A system monitors a network or web application provided by one or more distributed applications and provides data for each and every method instance in an efficient low-cost manner. Agents may monitor the performance of the distributed application by the web services and report monitoring data as runtime data to the remote server, for example a controller. The controller may analyze the data to identify one or more performance issues or “hot spot” methods based on current or past performance, functionality, content, or business relevancy. instructions and/or configuration information may be transmitted by the controller to the agents that correspond to a particular business transaction portion associated with a hot spot. The portions are then monitored to collect data associated with the hot spot and the hot spot data is reported back to the controller.

Patent
   12155543
Priority
Feb 02 2012
Filed
Dec 30 2020
Issued
Nov 26 2024
Expiry
Nov 01 2034

TERM.DISCL.
Extension
1003 days
Assg.orig
Entity
Large
0
176
currently ok
1. A method for monitoring a distributed application running in a network, comprising:
monitoring a plurality of application servers configured to provide part of a distributed application;
receiving runtime data relating to the plurality of application servers configured to provide part of the distributed application;
analyzing at least a portion of the runtime data to determine a performance issue affecting a performance of a business transaction within the distributed application;
providing, by a controller, instructions to a data collection server to retrieve additional runtime data related to the performance issue;
receiving the additional runtime data based on the provided instructions;
analyzing the received additional runtime data to adaptively learn of an application hot spot affecting a performance of the distributed application; and
reporting the application hot spot information to a user.
8. A tangible, non-transitory computer-readable medium containing instructions that, when executed by at least one network element, cause the at least one network element to:
monitor a plurality of application servers configured to provide part of a distributed application;
receive runtime data relating to the plurality of application servers configured to provide part of the distributed application;
analyze at least a portion of the runtime data to determine a performance issue affecting a performance of a business transaction within the distributed application;
provide instructions to a data collection server to retrieve additional runtime data related to the performance issue;
receive the additional runtime data based on the provided instructions;
analyze the received additional runtime data to adaptively learn of an application hot spot affecting a performance of the distributed application; and
report the application hot spot information to a user.
15. A system comprising:
a plurality of network elements configured to execute part of a distributed application;
a controller in communication with the plurality of network elements;
an analysis module in communication with the controller; and
a data collection server in communication with the controller and at least one of the plurality of network elements,
wherein the controller and analysis module are configured to:
monitor, at the controller, the plurality of network elements configured to execute part of the distributed application;
receive, at the controller, runtime data relating to the plurality of network elements configured to execute part of the distributed application;
analyze, at the analysis module, at least a portion of the runtime data to determine a performance issue affecting a performance of a business transaction within the distributed application;
provide, at the controller, instructions to the data collection server to retrieve additional runtime data related to the performance issue;
receive, at the controller, the additional runtime data based on the provided instructions;
analyze, at the analysis module, the received additional runtime data to adaptively learn of an application hot spot affecting a performance of the distributed application; and
report, by the controller, the application hot spot information to a user.
2. The method of claim 1, further comprising creating an application flow map.
3. The method of claim 1, further comprising learning about the business transaction.
4. The method of claim 1, wherein analyzing at least a portion of the runtime data comprises comparing the runtime data to baseline data.
5. The method of claim 1, further comprising analyzing the additional runtime data to determine any additional performance issues during execution of the distributed application.
6. The method of claim 1, further comprising prioritizing the performance issue.
7. The method of claim 1, wherein the distributed application is used by one or more client devices to conduct the business transaction.
9. The tangible, non-transitory computer-readable medium of claim 8, further causing the at least one network element to create an application flow map.
10. The tangible, non-transitory computer-readable medium of claim 8, further causing the at least one network element to learn about the business transaction.
11. The tangible, non-transitory computer-readable medium of claim 8, wherein the at least one network element is caused to analyze at least a portion of the runtime data by comparing the runtime data to baseline data.
12. The tangible, non-transitory computer-readable medium of claim 8, further causing the at least one network element to analyze the additional runtime data to determine any additional performance issues during execution of the distributed application.
13. The tangible, non-transitory computer-readable medium of claim 8, further causing the at least one network element to prioritize the performance issue.
14. The tangible, non-transitory computer-readable medium of claim 8, wherein the distributed application is used by one or more client devices to conduct the business transaction.
16. The system of claim 15, wherein the controller is further configured to create an application flow map.
17. The system of claim 15, wherein the controller is further configured to learn about the business transaction.
18. The system of claim 15, wherein the analysis module is configured to analyze at least a portion of the runtime data by comparing the runtime data to baseline data.
19. The system of claim 15, wherein the controller is further configured to analyze the additional runtime data to determine any additional performance issues during execution of the distributed application.
20. The system of claim 15, wherein the controller is further configured to prioritize the performance issue.
21. The system of claim 15, wherein the distributed application is used by one or more client devices to conduct the business transaction.
22. The system of claim 15, further comprising at least one agent installed on at least one of the plurality of network elements and configured to monitor at least a portion of the distributed application.

This application is a continuation of U.S. patent application Ser. No. 15/345,275, titled “Automatic Capture of Detailed Analysis Information Based on Remote Server Analysis,” filed Nov. 7, 2016, which is a continuation of U.S. patent application Ser. No. 14/609,305, titled “Automatic Capture of Detailed Analysis Information Based on Remote Server Analysis,” filed Jan. 29, 2015, which is a continuation-in-part and claims the priority benefit of U.S. patent application Ser. No. 13/365,171, titled “Automatic Capture of Detailed Analysis Information for Web Application Outliers with Very Low Overhead,” filed Feb. 2, 2012, each by Jyoti Bansal, et al., the disclosures of each of which are incorporated herein by reference.

The World Wide Web has expanded to provide web services faster to consumers. Web services may be provided by a web application which uses one or more services to handle a transaction. The applications may be distributed over several machines, making the topology of the machines that provides the service more difficult to track and monitor.

Monitoring a web application helps to provide insight regarding bottle necks in communication, communication failures and other information regarding performance of the services the provide the web application. When a web application is distributed over several machines, tracking the performance of the web service can become impractical with large amounts of data collected from each machine.

When a distributed web application is not operating as expected, additional information regarding application performance can be used to evaluate the health of the application. Collecting the additional information can consume large amounts of resources and often requires significant time to determine how to collect the information.

It very difficult to collect information for specific methods that perform poorly. To collect and store information for each and every method of a web application would take up too many resources and degrade performance of the application. As a result, by the time a web application is detected to be performing poorly, it is too late to collect data regarding the performance of the instance that is performing poorly, and only subsequent methods can be monitored.

There is a need in the art for web service monitoring which may accurately and efficiently monitor the performance of distributed applications which provide a web service.

