | Qualcomm Incorporated | Cavity bridge connection for die split architecture |
9495295, | Apr 23 2015 | PHOTONIC INTERNATIONAL PTE. LTD. | Photonics-optimized processor system |
9500821, | Oct 27 2014 | NOKIA SOLUTIONS AND NETWORKS OY | Photonic interface for electronic circuit |
9557478, | Aug 28 2012 | ACACIA TECHNOLOGY, INC | Electronic and optical co-packaging of coherent transceiver |
9570883, | Dec 28 2011 | Intel Corporation | Photonic package architecture |
9615751, | Apr 12 2011 | Canon Kabushiki Kaisha | Object information acquiring apparatus and object information acquiring method |
9829626, | Jan 13 2016 | Oracle International Corporation | Hybrid-integrated multi-chip module |
9831360, | Oct 09 2012 | The Trustees fo Columbia University in the City of New York; The Trustees of Columbia University in the City of New York | Integrated thermal stabilization of a microring resonator |
9882655, | Mar 20 2014 | Huawei Technologies Co., Ltd. | Optical network-on-chip, method for dynamically adjusting optical link bandwidth |
20060159387, | |||
20060204247, | |||
20100059822, | |||
20100266295, | |||
20110206379, | |||
20120207426, | |||
20130230272, | |||
20140203175, | |||
20150109024, | |||
20150354938, | |||
20160216445, | |||
20160344507, | |||
20170045697, | |||
20170194309, | |||
20170194310, | |||
20170207600, | |||
20180260703, | |||
20180275359, | |||
20190026225, | |||
20190049665, | |||
20190205737, | |||
20190265408, | |||
20190266088, | |||
20190266089, | |||
20190287908, | |||
20190294199, | |||
20190317287, | |||
20190372589, | |||
20190385997, | |||
20200006235, | |||
20200006304, | |||
20200125716, | |||
20200200987, | |||
20200219865, | |||
20200250532, | |||
20200284981, | |||
20200409001, | |||
20210036783, | |||
20210064958, | |||
20210072784, | |||
20210096311, | |||
20210116637, | |||
20210132309, | |||
20210132650, | |||
20210133547, | |||
20210173238, | |||
20210257396, | |||
20210271020, | |||
20210286129, | |||
20210288035, | |||
20210305127, | |||
20210320718, | |||
20220004029, | |||
20220012582, | |||
20220044092, | |||
20220045757, | |||
20220171142, | |||
20220263582, | |||
20220342164, | |||
20220404544, | |||
20220404545, | |||
20220405056, | |||
20220405562, | |||
20220405566, | |||
20230104033, | |||
20230106486, | |||
20230258886, | |||
20230282547, | |||
20230308188, | |||
20230314702, | |||
20230376818, | |||
20230393357, | |||
20240145328, | |||
AU2019100030, | |||
AU2019100679, | |||
AU2019100750, | |||
CN102281478, | |||
CN102333250, | |||
CN102413039, | |||
CN102638311, | |||
CN102645706, | |||
CN103369415, | |||
CN103442311, | |||
CN103580890, | |||
CN104539547, | |||
CN105451103, | |||
CN105812063, | |||
CN105847166, | |||
CN106126471, | |||
CN106331909, | |||
CN106407154, | |||
CN106533993, | |||
CN106549874, | |||
CN106888050, | |||
CN106911521, | |||
CN106936708, | |||
CN106936736, | |||
CN106980160, | |||
CN107911761, | |||
CN108599850, | |||
CN108737011, | |||
CN110266585, | |||
CN110505021, | |||
CN111208690, | |||
CN111752891, | |||
CN111770019, | |||
CN111786911, | |||
CN202522621, | |||
CN205354341, | |||
CN207835452, | |||
FR3007537, | |||
IN201621017235, | |||
IN202121008267, | |||
JP6747660, | |||
KR101242172, | |||
KR101382606, | |||
KR101465420, | |||
KR101465498, | |||
KR101541534, | |||
KR101548695, | |||
KR101766786, | |||
KR101766792, | |||
WO2015176289, | |||
WO2020072925, | |||
WO2020102204, | |||
WO2020191217, | |||
WO2021021787, | |||
WO2022032105, | |||
WO2022133490, | |||
WO2022266676, | |||
WO2023177417, | |||
WO2023177922, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 16 2023 | WINTERBOTTOM, PHILIP | CELESTIAL AI INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 066836 | /0237 | |
Mar 16 2023 | LAZOVSKY, DAVID | CELESTIAL AI INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 066836 | /0237 | |
Mar 16 2023 | AGGARWAL, ANKUR | CELESTIAL AI INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 066836 | /0237 | |
Mar 16 2023 | BOS, MARTINUS | CELESTIAL AI INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 066836 | /0237 | |
Mar 16 2023 | SAHNI, SUBAL | CELESTIAL AI INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 066836 | /0237 | |
Mar 20 2024 | Celestial AI Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Oct 29 2027 | 4 years fee payment window open |
Apr 29 2028 | 6 months grace period start (w surcharge) |
Oct 29 2028 | patent expiry (for year 4) |
Oct 29 2030 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 29 2031 | 8 years fee payment window open |
Apr 29 2032 | 6 months grace period start (w surcharge) |
Oct 29 2032 | patent expiry (for year 8) |
Oct 29 2034 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 29 2035 | 12 years fee payment window open |
Apr 29 2036 | 6 months grace period start (w surcharge) |
Oct 29 2036 | patent expiry (for year 12) |
Oct 29 2038 | 2 years to revive unintentionally abandoned end. (for year 12) |