A stapling assembly comprising a cartridge body, a plurality of staples, a plurality of first staple drivers, and a second staple driver is disclosed. The cartridge body comprises a longitudinal slot defining a longitudinal slot axis and a plurality of staple cavities defined in the cartridge body. The plurality of staples comprises a first row of staples, a second row of staples, and a third row of staples. Each first staple driver of the plurality of first staple drivers comprises a first staple support, a second staple support, and a third staple support configured to eject a staple from the first, second, and third rows of staples, respectively. The second staple driver is configured to eject only two staples of the plurality of staples and comprises a fourth staple support and a fifth staple support, each configured to eject a staple of the only two staples.

Patent
   12156656
Priority
Sep 02 2015
Filed
Feb 23 2023
Issued
Dec 03 2024
Expiry
Sep 02 2035

TERM.DISCL.
Assg.orig
Entity
Large
0
4162
currently ok
11. A stapling assembly, comprising:
a cartridge body comprising a longitudinal slot defining a longitudinal slot axis and a plurality of staple cavities defined in said cartridge body;
a plurality of staples, comprising:
a first row of staples, wherein each said staple of said first row of staples defines a first crown axis;
a second row of staples, wherein each said staple of said second row of staples defines a second crown axis which is transverse to said longitudinal slot axis and said first crown axis; and
a third row of staples, wherein each said staple of said third row of staples defines a third crown axis which is transverse to said longitudinal slot axis; and
a plurality of first staple drivers, wherein each said first staple driver comprises:
a first staple support configured to eject a said staple from said first row of staples;
a second staple support configured to eject a said staple from said second row of staples; and
a third staple support configured to eject a said staple from said third row of staples; and
a second staple driver distal to said plurality of first staple drivers and configured to eject only two staples of said plurality of staples, and wherein said second staple driver comprises:
a fourth staple support configured to eject a said staple of said only two staples; and
a fifth staple support configured to eject a said staple of said only two staples.
6. A surgical staple cartridge, comprising:
a cartridge body, comprising:
a longitudinal slot configured to receive at least a cutting edge therethrough, wherein said longitudinal slot defines a longitudinal slot axis; and
a plurality of staple cavities defined in a first side of said cartridge body, wherein said plurality of staple cavities comprises:
a first row of staple cavities, wherein each said staple cavity of said first row of staple cavities defines a first cavity axis;
a second row of staple cavities, wherein each said staple cavity of said second row of staple cavities defines a second cavity axis which is transverse to said longitudinal slot axis and said second cavity axis; and
a third row of staple cavities, wherein each said staple cavity of said third row of staple cavities defines a third cavity axis which is transverse to said longitudinal slot axis; and
a plurality of staples;
a plurality of first staple drivers, wherein each said first staple driver comprises:
a first staple support configured to eject a said staple from said first row of staple cavities;
a second staple support configured to eject a said staple from said second row of staple cavities; and
a third staple support configured to eject a said staple from said third row of staple cavities; and
a second staple driver, wherein said second staple driver is distal to said plurality of first staple drivers and is configured to eject only two staples of said plurality of staples, and wherein said second staple driver comprises:
a fourth staple support configured to eject a said staple of said only two staples; and
a fifth staple support configured to eject a said staple of said only two staples.
1. A surgical staple cartridge, comprising:
a cartridge body, comprising:
a proximal end;
a distal end;
a longitudinal slot extending between said proximal end and said distal end, wherein said longitudinal slot defines a first side and a second side of said cartridge body, and wherein said longitudinal slot defines a longitudinal slot axis; and
a plurality of staple cavities defined in said first side of said cartridge body, wherein said plurality of staple cavities comprises:
a first row of staple cavities, wherein each said staple cavity of said first row of staple cavities defines a first cavity axis;
a second row of staple cavities, wherein each said staple cavity of said second row of staple cavities defines a second cavity axis which is transverse to said longitudinal slot axis and said first cavity axis; and
a third row of staple cavities, wherein each said staple cavity of said third row of staple cavities defines a third cavity axis which is transverse to said longitudinal slot axis;
a plurality of staples removably stored within said staple cavities; and
a plurality of first staple drivers, wherein each said first staple driver comprises:
a first staple support configured to eject a said staple from said first row of staple cavities;
a second staple support configured to eject a said staple from said second row of staple cavities; and
a third staple support configured to eject a said staple from said third row of staple cavities; and
a second staple driver, wherein said second staple driver is distal to said plurality of first staple drivers and is configured to eject only two staples of said plurality of staples, and wherein said second staple driver comprises:
a fourth staple support configured to eject a said staple of said only two staples; and
a fifth staple support configured to eject a said staple of said only two staples.
2. The surgical staple cartridge of claim 1, wherein each said first staple driver comprises a first camming surface positioned under said first staple support and a second camming surface positioned under said third staple support.
3. The surgical staple cartridge of claim 2, wherein said first camming surface and said second camming surface are longitudinally offset.
4. The surgical staple cartridge of claim 1, wherein said second staple support comprises a distal leg support portion, wherein said first staple support comprises a first proximal leg support portion, wherein said third staple support comprises a second proximal leg support portion, and wherein said distal leg support portion is positioned between said first proximal leg support portion and said second proximal leg support portion.
5. The surgical staple cartridge of claim 1, wherein said second staple support is positioned proximal to said first staple support and said third staple support.
7. The surgical staple cartridge of claim 6, wherein each said first staple driver comprises a first camming surface positioned under said first staple support and a second camming surface positioned under said third staple support.
8. The surgical staple cartridge of claim 7, wherein said first camming surface and said second camming surface are longitudinally offset.
9. The surgical staple cartridge of claim 6, wherein said second staple support comprises a distal leg support portion, wherein said first staple support comprises a first proximal leg support portion, wherein said third staple support comprises a second proximal leg support portion, and wherein said distal leg support portion is positioned between said first proximal leg support portion and said second proximal leg support portion.
10. The surgical staple cartridge of claim 6, wherein said second staple support is positioned proximal to said first staple support and said third staple support.
12. The stapling assembly of claim 11, wherein each said first staple driver comprises a first camming surface positioned to engage said first staple support and a second camming surface positioned to engage said third staple support.
13. The stapling assembly of claim 12, wherein said first camming surface and said second camming surface are longitudinally offset.
14. The stapling assembly of claim 11, wherein said second staple support comprises a distal leg support portion, wherein said first staple support comprises a first proximal leg support portion, wherein said third staple support comprises a second proximal leg support portion, and wherein said distal leg support portion is positioned between said first proximal leg support portion and said second proximal leg support portion.
15. The stapling assembly of claim 11, wherein said second staple support is positioned proximal to said first staple support and said third staple support.