A system monitors a network or web application provided by one or more distributed applications and provides data for each and every method instance in an efficient low-cost manner. The web application may be provided by one or more web services on one or more machines. Agents may be installed on one or more servers at an application level, virtual machine level, or other level. The agent may monitor the performance of the distributed application by the web services and report monitoring data as runtime data to the remote server, for example a controller. The controller may analyze the data to identify one or more performance issues or “hot spot” methods based on current or past performance, functionality, content, or business relevancy. Instructions and/or configuration information may be transmitted by the controller to the agents that correspond to a particular business transaction portion associated with a hot spot. The portions are then monitored to collect data associated with the hot spot and the hot spot data is reported back to the controller.

An embodiment may include a method for monitoring a business transaction. The method may start with receiving data by a controller from a plurality of agents installed on a plurality of remote computers. The data may include data collected by the agents during the execution of a distributed business transaction executing on the remote computers. The data may be analyzed by the controller to determine a performance issue during the execution of the business transaction. A selected agent of the one or more agents may be instructed to gather data associated with the performance issue during execution of distributed business transaction.

An embodiment may include a system for monitoring a business transaction. The system may include a processor, memory and one or more modules stored in memory and executable by the processor. When executed, the one or more modules may cause the system to receive data by a controller from a plurality of agents installed on a plurality of remote computers, the data including data collected by the agents during the execution of a distributed business transaction executing on the remote computers, analyze the data by the controller to determine a performance issue during the execution of the business transaction, and instruct a selected agent of the one or more agents to gather data associated with the performance issue during execution of distributed business transaction.

FIG. 1 is a block diagram of an exemplary system for monitoring a distributed application.

FIG. 2 is a block diagram of an exemplary application server.

FIG. 3 is a flow chart of an exemplary method for performing a diagnostic session for a distributed business transaction.

FIG. 4A is a flow chart of an exemplary method for analyzing data by a controller.

FIG. 4B is a flow chart of an exemplary method for collecting data by an agent.

FIG. 5 is a flow chart of an exemplary method for identifying hot spot methods.

FIG. 6 is a flow chart of an exemplary method for capturing hot spot data.

FIG. 7 is a flow chart of an exemplary method for qualifying hot spot data.

FIG. 8 is a flow chart of an exemplary method for processing stored hot spot data.

FIG. 9A is a block diagram of illustrating method calling hierarchy.

FIG. 9B is a block diagram of a method array.

FIG. 10 is a block diagram of an exemplary system for implementing a computing device.

The present technology monitors a distributed business transaction provided by one or more distributed applications and web services to identify a performance issue or “hot spot” in the distributed business transaction. The controller may then instruction one or more agents to gather data for each and every method instance associated with the performance issue, for example those associated with the hot spot, in an efficient low-cost manner. The business transaction (web application) may be provided by one or more web-based machines or services, each implemented as one or more applications implemented on a server. The applications may be Java based, .Net, PHP, or implemented in some other language or platform. Agents may be installed on one or more servers at an application level, virtual machine level, or other level. An agent may monitor a corresponding application (e.g., a virtual machine) and application communications.

The agent may report data from monitoring the distributed business transaction to a remote controller. The controller may receive and analyze the data to identify any hot spots associated with performance issues at different portions of a business transaction. For example, the hot spot may be identified down to the method level of a distributed business transaction. The controller can provide instructions to each agent that monitors the application portion associated with the hot spot to collect information for each instance of the hot spot portion.

Agents monitor the hot spots, and data for the executed hot spot is kept or discarded based on the performance of the hot spot. Based on learning techniques, efficient monitoring, and resource management, the present system may capture data for and provide analysis information for outliers of a web application with very low overhead.

The present technology may monitor a distributed web application that performs one or more business transactions. A business transaction may be a set of tasks performed by one or more distributed web applications in the course of a service provide over a network. In an e-commerce service, a business transaction may be “add to cart” or “check-out” transactions performed by the distributed application.

Agents may communicate with code within virtual machine or an application. The code may detect when an application entry point is called and when an application exit point is called. An application entry point may include a call received by the application. An application exit point may include a call made by the application to another application, virtual machine, server, or some other entity. The code within the application may insert information into an outgoing call or request (exit point) and detect information contained in a received call or request (entry point). By monitoring incoming and outgoing calls and requests, and by monitoring the performance of a local application that processes the incoming and outgoing request, the present technology may determine the performance and structure of complicated and distributed business transactions.

FIG. 1 is a block diagram of a system for monitoring product adoption. System 100 of FIG. 1 includes client device 105 and 192, mobile device 115, network 120, network server 125, application servers 130, 140, 150 and 160, asynchronous network machine 170, data stores 180 and 185, and controller 190.

Client device 105 may include network browser 110 and be implemented as a computing device, such as for example a laptop, desktop, workstation, or some other computing device. Network browser 110 may be a client application for viewing content provided by an application server, such as application server 130 via network server 125 over network 120. Mobile device 115 is connected to network 120 and may be implemented as a portable device suitable for receiving content over a network, such as for example a mobile phone, smart phone, tablet computer or other portable device. Both client device 105 and mobile device 115 may include hardware and/or software configured to access a web service provided by network server 125.

Network 120 may facilitate communication of data between different servers, devices and machines. The network may be implemented as a private network, public network, intranet, the Internet, a Wi-Fi network, cellular network, or a combination of these networks.

Network server 125 is connected to network 120 and may receive and process requests received over network 120. Network server 125 may be implemented as one or more servers implementing a network service. When network 120 is the Internet, network server 125 may be implemented as a web server. Network server 125 and application server 130 may be implemented on separate or the same server or machine.

Application server 130 communicates with network server 125, application servers 140 and 150, controller 190. Application server 130 may also communicate with other machines and devices (not illustrated in FIG. 1). Application server 130 may host an application or portions of a distributed application and include a virtual machine 132, agent 134, and other software modules. Application server 130 may be implemented as one server or multiple servers as illustrated in FIG. 1, and may implement both an application server and network server on a single machine.

Application server 130 may include applications in one or more of several platforms. For example, application server 130 may include a Java application, .NET application, PHP application, C++ application, AJAX, or other application. Different platforms are discussed below for purposes of example only.

Virtual machine 132 may be implemented by code running on one or more application servers. The code may implement computer programs, modules and data structures to implement, for example, a virtual machine mode for executing programs and applications. In some embodiments, more than one virtual machine 132 may execute on an application server 130. A virtual machine may be implemented as a Java Virtual Machine (JVM). Virtual machine 132 may perform all or a portion of a business transaction performed by application servers comprising system 100. A virtual machine may be considered one of several services that implement a web service.

Virtual machine 132 may be instrumented using byte code insertion, or byte code instrumentation, to modify the object code of the virtual machine. The instrumented object code may include code used to detect calls received by virtual machine 132, calls sent by virtual machine 132, and communicate with agent 134 during execution of an application on virtual machine 132. Alternatively, other code may be byte code instrumented, such as code comprising an application which executes within virtual machine 132 or an application which may be executed on application server 130 and outside virtual machine 132.

Agent 134 on application server 130 may be installed on application server 130 by instrumentation of object code, downloading the application to the server, or in some other manner. Agent 134 may be executed to monitor application server 130, monitor virtual machine 132, and communicate with byte instrumented code on application server 130, virtual machine 132 or another application or program on application server 130. Agent 134 may detect operations such as receiving calls and sending requests by application server 130 and virtual machine 132. Agent 134 may receive data from instrumented code of the virtual machine 132, process the data and transmit the data to controller 190. Agent 134 may perform other operations related to monitoring virtual machine 132 and application server 130 as discussed herein. For example, agent 134 may identify other applications, share business transaction data, aggregate detected runtime data, and other operations.

Agent 134 may be a Java agent, .NET agent, PHP agent, or some other type of agent, for example based on the platform which the agent is installed on.

Each of application servers 140, 150 and 160 may include an application and an agent. Each application may run on the corresponding application server or a virtual machine. Each of virtual machines 142, 152 and 162 on application servers 140-160 may operate similarly to virtual machine 132 and host one or more applications which perform at least a portion of a distributed business transaction. Agents 144, 154 and 164 may monitor the virtual machines 142-162 or other software processing requests, collect and process data at runtime of the virtual machines, and communicate with controller 190. The virtual machines 132, 142, 152 and 162 may communicate with each other as part of performing a distributed transaction. In particular each virtual machine may call any application or method of another virtual machine.

Asynchronous network machine 170 may engage in asynchronous communications with one or more application servers, such as application server 150 and 160. For example, application server 150 may transmit several calls or messages to an asynchronous network machine. Rather than communicate back to application server 150, the asynchronous network machine may process the messages and eventually provide a response, such as a processed message, to application server 160. Because there is no return message from the asynchronous network machine to application server 150, the communications between them are asynchronous.

Data stores 180 and 185 may each be accessed by application servers such as application server 150. Data store 185 may also be accessed by application server 150. Each of data stores 180 and 185 may store data, process data, and return queries received from an application server. Each of data stores 180 and 185 may or may not include an agent.

Controller 190 may control and manage monitoring of business transactions distributed over application servers 130-160. Controller 190 may receive runtime data from each of agents 134-164, associate portions of business transaction data, communicate with agents to configure collection of runtime data, and provide performance data and reporting through an interface. The interface may be viewed as a web-based interface viewable by mobile device 115, client device 105, or some other device. In some embodiments, a client device 192 may directly communicate with controller 190 to view an interface for monitoring data.

Controller 190 may install an agent into one or more virtual machines and/or application servers 130. Controller 190 may receive correlation configuration data, such as an object, a method, or class identifier, from a user through client device 192.

Controller 190 may collect and monitor customer usage data collected by agents on customer application servers and analyze the data. The controller may report the analyzed data via one or more interfaces, including but not limited to a dashboard interface and one or more reports.

Data collection server 195 may communicate with client 105, 115 (not shown in FIG. 1), and controller 190, as well as other machines in the system of FIG. 1. Data collection server 195 may receive data associated with monitoring a client request at client 105 (or mobile device 115) and may store and aggregate the data. The stored and/or aggregated data may be provided to controller 190 for reporting to a user.

FIG. 2 is a block diagram of an exemplary application server 200. The application server in FIG. 2 provides more information for each application server of system 100 in FIG. 1. Application server 200 of FIG. 2 includes a virtual machine 210, application 220 executing on the virtual machine, and agent 230. Virtual machine 210 may be implemented by programs and/or hardware. For example, virtual machine 134 may be implemented as a JAVA virtual machine. Application 220 may execute on virtual machine 210 and may implement at least a portion of a distributed application performed by application servers 130-160. Application server 200, virtual machine 210 and agent 230 may be used to implement any application server, virtual machine and agent of a system such as that illustrated in FIG. 1.

Application server 200 and application 220 can be instrumented via byte code instrumentation at exit and entry points. An entry point may be a method or module that accepts a call to application 220, virtual machine 210, or application server 200. An exit point is a module or program that makes a call to another application or application server. As illustrated in FIG. 2, an application server 200 can have byte code instrumented entry points 240 and byte code instrumented exit points 260. Similarly, an application 220 can have byte code instrumentation entry points 250 and byte code instrumentation exit points 270. For example, the exit points may include calls to JDBC, JMS, HTTP, SOAP, and RMI. Instrumented entry points may receive calls associated with these protocols as well.

Agent 230 may be one or more programs that receive information from an entry point or exit point. Agent 230 may process the received information, may retrieve, modify and remove information associated with a thread, may access, retrieve and modify information for a sent or received call, and may communicate with a controller 190. Agent 230 may be implemented outside virtual machine 210, within virtual machine 210, and within application 220, or a combination of these.

FIG. 3 is a flow chart of an exemplary method for performing a diagnostic session for a distributed web application transaction. The method of FIG. 3 may be performed by a controller and one or more agents with respect to a distributed business transaction.

Diagnostic parameters may be configured for one or more agents at step 310. The diagnostic parameters may be used to implement a diagnostic session conducted for a distributed business transaction. The parameters may be set by a user, an administrator, may be pre-set, or may be permanently configured.

Examples of diagnostic parameters that may be configured include the number of transactions to simultaneously track using diagnostic sessions, the time of a diagnostic session, a sampling rate for a thread, and a threshold percent of requests detected to run slow before triggering an anomaly. The number of transactions to simultaneously track using diagnostic sessions may indicate the number of diagnostic sessions that may be ongoing at any one time. For example, a parameter may indicate that only 10 different diagnostic sessions can be performed at any one time. The time of a diagnostic session may indicate the time for which a diagnostic session will collect detailed data for operation of a transaction, such as for example, five minutes. The sampling rate of a thread may be automatically set to a sampling rate to collect data from a thread call stack based on a detected change in value of the thread, may be manually configured, or otherwise set. The threshold percent of requests detected to run slow before triggering an anomaly may indicate a number of requests to be detected that run at less than a baseline threshold before triggering a diagnostic session. Diagnostic parameters may be set at either a controller level or an individual agent level, and may affect diagnostic tracking operation at both a controller and/or an agent.