This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 16/433,333, entitled SURGICAL STAPLE CONFIGURATIONS WITH CAMMING SURFACES LOCATED BETWEEN PORTIONS SUPPORTING SURGICAL STAPLES, filed Jun. 6, 2019, which issued on Feb. 28, 2023 as U.S. Pat. No. 11,589,868, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/843,243, entitled SURGICAL STAPLE CONFIGURATIONS WITH CAMMING SURFACES LOCATED BETWEEN PORTIONS SUPPORTING SURGICAL STAPLES, filed Sep. 2, 2015, which issued on Jul. 23, 2019 as U.S. Pat. No. 10,357,252, the entire disclosures of which are hereby incorporated by reference herein.

The present invention relates to surgical instruments and, in various embodiments, to surgical stapling and cutting instruments and staple cartridges for use therewith.

A stapling instrument can include a pair of cooperating elongate jaw members, wherein each jaw member can be adapted to be inserted into a patient and positioned relative to tissue that is to be stapled and/or incised. In various embodiments, one of the jaw members can support a staple cartridge with at least two laterally spaced rows of staples contained therein, and the other jaw member can support an anvil with staple-forming pockets aligned with the rows of staples in the staple cartridge. Generally, the stapling instrument can further include a pusher bar and a knife blade which are slidable relative to the jaw members to sequentially eject the staples from the staple cartridge via camming surfaces on the pusher bar and/or camming surfaces on a wedge sled that is pushed by the pusher bar. In at least one embodiment, the camming surfaces can be configured to activate a plurality of staple drivers carried by the cartridge and associated with the staples in order to push the staples against the anvil and form laterally spaced rows of deformed staples in the tissue gripped between the jaw members. In at least one embodiment, the knife blade can trail the camming surfaces and cut the tissue along a line between the staple rows.

The foregoing discussion is intended only to illustrate various aspects of the related art in the field of the invention at the time, and should not be taken as a disavowal of claim scope.

Various features of the embodiments described herein, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows:

FIG. 1 is a perspective view of a surgical instrument and an elongate shaft assembly embodiment;

FIG. 2 is an exploded assembly view of the handle or housing portion of the surgical instrument of FIG. 1;

FIG. 3 is an exploded assembly view of a portion of an elongate shaft assembly;

FIG. 4 is another exploded assembly view of another portion of the elongate shaft assembly of FIG. 3;

FIG. 5 is a perspective view of a portion of a surgical end effector embodiment;

FIG. 6 is an exploded assembly view of the surgical end effector of FIG. 5;

FIG. 7 is a top view of a surgical staple cartridge embodiment;

FIG. 8 is a bottom view of the surgical staple cartridge embodiment of FIG. 7;

FIG. 9 depicts the staple pattern deployed by the cartridge of FIGS. 7 and 8;

FIG. 10 depicts the staple pattern of FIG. 9 in a stretched condition;

FIG. 11 depicts a previous staple pattern implanted in tissue;

FIG. 12 is a perspective view of a staple driver embodiment;

FIG. 13 is a top view of the staple driver embodiment of FIG. 12;

FIG. 14 is a bottom perspective view of the staple driver of FIGS. 12 and 13;

FIG. 15 is a bottom perspective view of a portion of a surgical staple cartridge embodiment;

FIG. 16 is a top view of corresponding driver arrays employed in the surgical staple cartridge of FIG. 15;

FIG. 17 is another top view of one of the driver arrays of FIG. 16 supported in corresponding portions of a staple cartridge embodiment;

FIG. 18 is a top view of portions of the driver arrays of FIGS. 16 and 17 in connection with a sled or camming actuator of a surgical instrument;