Requests may be monitored and runtime data may be collected by one or more agents at step 320. As requests are received by an application being monitored, the requests are associated with a business transaction by an agent residing on the application. The requests may be assigned a thread within a thread pool by the application. The business transaction is associated with the thread by adding business transaction information, such as a business transaction identifier, to the thread by an agent associated with the application that receives the request. The thread may be configured with additional monitoring parameter information associated with a business transaction. Monitoring information may be passed on to subsequent called applications that perform portions of the distributed transaction as the request is monitored by the present technology.

Data collected by the one or more agents at step 320 is reported to the controller by the one or more agents at step 330. The data may include runtime data that is aggregated at the agent. In some instances, the data may be placed in call graph form at the agent and reported by the agent as such to the controller. Data may be reported periodically, such as once every 10 seconds, 1 minute, 2 minute, or other time period. Data may also be reported based on user request, controller request, or other event.

The controller analyzes the received data to determine hot spots at step 340. by analyzing the data at the controller, the agents require less bandwidth on the host machine and do not cause bottlenecks or latency. More details regarding data analysis by a controller is discussed with respect to the method of FIG. 4A.

Selected agents receive instructions from the controller at step 350. Once the controller has identified hot spots in specific portions of a business transaction, the portions of the dynamic path that perform those portions are monitored more closely. Instructions to the agents provide information to enable the agents to more closely monitor the hot spot portions.

The agents which received instructions from the controller perform the instructions at step 360. Performing the instructions may include instrumenting to enable data collection for the application, tier, method or other code or machine. More details for performing instructions received from a controller are provided with respect to the method of FIG. 4B.

Data may be collected based on the controller instructions at step 370. The data may be collected for each instance of a particular method. The data may include business transaction name information, call chain information, the sequence of a distributed transaction, and other data, including diagnostic data collected as part of a diagnostic session involving one or more agents. The agent may collect data for the remainder of the current instance of a distributed application as well as subsequent instances of the request. The collected data may be reported to the controller at step 380. The data is received by the controller and analyzed to determine any hot spots that exist according to the most recently collected data.

In some instances, the hot spot learning process is based on call graph data collected by agents. The call graph data can be collected using a sampling technique.

FIG. 4A is a flow chart of an exemplary method for analyzing data by a controller. The method of FIG. 4A provides more detail for step 340 of the method of FIG. 3. Each step of FIG. 4A may be performed automatically by a controller. A controller receives data from one or more agents at step 410. The data may be data transmitted to the controller at either of steps 330 or step 380.

A dynamic data path is identified for a stable business transaction at step 420. The dynamic data path is the path that data traverses for a particular transaction once the transaction has stabilized. In some instances, the time taken to wait until a business transaction is stable may be preset. In some instances, the time is learned from past transaction history or is based on observations in the present business transaction.

The controller may learn information about a particular business transaction. The learning setting may indicate for how long a controller will attempt to learn the different methods of a business transaction, how many methods the controller will attempt to identify, and other parameters of determining a call graph for one or more business transactions. Learning settings may include time, preferred business transactions, maximum number of business transactions, length of time to hibernate between learning sessions, and other parameters.

Learning of business transaction methods and method relationships may be ongoing. Learning and hibernation may alternate based on time periods, rate of new methods learned, and other factors. For example, a controller may learn for five minutes upon receipt of data for an application, then hibernate for five minutes, and then “learn” methods and method relationships for another five minutes. In some embodiments, the controller may “learn” until no new methods are identified for a period of thirty seconds, and then hibernate for five minutes. In some instances, the controller learns relationships as long as there is data to process without hibernating at all.

A call graph may be accessed for a business transaction from all tiers at 430. A controller may analyze collected data and build a call graph from the data. In some embodiments, the call graph may be built from the pre-loaded call graph data, method data observed while monitoring, or both. A call graph may indicate a root method of a business transaction, as well as each method called as part of the completion of the root method.

The controller may adaptively learn the dynamically changing runtime execution path (or call graph) of existing distributed business transactions for which hot spots have already been learned (and those with not hot spot learned). This adaptive learning ensures an up to date execution path and does not require any cycles on customer machines that are being monitored.

Hot spot methods are identified by a controller at step 440. Hot spot methods are methods identified as being subject to monitoring. For example, a method may be identified as a hot spot method based on calls the method makes, complexity, or the method's performance. Identifying hot spot methods is discussed in more detail with respect to the method of FIG. 5.

Hot spot monitoring instructions are generated by a controller for selected agents at step 450. The instructions are generated based the hot spot methods identified at step 440. The instructions indicate what method or business transaction portion to monitor. In some instances, the controller may be a configuration file to be transmitted to and loaded by the particular agent. Upon loading the configuration, the agent would monitor one or more hot spot related portions of the distributed business application. References to monitoring instructions herein are provided as examples, and use of a configuration file can be used to communicate hot spot monitoring to agents in place or in addition to monitoring instructions.

FIG. 4B is a flow chart of an exemplary method for collecting data by an agent. First, hot spot instructions are accessed by a selected agent at step 460. An application is then configured by an agent to collect hot sport monitoring data at step 465. Configuring the application may include instrumenting a portion of the application, such as a method of other portion of a business transaction.

The instrumentation may also include a location reference within a method array for storing data, such as an end time for the method that is instrumented. An exemplary pseudo code for the instrumentation is shown below:

{
Start.onMethodBegin
(Original method code)
(Original method code)
...
(Original method code)
OnMethodEnd (9, A, B)
}

The original code of a hot spot method is instrumented such that when the method is called, the method ID and the start time of the method is written to the execution thread header for the thread executing the method. When the method ends, the end time is written to the thread header. The method ID, start time and end time may be written to a method array that is maintained in the execution thread.

Hot spot data may be captured at step 470. Capturing hot spot data may include monitoring executing hot spot methods, tracking calls to additional methods and external machines, and keeping data that is relevant to outliers. Data that is not relevant to outliers, such as data for methods that perform well, may not be kept. Capturing hot spot data is discussed in more detail below with respect to FIG. 6.

Hot spot data may be qualified at step 475. Qualifying hot spot data may include determining which data to store and what data to not store. Qualifying hot spot data is discussed in more detail below with respect to FIG. 7.

Hot spot data may be processed at step 480. Processing of hot spot data may include building a call graph and presenting call graph information to a user. The call graph data may be presented as a graphical interface or in some other form. The call graph may be constructed from captured hot spot data which is stored until the call graph is requested by a user. Processing hot spot data is discussed in more detail below with respect to the method of FIG. 8.