FIG. 19 is a front elevational view of the driver array and sled/cam actuator depicted in FIG. 18;

FIG. 20 is a top view of corresponding portions of other driver array embodiments;

FIG. 21 is another top view of one of the driver arrays of FIG. 20;

FIG. 22 is a top view of a distal driver of the driver array illustrated in FIG. 20;

FIG. 23 is a perspective view of the distal driver of FIG. 22 supporting a staple thereon;

FIG. 24 is a bottom perspective view of the distal driver of FIGS. 22 and 23;

FIG. 25 is a top view of a proximal driver of the driver array depicted in FIG. 20;

FIG. 26 is a perspective view of the proximal driver of FIG. 25 supporting a staple thereon;

FIG. 27 is a bottom perspective view of the proximal driver of FIGS. 25 and 26;

FIG. 28 is a top view of corresponding portions of other driver array embodiments;

FIG. 29 is a top view of one of the driver arrays of FIG. 28;

FIG. 30 is a top view of one of the drivers of the driver array of FIG. 29;

FIG. 31 is a perspective view of the driver of FIG. 30 supporting four staples thereon;

FIG. 32 is a bottom perspective view of the driver of FIGS. 30 and 31;

FIG. 33 is a top view of corresponding portions of other driver array embodiments;

FIG. 34 is a top view of one of the driver arrays of FIG. 33;

FIG. 35 is a top view of a proximal driver of the driver array of FIG. 34;

FIG. 36 is a perspective view of the driver of FIG. 35 supporting three staples thereon;

FIG. 37 is a bottom perspective view of driver of FIGS. 35 and 36;

FIG. 38 is a top view of a distal driver of the driver array of FIG. 34;

FIG. 39 is a perspective view of the driver of FIG. 38 supporting two staples thereon;

FIG. 40 is a bottom perspective view of the driver of FIGS. 38 and 39;

FIG. 41 is a top view of corresponding portions of other driver array embodiments;

FIG. 42 is a top view of one of the driver arrays of FIG. 41;

FIG. 43 is a top view of a distal driver of the driver array of FIG. 42;

FIG. 44 is a perspective view of the driver of FIG. 43 supporting three staples thereon;

FIG. 45 is a bottom perspective view of the driver of FIGS. 43 and 44;

FIG. 46 is a top view of a proximal staple driver of the driver array of FIG. 42;

FIG. 47 is a perspective view the driver of FIG. 46 supporting two staples thereon;

FIG. 48 is a bottom perspective view of the driver of FIGS. 46 and 47;

FIG. 49 is a top view of corresponding portions of other driver array embodiments;

FIG. 50 is a top view of one of the driver arrays of FIG. 49;

FIG. 50A is an enlarged view of a portion of the driver array of FIG. 50;

FIG. 50B is an enlarged view of another portion of the driver array of FIG. 50;

FIG. 51 is a top view of one of the drivers of the driver array depicted in FIG. 50;

FIG. 52 is a perspective view of the driver of FIG. 51 supporting a total of five staples thereon;

FIG. 53 is a bottom perspective view of the driver of FIGS. 51 and 52;

FIG. 54 is a top view of another driver of the driver array of FIG. 50;

FIG. 55 is a perspective view of the driver of FIG. 54 supporting four staples thereon;

FIG. 56 is a bottom perspective view of the driver of FIG. 55;

FIG. 57 is a top view of corresponding portions of other driver array embodiments;

FIG. 58 is a top view of one of the driver arrays of FIG. 57;

FIG. 59 is a top view of a distal driver of the driver array depicted in FIG. 58;

FIG. 60 is a perspective view of the distal driver of FIG. 59 supporting two staples thereon;

FIG. 61 is a bottom perspective view of the driver of FIGS. 59 and 60;

FIG. 62 is a top view of corresponding portions of other driver array embodiments;

FIG. 63 is a top view of one of the driver arrays of FIG. 62 in connection with a portion of a surgical staple cartridge;

FIG. 64 is a top view of one of the drivers of the driver arrays of FIGS. 62 and 63;

FIG. 65 is a perspective view of the driver of FIG. 64 supporting a staple thereon;

FIG. 66 is a bottom perspective view of the driver of FIGS. 64 and 65;

FIG. 67 is a top view of corresponding portions of other driver array embodiments;

FIG. 68 is an enlarged top view of one of the driver arrays of FIG. 67;

FIG. 69 is a top view of first, second and third staple driver embodiments of the staple driver arrays of FIGS. 67 and 68;

FIG. 70 is a perspective view of one of the staple drivers of FIG. 69;

FIG. 71 is a bottom perspective view of the driver of FIG. 70;

FIG. 72 is a perspective view of a surgical staple cartridge that employs the staple driver arrays of FIGS. 67 and 68;

FIG. 73 is a partial bottom perspective view of the surgical staple cartridge of FIG. 72;

FIG. 74 is a perspective view of a portion of another surgical staple cartridge embodiment; and

FIG. 75 is a view of three formed surgical staples that were formed using the surgical staple cartridge of FIG. 74.

Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.