FIG. 5 is a flow chart of an exemplary method for identifying hot spot methods. The method of FIG. 5 provides more detail for step 425 of the method of FIG. 4. A determination is made as to whether the execution time of the method was longer than a threshold. The threshold may be a preset setting or may be learned over time (e.g., as an average of previous method execution times). If the method execution time is longer than the execution time threshold, the method is identified as a hot spot at step 550. If the method does not execute for a time longer than the execution threshold, the method continues to step 515.

A determination is made as to whether the method made a call to a database at step 515. In some embodiments, a method that makes a call to a specific application server, such as a database, may be identified as a hot spot method. If the method does not make a call to a database, the method may continue to step 520. If the method does make a call to a database, the method is identified as a hot spot at step 550.

At step 520, a method is identified as a hot spot method (step 550) if the method makes a call to an external JVM. If the method does not make a call to an external JVM, the method continues to step 525.

At step 525, a method may be identified as a hot spot method if the method exceeds a cyclometric complexity threshold. A cyclomectric complexity threshold is one measure for expressing the complexity of a method. Thresholds relating to other measures of method complexity may also be used in place of, or in addition to, cyclometric complexity. If the method cyclometric complexity exceeds a cyclometric complexity threshold, the method is identified as a hot spot at step 550. Otherwise, the method of FIG. 5 continues to step 530.

A determination is made as to whether the method orchestrates a flow at step 530. A method may orchestrate a flow if the method makes calls to one or more other methods, which in turn may make calls to one or more additional methods, and so forth. In various embodiments, the root method may be determined to “orchestrate” a flow if a at least a threshold number of children and grandchildren methods are called directly or indirectly from the root method. If the method orchestrates a flow, the method is identified as a hot spot at step 550. Otherwise, the method continues to step 535.

A method may be identified as a hot spot method if is determined to be an entry point method for the JVM at step 535. If the hot spot method is not an entry point method, a determination is made as to whether the method is important to a business function at step 540. For example, for an e-commerce site, a method that processes credit card information may be considered a key business function and, therefore, a hot spot method. If the method does not satisfy any condition described in steps 510-540, the method is determined to not be a hot spot at step 545. If the method satisfies any condition described in steps 510-540, the method is identified as a hot spot at step 550.

FIG. 6 is a flow chart of an exemplary method for capturing hot spot data. The method of FIG. 6 provides more detail for step 445 of the method of FIG. 4. The method of FIG. 6 uses pointers and a method array stored in an execution thread header to track data for hot spot methods in a low cost manner.

A business transaction begins at step 610. An index pointer is set to the first array of a block within the method array at step 615. The array includes a block for each method called during execution of the root node of the method, with the first block associated with the root method. A block pointer is set to the first filed of the current block at step 620. A hot spot method ID associated with the currently executing method is stored at the current block and field within the method array at step 625, and the block pointer value is updated to point to the next field in the array. The hot spot method start time is then stored at the current block and field within the method array at step 630, and the block pointer value is updated to point to the next field in the array.

The performance of a method may be determined by execution time or response time. The execution time is determined from the difference of the start time and the end time of the method's execution. The time may be taken from one of several different times, including but not limited to the JVM clock, a server clock, a block clock, or other clock time.

A determination is made as to whether a call to a new method is detected at step 635. During execution of the current method, the method may call a new method to perform some function. If a call to a new method is not detected at step 635, the method continues to step 660.

If a call to a new method is detected at step 635, a determination is made as to whether the call was made to an outside JVM at step 640. If the call is made to an outside JVM, external call data is stored for the call at step 645 and the index pointer is set to the external call at step 650. The method then continues to step 635. If the call is not made to an external JVM, the index pointer is set to the next available block, the block pointer is set to the next available address, and the method continues to step 625.

External call data may be stored in one of several formats, including a list or table format. For example, a table of external calls may be stored as a list of the external methods called and an identifier of the method that called the external call. The identifier may by a method array location corresponding to the method ID, a reference to the block associated with the method (i.e., block 1 corresponding to a root node method), or other identifier. If data for the method is eventually stored, the list (or table) of external call information is stored with the method array data.

A determination is made as to whether the current method is complete at step 660. If the current method is still executing, the method returns to step 635. When execution of the current method has completed, the hot spot method end time is written to the method array in the execution thread header at step 665. In some embodiments, the end time is written to an address location specified by the instrumented code.

A determination is then made as to whether the method completion time is greater than a threshold value at step 670. The threshold may be a pre-set value or learned over time for the particular method, class of method, business transaction, or related business transactions. In various embodiments, the threshold time may be 10 ms, 15 ms, 20 ms, or some other value. If the method execution time was greater than the threshold value, the index pointer is set to the next block (or next available block). By setting the index pointer to the next block location, the data for the method which just ended is saved. IF the method execution time is less than the threshold value, the index pointer is set to the start of the current block. By setting the index pointer to the start of the current block, the data for the current block will be overwritten (and not saved).

A determination is then made as to whether the current business transaction has completed with the end of the current method. If the business transaction is complete, the method ends at step 695. If the business transaction is not complete, the index pointer is set to the previous block and the method continues to step 635.

FIG. 7 is a flow chart of an exemplary method for qualifying hot spot data. The method of FIG. 7 provides more detail for step 450 of the method of FIG. 4. Hot spot methods are accessed at step 710. A determination is then made as to whether the number of hot spot methods is greater than a hot spot threshold at step 715. The hot spot threshold may be based on several factors, including the number of available threads that are available for storing data. If the number of methods is greater than the threshold, a set of high priority hot spots are selected at step 725 and the method continues to step 730. Methods of high priority may be those that satisfy several conditions described with respect to the method of FIG. 5. For example, a method that executes slower than a threshold time and calls an external JVM may have a higher priority than a method that executes slower than a threshold time and does not call an external JVM. If the number of hot spots does not exceed a hot spot threshold, all hot spots are selected at step 720 and the method continues to step 730.

A determination is made as to whether the number of hot spot snapshot instances is greater than a hot spot instance threshold at step 730. A hot spot snapshot instance is a set of data resulting from the execution of a method instance. An instance of a method may be executed one or more times. A hot spot snapshot instance is a “snapshot” or set of the data generated from the execution of the instance. The hot spot instance threshold may be selected to avoid an undesirable level of overhead or resource usage at the JVM. For example, a hot spot instance threshold of 20 may be used if it is determined that storing hot spot data for twenty method instances does not cause a noticeable performance delay in the JVM. If the number of hot spot snapshot instances is not greater than the hot spot instance threshold, all snapshot instances are selected at step 735 and the method continues to step 745. If the number of hot spot snapshot instances is greater than the hot spot instance threshold, a number of high priority hot spot snapshot instances of the selected hot spot methods are selected at step 740 and the method continues to step 745. Hot spot snapshot instances may be designated as high priority based on one or more factors, including for example the length of execution time, the number of conditions discussed with reference to FIG. 5 which are violated by the method class, and other factors.

Data for the selected hot spot snapshot instances is stored at step 745. The data may be stored by an agent locally to the agent's JVM until data is reported to a controller. The stored data may include the method array written to the thread header during execution of the methods as well as external call data, such as a list of external calls made by the methods being monitored.

A determination is then made as to whether there is additional hot spot method data to store at step 750. If there is no further hot spot method data, the method ends at step 755. If there is additional hot spot method data, the remaining hot spot methods are selected and the method continues to step 715.

FIG. 8 is a flow chart of an exemplary method for processing stored hot spot data. The method of FIG. 8 provides more detail for step 455 of the method of FIG. 4. A root block is accessed in a business transaction at step 810. The next stored data block in the business transaction is accessed at step 820. A determination is then made as to whether the end time of the current block is greater than the start time of the previous block at step 830. The determination is designed to indicate whether the current block is a sibling or a child of the previous block. Other comparisons may be made to determine the relationship between the methods associated with the current block and the previous block. If the current block end time is not greater than the start time of the previous block, the current block is determined to be a sibling of the previous block (step 850) and the method continues to step 860. If the current block end time is greater than the start time of the previous block, the current block is determined to be a child of the previous block (step 840) and the method continues to step 860.

A determination is made as to whether more blocks exist in the method array to process at step 860. If more blocks exist, the method continues to step 820. If the blocks don't exist, the call graph is assembled based on block relationships and provided to a user at step 870. An example of a call graph provided to a user is discussed in U.S. patent application Ser. No. 14/071,503, titled “Propagating a Diagnostic Session for Business Transactions Across Multiple Servers”, filed Nov. 4, 2013, the disclosure of which is incorporated herein in its entirety.

FIG. 9A is a block diagram of illustrating method calling hierarchy. As illustrated in FIG. 9A, methods A, B and C are identified as hot spot methods. Hot spot A makes a call to method B, and method B may call method C. Method C is a child of method B, and method B is a child of method A.

FIG. 9B is a block diagram of a method array. The array of FIG. 9B illustrates blocks pertaining to methods A, B and C of FIG. 9A. Each block includes a method ID, start time, and end time field for the method corresponding to the block. An index pointer is set to the currently executing block location within the array, and the block pointer is set to a location within the current block.

FIG. 10 illustrates an exemplary computing system 1000 that may be used to implement a computing device for use with the present technology. System 1000 of FIG. 10 may be implemented in the contexts of the likes of clients 105-115, network server 125, application servers 130-160, machine 170, datastores 180-185, and controller 190. The computing system 1000 of FIG. 10 includes one or more processors 1010 and memory 1010. Main memory 1010 stores, in part, instructions and data for execution by processor 1010. Main memory 1010 can store the executable code when in operation. The system 1000 of FIG. 10 further includes a mass storage device 1030, portable storage medium drive(s) 1040, output devices 1050, user input devices 1060, a graphics display 1070, and peripheral devices 1080.

The components shown in FIG. 10 are depicted as being connected via a single bus 1090. However, the components may be connected through one or more data transport means. For example, processor unit 1010 and main memory 1010 may be connected via a local microprocessor bus, and the mass storage device 1030, peripheral device(s) 1080, portable storage device 1040, and display system 1070 may be connected via one or more input/output (I/O) buses.

Mass storage device 1030, which may be implemented with a magnetic disk drive or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit 1010. Mass storage device 1030 can store the system software for implementing embodiments of the present invention for purposes of loading that software into main memory 1010.

Portable storage device 1040 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk or Digital video disc, to input and output data and code to and from the computer system 1000 of FIG. 10. The system software for implementing embodiments of the present invention may be stored on such a portable medium and input to the computer system 1000 via the portable storage device 1040.

Input devices 1060 provide a portion of a user interface. Input devices 1060 may include an alpha-numeric keypad, such as a keyboard, for inputting alpha-numeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the system 1000 as shown in FIG. 10 includes output devices 1050. Examples of suitable output devices include speakers, printers, network interfaces, and monitors.

Display system 1070 may include a liquid crystal display (LCD) or other suitable display device. Display system 1070 receives textual and graphical information, and processes the information for output to the display device.

Peripherals 1080 may include any type of computer support device to add additional functionality to the computer system. For example, peripheral device(s) 1080 may include a modem or a router.

The components contained in the computer system 1000 of FIG. 10 are those typically found in computer systems that may be suitable for use with embodiments of the present invention and are intended to represent a broad category of such computer components that are well known in the art. Thus, the computer system 1000 of FIG. 10 can be a personal computer, hand held computing device, telephone, mobile computing device, workstation, server, minicomputer, mainframe computer, or any other computing device. The computer can also include different bus configurations, networked platforms, multi-processor platforms, etc. Various operating systems can be used including Unix, Linux, Windows, Macintosh OS, Palm OS, and other suitable operating systems.

The hot spot monitoring may be performed by execution threads that manage method arrays of data. Each execution thread may manage one method array, and each method array may contain one block for each method that executes or is called by the executing method. Each block may include data used to analyze the method execution, such as for example a method ID, start time, end time. If a method called by an execution thread performs in a satisfactory manner, the data for the called method (method ID, start time, end time) is ignored and may be overwritten. If the method called by the execution thread (or the root method itself) does not perform in a satisfactory manner by for example exceeding a threshold time to complete, the data for the method is maintained and reported at the completion of the method. By monitoring method execution and call data in the thread header and ignoring data for methods that perform in a satisfactory manner, the present technology may monitor outliers for the duration of their execution in an efficient, low cost manner.

The present technology may perform a diagnostic session for an anomaly detected in the performance of a distributed web application. During the diagnostic session, detailed data may be collected for the operation of the distributed web application. The data may be processed to identify performance issues for a transaction. Detailed data for a distributed web application transaction may be collected by sampling one or more threads assigned to handle portions of the distributed business transaction. Data regarding the distributed transaction may be reported from one or more agents at an application or Java Virtual Machine (JVM) to one or more controllers. The data may be received and assembled by the one or more controllers into business transactions.

An anomaly in the performance of a distributed web transaction may be detected locally by an agent and centrally by a controller. An agent may locally detect an anomaly by processing collected runtime data for a request being processed by an application or JVM. The agent may determine baselines for request performance and compare the runtime data to the baselines to identify the anomaly. A controller may receive aggregated runtime data reported by the agents, process the runtime data, and determine an anomaly based on the processed runtime data that doesn't satisfy one or more parameters, thresholds or baselines.