Applicant of the present application owns the following patent applications that were filed on Sep. 2, 2015 and which are each herein incorporated by reference in their respective entireties:

Applicant of the present application owns the following patent applications that were filed on Mar. 6, 2015 and which are each herein incorporated by reference in their respective entireties:

Applicant of the present application owns the following patent applications that were filed on Feb. 27, 2015, and which are each herein incorporated by reference in their respective entireties:

Applicant of the present application owns the following patent applications that were filed on Dec. 18, 2014 and which are each herein incorporated by reference in their respective entireties:

Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entireties:

Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 and which are each herein incorporated by reference in their respective entireties:

Applicant of the present application also owns the following patent application that was filed on Mar. 7, 2014 and is herein incorporated by reference in its entirety:

Applicant of the present application also owns the following patent applications that were filed on Mar. 26, 2014 and are each herein incorporated by reference in their respective entireties:

Applicant of the present application also owns the following patent applications that were filed on Sep. 5, 2014 and which are each herein incorporated by reference in their respective entireties:

Applicant of the present application also owns the following patent applications that were filed on Apr. 9, 2014 and which are each herein incorporated by reference in their respective entireties:

Applicant of the present application also owns the following patent applications that were filed on Apr. 16, 2013 and which are each herein incorporated by reference in their respective entireties:

Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.

The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.

The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.

Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.

A surgical stapling system can comprise a shaft and an end effector extending from the shaft. The end effector comprises a first jaw and a second jaw. The first jaw comprises a staple cartridge. The staple cartridge is insertable into and removable from the first jaw; however, other embodiments are envisioned in which a staple cartridge is not removable from, or at least readily replaceable from, the first jaw. The second jaw comprises an anvil configured to deform staples ejected from the staple cartridge. The second jaw is pivotable relative to the first jaw about a closure axis; however, other embodiments are envisioned in which first jaw is pivotable relative to the second jaw. The surgical stapling system further comprises an articulation joint configured to permit the end effector to be rotated, or articulated, relative to the shaft. The end effector is rotatable about an articulation axis extending through the articulation joint. Other embodiments are envisioned which do not include an articulation joint.

The staple cartridge comprises a cartridge body. The cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end. In use, the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue. The anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck. Thereafter, staples removably stored in the cartridge body can be deployed into the tissue. The cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities. The staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.

The staples are supported by staple drivers in the cartridge body. The drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities. The drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body. The drivers are movable between their unfired positions and their fired positions by a sled. The sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end. The sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.

Further to the above, the sled is moved distally by a firing member. The firing member is configured to contact the sled and push the sled toward the distal end. The longitudinal slot defined in the cartridge body is configured to receive the firing member. The anvil also includes a slot configured to receive the firing member. The firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil. The firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.

A surgical fastening instrument 10 is depicted in FIG. 1. The surgical fastening instrument 100 is configured to deploy an “elastic” or “expandable” staple line. Various elastic staple lines are disclosed herein and the surgical fastening instrument 10 is capable of deploying any one of these elastic staple lines. Moreover, surgical instruments other than the surgical fastening instrument 100 are capable of deploying any one of the expandable staple lines disclosed herein.

As can be seen in FIGS. 1-4, the surgical fastening instrument 10 includes a housing 12 that comprises a handle 14 that is configured to be grasped, manipulated and actuated by the clinician. The housing 12 is configured for operable attachment to an elongate shaft assembly 200 that has a surgical end effector 700 operably coupled thereto that is configured to perform one or more surgical tasks or procedures. The elongate shaft assembly 200 may be interchangeable with other shaft assemblies in the various manners disclosed, for example, in U.S. patent application Ser. No. 14/226,075, entitled MODULAR POWERED SURGICAL INSTRUMENT WITH DETACHABLE SHAFT ASSEMBLIES, now U.S. Pat. No. 9,743,929, the entire disclosure of which is hereby incorporated by reference herein. In other arrangements, the elongate shaft assembly may not be interchangeable with other shaft assemblies and essentially comprise a dedicated non-removable portion of the instrument. It will be further understood that the various forms of shaft assemblies and end effectors disclosed herein may also be effectively employed in connection with robotically-controlled surgical systems. Thus, the term “housing” may also encompass a housing or similar portion of a robotic system that houses or otherwise operably supports at least one drive system that is configured to generate and apply at least one control motion which could be used to actuate the elongate shaft assemblies disclosed herein and their respective equivalents. The term “frame” may refer to a portion of a handheld surgical instrument. The term “frame” may also represent a portion of a robotically controlled surgical instrument and/or a portion of the robotic system that may be used to operably control a surgical instrument. For example, the shaft assemblies and end effector arrangements disclosed herein may be employed with various robotic systems, instruments, components and methods disclosed in U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, which is hereby incorporated by reference herein in its entirety.

FIG. 1 illustrates the housing 12 or handle 14 of the surgical instrument 10 with an interchangeable elongate shaft assembly 200 operably coupled thereto. As can be seen in FIG. 1, the handle 14 may comprise a pair of interconnectable handle housing segments 16 and 18 that may be interconnected by screws, snap features, adhesive, etc. In the illustrated arrangement, the handle housing segments 16, 18 cooperate to form a pistol grip portion 19 that can be gripped and manipulated by the clinician. As will be discussed in further detail below, the handle 14 operably supports a plurality of drive systems therein that are configured to generate and apply various control motions to corresponding portions of the interchangeable shaft assembly that is operably attached thereto.

Referring now to FIG. 2, the handle 14 may further include a frame 20 that operably supports a plurality of drive systems. For example, the frame 20 can operably support a “first” or closure drive system, generally designated as 30, which may be employed to apply closing and opening motions to the elongate shaft assembly 200 that is operably attached or coupled thereto. In at least one form, the closure drive system 30 may include an actuator in the form of a closure trigger 32 that is pivotally supported by the frame 20. More specifically, as illustrated in FIG. 2, the closure trigger 32 is pivotally coupled to the housing 14 by a pin 33. Such arrangement enables the closure trigger 32 to be manipulated by a clinician such that when the clinician grips the pistol grip portion 19 of the handle 14, the closure trigger 32 may be easily pivoted from a starting or “unactuated” position to an “actuated” position and more particularly to a fully compressed or fully actuated position. The closure trigger 32 may be biased into the unactuated position by spring or other biasing arrangement (not shown). In various forms, the closure drive system 30 further includes a closure linkage assembly 34 that is pivotally coupled to the closure trigger 32. As can be seen in FIG. 2, the closure linkage assembly 34 may include a first closure link 36 and a second closure link 38 that are pivotally coupled to the closure trigger 32 by a pin 35. The second closure link 38 may also be referred to herein as an “attachment member” and include a transverse attachment pin 37.

Still referring to FIG. 2, it can be observed that the first closure link 36 may have a locking wall or end 39 thereon that is configured to cooperate with a closure release assembly 60 that is pivotally coupled to the frame 20. In at least one form, the closure release assembly 60 may comprise a release button assembly 62 that has a distally protruding locking pawl 64 formed thereon. The release button assembly 62 may be pivoted in a counterclockwise direction by a release spring (not shown). As the clinician depresses the closure trigger 32 from its unactuated position towards the pistol grip portion 19 of the handle 14, the first closure link 36 pivots upward to a point wherein the locking pawl 64 drops into retaining engagement with the locking wall 39 on the first closure link 36 thereby preventing the closure trigger 32 from returning to the unactuated position. Thus, the closure release assembly 60 serves to lock the closure trigger 32 in the fully actuated position. When the clinician desires to unlock the closure trigger 32 to permit it to be biased to the unactuated position, the clinician simply pivots the closure release button assembly 62 such that the locking pawl 64 is moved out of engagement with the locking wall 39 on the first closure link 36. When the locking pawl 64 has been moved out of engagement with the first closure link 36, the closure trigger 32 may pivot back to the unactuated position. Other closure trigger locking and release arrangements may also be employed.

When the closure trigger 32 is moved from its unactuated position to its actuated position, the closure release button 62 is pivoted between a first position and a second position. The rotation of the closure release button 62 can be referred to as being an upward rotation; however, at least a portion of the closure release button 62 is being rotated toward the circuit board 100. Still referring to FIG. 2, the closure release button 62 can include an arm 61 extending therefrom and a magnetic element 63, such as a permanent magnet, for example, mounted to the arm 61. When the closure release button 62 is rotated from its first position to its second position, the magnetic element 63 can move toward the circuit board 100. The circuit board 100 can include at least one sensor that is configured to detect the movement of the magnetic element 63. In at least one embodiment, a “Hall effect” sensor can be mounted to the bottom surface of the circuit board 100. The Hall effect sensor can be configured to detect changes in a magnetic field surrounding the Hall effect sensor that are caused by the movement of the magnetic element 63. The Hall effect sensor can be in signal communication with a microcontroller, for example, which can determine whether the closure release button 62 is in its first position, which is associated with the unactuated position of the closure trigger 32 and the open configuration of the end effector, its second position, which is associated with the actuated position of the closure trigger 32 and the closed configuration of the end effector, and/or any position between the first position and the second position.

Also in the illustrated arrangement, the handle 14 and the frame 20 operably support another drive system referred to herein as a firing drive system 80 that is configured to apply firing motions to corresponding portions of the interchangeable shaft assembly attached thereto. The firing drive system may 80 also be referred to herein as a “second drive system”. The firing drive system 80 may employ an electric motor 82, located in the pistol grip portion 19 of the handle 14. In various forms, the motor 82 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other arrangements, the motor may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. The motor 82 may be powered by a power source 90 that in one form may comprise a removable power pack 92. As can be seen in FIG. 2, for example, the power pack 92 may comprise a proximal housing portion 94 that is configured for attachment to a distal housing portion 96. The proximal housing portion 94 and the distal housing portion 96 are configured to operably support a plurality of batteries 98 therein. Batteries 98 may each comprise, for example, a Lithium Ion (“LI”) or other suitable battery. The distal housing portion 96 is configured for removable operable attachment to a control circuit board assembly 100 which is also operably coupled to the motor 82. A number of batteries 98 may be connected in series may be used as the power source for the surgical instrument 10. In addition, the power source 90 may be replaceable and/or rechargeable.