The monitoring system may monitor distributed web applications across a variety of infrastructures. The system is easy to deploy and provides end-to-end business transaction visibility. The monitoring system may identify performance issues quickly and has a dynamical scaling capability across a monitored system. The present monitoring technology has a low footprint and may be used with cloud systems, virtual systems and physical infrastructures.

The foregoing detailed description of the technology herein has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the technology to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The described embodiments were chosen in order to best explain the principles of the technology and its practical application to thereby enable others skilled in the art to best utilize the technology in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the technology be defined by the claims appended hereto.

Sunkara, Bhaskar, Acharya, Manoj, Srinivasaiah, Vinay, Bansal, Jyoti, Thomas, Binil, Ahmed, Awais

Patent Priority Assignee Title
Patent Priority Assignee Title
5781703, Sep 06 1996 Cisco Technology, Inc Intelligent remote agent for computer performance monitoring
6002872, Mar 31 1998 International Machines Corporation; International Business Machines Corporation Method and apparatus for structured profiling of data processing systems and applications
6158024, Mar 31 1998 International Business Machines Corporation Method and apparatus for structured memory analysis of data processing systems and applications
6225995, Oct 31 1997 Oracle International Corporation Method and apparatus for incorporating state information into a URL
6295548, Mar 12 1999 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Detection of an imported transaction for finding the global transaction identifier
6324492, Jan 20 1998 Microsoft Technology Licensing, LLC Server stress testing using multiple concurrent client simulation
6324683, Feb 23 1996 International Buiness Machines Corporation System, method and program for debugging external programs in client/server-based relational database management systems
6349406, Dec 12 1997 International Business Machines Coporation Method and system for compensating for instrumentation overhead in trace data by computing average minimum event times
6378070, Jan 09 1998 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Secure printing
6457142, Oct 29 1999 WSOU Investments, LLC Method and apparatus for target application program supervision
6496825, Mar 12 1999 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Systems and methods for the detection of a loop-back of a transaction
6507805, Dec 12 1997 International Business Machines Corporation Method and system for compensating for instrumentation overhead in trace data by detecting minimum event times
6513155, Dec 12 1997 International Business Machines Corporation Method and system for merging event-based data and sampled data into postprocessed trace output
6529932, Apr 01 1998 Microsoft Technology Licensing, LLC Method and system for distributed transaction processing with asynchronous message delivery
6539339, Dec 12 1997 International Business Machines Corporation Method and system for maintaining thread-relative metrics for trace data adjusted for thread switches
6546548, Dec 12 1997 International Business Machines Corporation Method and system for compensating for output overhead in trace data using initial calibration information
6553564, Dec 12 1997 International Business Machines Corporation Process and system for merging trace data for primarily interpreted methods
6560773, Dec 12 1997 International Business Machines Corporation Method and system for memory leak detection in an object-oriented environment during real-time trace processing
6598012, Oct 07 1999 International Business Machines Corporation Method and system for compensating for output overhead in trace date using trace record information
6604210, Sep 09 1999 GOOGLE LLC Method and system for detecting and recovering from in trace data
6651243, Dec 12 1997 International Business Machines Corporation; INTERNATION BUSINESS MACHINES CORP Method and system for periodic trace sampling for real-time generation of segments of call stack trees
6658652, Jun 08 2000 GOOGLE LLC Method and system for shadow heap memory leak detection and other heap analysis in an object-oriented environment during real-time trace processing
6662358, Dec 12 1997 International Business Machines Corporation Minimizing profiling-related perturbation using periodic contextual information
6718230, Oct 26 2001 Fujitsu Limited Transaction management method and apparatus, and program and recording medium thereof
6721941, Aug 27 1996 JPMORGAN CHASE BANK, N A , AS SUCCESSOR AGENT Collection of timing and coverage data through a debugging interface
6728949, Dec 12 1997 RPX Corporation Method and system for periodic trace sampling using a mask to qualify trace data
6728955, Nov 05 1999 International Business Machines Corporation Processing events during profiling of an instrumented program
6732357, Dec 12 1997 International Business Machines Corporation; International Business Machines Corporaiton Determining and compensating for temporal overhead in trace record generation and processing
6735758, Jul 06 2000 International Business Machines Corporation Method and system for SMP profiling using synchronized or nonsynchronized metric variables with support across multiple systems
6751789, Dec 12 1997 International Business Machines Corporation Method and system for periodic trace sampling for real-time generation of segments of call stack trees augmented with call stack position determination
6754890, Dec 12 1997 International Business Machines Corporation Method and system for using process identifier in output file names for associating profiling data with multiple sources of profiling data
6760903, Aug 27 1996 JPMORGAN CHASE BANK, N A , AS SUCCESSOR AGENT Coordinated application monitoring in a distributed computing environment
6904594, Jul 06 2000 International Business Machines Corporation Method and system for apportioning changes in metric variables in an symmetric multiprocessor (SMP) environment
6944797, Jun 07 2001 Microsoft Technology Licensing, LLC Method and system for tracing
6978401, Aug 01 2002 Oracle America, Inc Software application test coverage analyzer
6985912, Jul 22 2002 Thought, Inc.; THOUGHT, INC Dynamic object-driven database manipulation and mapping system having a simple global interface and an optional multiple user need only caching system with disable and notify features
6990521, Aug 11 1998 Computer Associates Think, Inc. Transaction recognition and prediction using regular expressions
7124354, Mar 24 2000 HEWLETT-PACKARD DEVELOPMENT COMPANY L P Enterprise application transactions as shared active documents
7233941, Jun 08 2001 NEC Corporation Information retrieval server and system including the server
7328213, Jul 01 2003 Fujitsu Limited Transaction processing method, transaction control apparatus and program thereof
7389497, Jul 06 2000 International Business Machines Corporation Method and system for tracing profiling information using per thread metric variables with reused kernel threads
7389514, Oct 28 1997 Microsoft Technology Licensing, LLC Software component execution management using context objects for tracking externally-defined intrinsic properties of executing software components within an execution environment
7406523, Nov 21 2000 Microsoft Technology Licensing, LLC Client-server communications system and method using a semi-connectionless protocol