As outlined above with respect to other various forms, the electric motor 82 includes a rotatable shaft (not shown) that operably interfaces with a gear reducer assembly 84 that is mounted in meshing engagement with a with a set, or rack, of drive teeth 122 on a longitudinally-movable drive member 120. In use, a voltage polarity provided by the power source 90 can operate the electric motor 82 in a clockwise direction wherein the voltage polarity applied to the electric motor by the battery can be reversed in order to operate the electric motor 82 in a counterclockwise direction. When the electric motor 82 is rotated in one direction, the drive member 120 will be axially driven in the distal direction “DD”. When the motor 82 is driven in the opposite rotary direction, the drive member 120 will be axially driven in a proximal direction “PD”. The handle 14 can include a switch which can be configured to reverse the polarity applied to the electric motor 82 by the power source 90. As with the other forms described herein, the handle 14 can also include a sensor that is configured to detect the position of the drive member 120 and/or the direction in which the drive member 120 is being moved.

Actuation of the motor 82 is controlled by a firing trigger 130 that is pivotally supported on the handle 14. The firing trigger 130 may be pivoted between an unactuated position and an actuated position. The firing trigger 130 may be biased into the unactuated position by a spring 132 or other biasing arrangement such that when the clinician releases the firing trigger 130, it may be pivoted or otherwise returned to the unactuated position by the spring 132 or biasing arrangement. In at least one form, the firing trigger 130 can be positioned “outboard” of the closure trigger 32 as was discussed above. In at least one form, a firing trigger safety button 134 may be pivotally mounted to the closure trigger 32 by pin 35. The safety button 134 may be positioned between the firing trigger 130 and the closure trigger 32 and have a pivot arm 136 protruding therefrom. See FIG. 2. When the closure trigger 32 is in the unactuated position, the safety button 134 is contained in the handle 14 where the clinician cannot readily access it and move it between a safety position preventing actuation of the firing trigger 130 and a firing position wherein the firing trigger 130 may be fired. As the clinician depresses the closure trigger 32, the safety button 134 and the firing trigger 130 pivot down wherein they can then be manipulated by the clinician.

As discussed above, the handle 14 includes a closure trigger 32 and a firing trigger 130. The firing trigger 130 can be pivotably mounted to the closure trigger 32. When the closure trigger 32 is moved from its unactuated position to its actuated position, the firing trigger 130 can descend downwardly, as outlined above. After the safety button 134 has been moved to its firing position, the firing trigger 130 can be depressed to operate the motor of the surgical instrument firing system. In various instances, the handle 14 can include a tracking system configured to determine the position of the closure trigger 32 and/or the position of the firing trigger 130.

As indicated above, in at least one form, the longitudinally movable drive member 120 has a rack of drive teeth 122 formed thereon for meshing engagement with a corresponding drive gear 86 of the gear reducer assembly 84. At least one form also includes a manually-actuatable “bailout” assembly 140 that is configured to enable the clinician to manually retract the longitudinally movable drive member 120 should the motor 82 become disabled. The bailout assembly 140 may include a lever or bailout handle assembly 142 that is configured to be manually pivoted into ratcheting engagement with teeth 124 also provided in the drive member 120. Thus, the clinician can manually retract the drive member 120 by using the bailout handle assembly 142 to ratchet the drive member 120 in the proximal direction “PD”. U.S. Pat. No. 8,608,045, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, discloses bailout arrangements and other components, arrangements and systems that may also be employed with the various instruments disclosed herein, is hereby incorporated by reference in its entirety.

Turning now to FIGS. 1 and 3, the elongate shaft assembly 200 includes a surgical end effector 700 that comprises an elongate channel 702 that is configured to operably support a staple cartridge 800 therein. The end effector 700 may further include an anvil 710 that is pivotally supported relative to the elongate channel 702. As will be discussed in further detail below, the surgical end effector 700 may be articulated relative to the elongate shaft assembly about an articulation joint 270. Various embodiments are also envisioned wherein the end effector is not articulatable. As can be seen in FIGS. 3 and 4, the shaft assembly 200 can further include a proximal housing or nozzle 201 comprised of nozzle portions 202 and 203. The shaft assembly 200 further includes a closure tube 260 which can be utilized to close and/or open an anvil 310 of the end effector 700. As can be seen in FIG. 4, the shaft assembly 200 includes a spine 210 which can be configured to fixably support a shaft frame portion 212 of and articulation lock 350. Details regarding the construction and operation of the articulation lock 350 are set forth in U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541, the disclosure of which is hereby incorporated by reference herein in its entirety. The spine 210 is configured to, one, slidably support a firing member 220 therein and, two, slidably support the closure tube 260 which extends around the spine 210. The spine 210 also slidably supports a proximal articulation driver 230. The proximal articulation driver 230 has a distal end 301 that is configured to operably engage the articulation lock 350. In one arrangement, the articulation lock 350 interfaces with an articulation frame 352 that is adapted to operably engage a drive pin (not shown) on the end effector frame (not shown).

In the illustrated arrangement, the spine 210 comprises a proximal end 211 which is rotatably supported in a chassis 240. In one arrangement, for example, the proximal end 211 of the spine 210 has a thread 214 formed thereon for threaded attachment to a spine bearing 216 configured to be supported within the chassis 240. See FIG. 3. Such arrangement facilitates rotatable attachment of the spine 210 to the chassis 240 such that the spine 210 may be selectively rotated about a shaft axis SA-SA relative to the chassis 240. The shaft assembly 200 also includes a closure shuttle 250 that is slidably supported within the chassis 240 such that it may be axially moved relative thereto. As can be seen in FIG. 3, the closure shuttle 250 includes a pair of proximally-protruding hooks 252 that are configured for attachment to the attachment pin 37 that is attached to the second closure link 38 as will be discussed in further detail below. See FIG. 2. A proximal end 261 of the closure tube 260 is coupled to the closure shuttle 250 for relative rotation thereto. For example, a U-shaped connector 263 is inserted into an annular slot 262 in the proximal end 261 of the closure tube 260 and is retained within vertical slots 253 in the closure shuttle 250. See FIG. 3. Such arrangement serves to attach the closure tube 260 to the closure shuttle 250 for axial travel therewith while enabling the closure tube 260 to rotate relative to the closure shuttle 250 about the shaft axis SA-SA. A closure spring 268 is journaled on the closure tube 260 and serves to bias the closure tube 260 in the proximal direction “PD” which can serve to pivot the closure trigger into the unactuated position when the shaft assembly 200 is operably coupled to the handle 14.

As was also indicated above, the elongate shaft assembly 200 further includes a firing member 220 that is supported for axial travel within the shaft spine 210. The firing member 220 includes an intermediate firing shaft portion 222 that is configured for attachment to a distal cutting portion or firing beam 280. The firing member 220 may also be referred to herein as a “second shaft” and/or a “second shaft assembly”. As can be seen in FIG. 4, the intermediate firing shaft portion 222 may include a longitudinal slot 223 in the distal end thereof which can be configured to receive a tab 284 on the proximal end 282 of the distal firing beam 280. The longitudinal slot 223 and the proximal end 282 can be sized and configured to permit relative movement therebetween and can comprise a slip joint 286. The slip joint 286 can permit the intermediate firing shaft portion 222 of the firing drive 220 to be moved to articulate the surgical end effector 700 without moving, or at least substantially moving, the firing beam 280. Once the surgical end effector 700 has been suitably oriented, the intermediate firing shaft portion 222 can be advanced distally until a proximal sidewall of the longitudinal slot 223 comes into contact with the tab 284 in order to advance the firing beam 280 and fire a staple cartridge that may be supported in the end effector 700. As can be further seen in FIG. 4, the shaft spine 210 has an elongate opening or window 213 therein to facilitate assembly and insertion of the intermediate firing shaft portion 222 into the shaft frame 210. Once the intermediate firing shaft portion 222 has been inserted therein, a top frame segment 215 may be engaged with the shaft frame 212 to enclose the intermediate firing shaft portion 222 and firing beam 280 therein. Further description of the operation of the firing member 220 may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541.

Further to the above, the illustrated shaft assembly 200 includes a clutch assembly 400 which can be configured to selectively and releasably couple the articulation driver 230 to the firing member 220. In one form, the clutch assembly 400 includes a lock collar, or sleeve 402, positioned around the firing member 220 wherein the lock sleeve 402 can be rotated between an engaged position in which the lock sleeve 402 couples the articulation driver 230 to the firing member 220 and a disengaged position in which the articulation driver 230 is not operably coupled to the firing member 200. When lock sleeve 402 is in its engaged position, distal movement of the firing member 220 can move the articulation driver 230 distally and, correspondingly, proximal movement of the firing member 220 can move the proximal articulation driver 230 proximally. When lock sleeve 402 is in its disengaged position, movement of the firing member 220 is not transmitted to the proximal articulation driver 230 and, as a result, the firing member 220 can move independently of the proximal articulation driver 230. In various circumstances, the proximal articulation driver 230 can be held in position by the articulation lock 350 when the proximal articulation driver 230 is not being moved in the proximal or distal directions by the firing member 220.

As can be further seen in FIG. 4, the lock sleeve 402 can comprise a cylindrical, or an at least substantially cylindrical, body including a longitudinal aperture 403 defined therein configured to receive the firing member 220. The lock sleeve 402 can comprise diametrically-opposed, inwardly-facing lock protrusions 404 and an outwardly-facing lock member 406. The lock protrusions 404 can be configured to be selectively engaged with the firing member 220. More particularly, when the lock sleeve 402 is in its engaged position, the lock protrusions 404 are positioned within a drive notch 224 defined in the firing member 220 such that a distal pushing force and/or a proximal pulling force can be transmitted from the firing member 220 to the lock sleeve 402. When the lock sleeve 402 is in its engaged position, a second lock member 406 is received within a drive notch 232 defined in the proximal articulation driver 230 such that the distal pushing force and/or the proximal pulling force applied to the lock sleeve 402 can be transmitted to the proximal articulation driver 230. In effect, the firing member 220, the lock sleeve 402, and the proximal articulation driver 230 will move together when the lock sleeve 402 is in its engaged position. On the other hand, when the lock sleeve 402 is in its disengaged position, the lock protrusions 404 may not be positioned within the drive notch 224 of the firing member 220 and, as a result, a distal pushing force and/or a proximal pulling force may not be transmitted from the firing member 220 to the lock sleeve 402. Correspondingly, the distal pushing force and/or the proximal pulling force may not be transmitted to the proximal articulation driver 230. In such circumstances, the firing member 220 can be slid proximally and/or distally relative to the lock sleeve 402 and the proximal articulation driver 230.