7496901, Jun 22 2004 International Business Machines Corporation Method for boundary trace with reproduction facility
7499951, Nov 18 2005 Oracle International Corporation Capturing data from user selected portions of a business process and transferring captured data to user identified destinations
7506047, Mar 30 2001 GOLDMAN SACHS BANK USA, AS SUCCESSOR COLLATERAL AGENT Synthetic transaction monitor with replay capability
7519959, Nov 12 2004 Oracle America, Inc Hybrid profiling technique
7523067, Aug 02 2000 Kioba Processing, LLC Electronic settlement system, settlement apparatus, and terminal
7577105, Dec 11 2003 Fujitsu Limited Cooperation information managing apparatus and gateway apparatus for use in cooperation information managing system
7606814, Mar 11 2004 Microsoft Technology Licensing, LLC Tracing a web request through a web server
7689688, Dec 21 2006 TWITTER, INC Multiple-application transaction monitoring facility for debugging and performance tuning
7721268, Oct 01 2004 Microsoft Technology Licensing, LLC Method and system for a call stack capture
7730489, Dec 10 2003 Oracle America, Inc Horizontally scalable and reliable distributed transaction management in a clustered application server environment
7739675, Dec 16 2005 TWITTER, INC Dynamically computing a degradation analysis of waiting threads in a virtual machine
7792948, Mar 30 2001 GOLDMAN SACHS BANK USA, AS SUCCESSOR COLLATERAL AGENT Method and system for collecting, aggregating and viewing performance data on a site-wide basis
7836176, Nov 30 2001 Cisco Technology, Inc. End-to-end performance tool and method for monitoring electronic-commerce transactions
7844033, Jun 03 2005 TEKELEC GLOBAL, INC Methods, systems, and computer program products for generic call tracing
7877642, Oct 22 2008 GLOBALFOUNDRIES Inc Automatic software fault diagnosis by exploiting application signatures
7886297, Nov 22 2004 Hitachi, LTD Program control process for an information processing apparatus
7908346, Apr 20 2009 International Business Machines Corporation Processing a plurality of requests simultaneously in a web application
7953850, Oct 03 2008 CA, INC Monitoring related content requests
7953895, Mar 07 2007 Juniper Networks, Inc. Application identification
7966172, Jan 06 2006 CA, INC Natural language tool for specifying a subset of dynamic inter-related data
7979569, Dec 01 2005 FIRESTAR SOFTWARE, INC System and method for exchanging information among exchange applications
7987453, Mar 18 2004 International Business Machines Corporation Method and apparatus for determining computer program flows autonomically using hardware assisted thread stack tracking and cataloged symbolic data
7992045, Dec 02 2008 CA, INC Identifying and monitoring asynchronous transactions
8001546, Jul 17 2001 Oracle International Corporation System and method for prepreparing a transaction process involving a chain of servers in a circular flow
8005943, Oct 12 2005 CA, INC Performance monitoring of network applications
8069140, Oct 03 2005 SAP SE Systems and methods for mirroring the provision of identifiers
8099631, Jul 17 2009 SAP SE Call-stacks representation for easier analysis of thread dump
8117599, Jul 06 2000 International Business Machines Corporation Tracing profiling information using per thread metric variables with reused kernel threads
8132170, Aug 07 2007 International Business Machines Corporation Call stack sampling in a data processing system
8155987, Aug 31 2007 SAP SE Linking transactions with separate systems
8205035, Jun 22 2009 Citrix Systems, Inc Systems and methods for integration between application firewall and caching
8286139, Mar 19 2008 International Businesss Machines Corporation; International Business Machines Corporation Call stack sampling for threads having latencies exceeding a threshold
8438427, Apr 08 2011 CA, INC Visualizing relationships between a transaction trace graph and a map of logical subsystems
8468241, Mar 31 2011 EMC IP HOLDING COMPANY LLC Adaptive optimization across information technology infrastructure
8560449, Jul 30 2009 RED GIANT INC Adaptive transaction rules system
8606692, Nov 08 2010 Bank of America Corporation Processing loan transactions
8781882, Aug 07 2008 Accenture Global Services Limited Automotive industry high performance capability assessment
8843684, Jun 11 2010 International Business Machines Corporation Performing call stack sampling by setting affinity of target thread to a current process to prevent target thread migration
8938533, Sep 10 2009 Cisco Technology, Inc Automatic capture of diagnostic data based on transaction behavior learning
9015317, Sep 10 2009 Cisco Technology, Inc Conducting a diagnostic session for monitored business transactions
9037707, Sep 10 2009 Cisco Technology, Inc Propagating a diagnostic session for business transactions across multiple servers
20020016839,
20020021796,
20020052962,
20020110091,
20030093433,
20030158944,
20030206192,
20040015920,
20040049574,
20040088348,
20040133882,
20040193552,
20040193612,
20040199815,
20040215768,
20040230956,
20050004952,
20050021736,
20050071447,
20050210454,
20050235054,
20060015512,
20060058976,
20060059486,
20060075386,
20060130001,
20060136920,
20060143188,
20060155753,
20060167891,
20060291388,
20070038896,
20070074150,
20070124342,
20070143290,
20070150568,
20070250600,
20070266148,
20080034417,
20080066068,
20080109684,
20080134209,
20080148240,
20080155089,
20080163174,
20080172403,
20080243865,
20080307441,
20090006116,
20090007072,
20090007075,
20090049429,
20090064148,
20090106601,
20090138881,
20090150908,
20090187791,
20090193443,
20090210876,
20090216874,
20090241095,
20090287815,
20090300405,
20090328180,
20100017583,
20100088404,
20100094992,
20100100774,
20100131931,
20100131956,
20100138703,
20100146396,
20100183007,
20100257510,
20100262703,
20100268797,
20100312888,
20100318648,
20110016207,
20110016328,
20110087722,
20110088045,
20110264790,
20120041914,
20120117544,
20120151497,
20120191893,
20120291113,
20120297371,
20140068067,
20140068068,
20140068069,
///////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 29 2015SRINIVASAIAH, VINAYCisco Technology, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0547810078 pdf
May 29 2015SUNKARA, BHASKARCisco Technology, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0547810078 pdf
May 29 2015THOMAS, BINILCisco Technology, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0547810078 pdf
Sep 21 2016ACHARYA, MANOJCisco Technology, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0547810078 pdf
Sep 22 2016BANSAL, JYOTICisco Technology, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0547810078 pdf
Oct 31 2016AHMED, AWAISCisco Technology, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0547810078 pdf
Dec 30 2020Cisco Technology, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 30 2020BIG: Entity status set to Undiscounted (note the period is included in the code).


Date Maintenance Schedule
Nov 26 20274 years fee payment window open
May 26 20286 months grace period start (w surcharge)
Nov 26 2028patent expiry (for year 4)
Nov 26 20302 years to revive unintentionally abandoned end. (for year 4)
Nov 26 20318 years fee payment window open
May 26 20326 months grace period start (w surcharge)
Nov 26 2032patent expiry (for year 8)
Nov 26 20342 years to revive unintentionally abandoned end. (for year 8)
Nov 26 203512 years fee payment window open
May 26 20366 months grace period start (w surcharge)
Nov 26 2036patent expiry (for year 12)
Nov 26 20382 years to revive unintentionally abandoned end. (for year 12)