As can also be seen in FIG. 4, the elongate shaft assembly 200 further includes a switch drum 500 that is rotatably received on the closure tube 260. The switch drum 500 comprises a hollow shaft segment 502 that has a shaft boss 504 formed thereon for receive an outwardly protruding actuation pin 410 therein. In various circumstances, the actuation pin 410 extends through a slot 267 into a longitudinal slot 408 provided in the lock sleeve 402 to facilitate axial movement of the lock sleeve 402 when it is engaged with the proximal articulation driver 230. A rotary torsion spring 420 is configured to engage the shaft boss 504 on the switch drum 500 and a portion of the nozzle housing 203 to apply a biasing force to the switch drum 500. The switch drum 500 can further comprise at least partially circumferential openings 506 defined therein which, referring to FIGS. 5 and 6, can be configured to receive circumferential mounts extending from the nozzle portions 202, 203 and permit relative rotation, but not translation, between the switch drum 500 and the proximal nozzle 201. The mounts also extend through openings 266 in the closure tube 260 to be seated in recesses in the shaft spine 210. However, rotation of the nozzle 201 to a point where the mounts reach the end of their respective slots 506 in the switch drum 500 will result in rotation of the switch drum 500 about the shaft axis SA-SA. Rotation of the switch drum 500 will ultimately result in the rotation of the actuation pin 410 and the lock sleeve 402 between its engaged and disengaged positions. Thus, in essence, the nozzle 201 may be employed to operably engage and disengage the articulation drive system with the firing drive system in the various manners described in further detail in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541.

As also illustrated in FIGS. 3 and 4, the elongate shaft assembly 200 can comprise a slip ring assembly 600 which can be configured to conduct electrical power to and/or from the end effector 700 and/or communicate signals to and/or from the surgical end effector 700, for example. The slip ring assembly 600 can comprise a proximal connector flange 604 mounted to a chassis flange 242 extending from the chassis 240 and a distal connector flange 601 positioned within a slot defined in the shaft housings 202, 203. The proximal connector flange 604 can comprise a first face and the distal connector flange 601 can comprise a second face which is positioned adjacent to and movable relative to the first face. The distal connector flange 601 can rotate relative to the proximal connector flange 604 about the shaft axis SA-SA. The proximal connector flange 604 can comprise a plurality of concentric, or at least substantially concentric, conductors 602 defined in the first face thereof. A connector 607 can be mounted on the proximal side of the distal connector flange 601 and may have a plurality of contacts (not shown) wherein each contact corresponds to and is in electrical contact with one of the conductors 602. Such arrangement permits relative rotation between the proximal connector flange 604 and the distal connector flange 601 while maintaining electrical contact therebetween. The proximal connector flange 604 can include an electrical connector 606 which can place the conductors 602 in signal communication with a shaft circuit board 610 mounted to the shaft chassis 240, for example. In at least one instance, a wiring harness comprising a plurality of conductors can extend between the electrical connector 606 and the shaft circuit board 610. U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Patent Application Publication No. 2014/0263552, is incorporated by reference herein in its entirety. U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Pat. No. 9,345,481 is incorporated by reference herein in its entirety. Further details regarding slip ring assembly 600 may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541.

As discussed above, the elongate shaft assembly 200 can include a proximal portion which is fixably mounted to the handle 14 and a distal portion which is rotatable about a longitudinal shaft axis SA-SA. The rotatable distal shaft portion can be rotated relative to the proximal portion about the slip ring assembly 600, as discussed above. The distal connector flange 601 of the slip ring assembly 600 can be positioned within the rotatable distal shaft portion. Moreover, further to the above, the switch drum 500 can also be positioned within the rotatable distal shaft portion. When the rotatable distal shaft portion is rotated, the distal connector flange 601 and the switch drum 500 can be rotated synchronously with one another. In addition, the switch drum 500 can be rotated between a first position and a second position relative to the distal connector flange 601. When the switch drum 500 is in its first position, the articulation drive system (i.e., the proximal articulation driver 230) may be operably disengaged from the firing drive system and, thus, the operation of the firing drive system may not articulate the end effector 700 of the shaft assembly 200. When the switch drum 500 is in its second position, the articulation drive system (i.e., the proximal articulation driver 230) may be operably engaged with the firing drive system and, thus, the operation of the firing drive system may articulate the end effector 700 of the shaft assembly 200. When the switch drum 500 is moved between its first position and its second position, the switch drum 500 is moved relative to distal connector flange 601. In various instances, the shaft assembly 200 can comprise at least one sensor that is configured to detect the position of the switch drum 500.

Referring again to FIG. 4, the closure tube assembly 260 includes a double pivot closure sleeve assembly 271. According to various forms, the double pivot closure sleeve assembly 271 includes an end effector closure sleeve 272 that includes upper and lower distally projecting tangs 273, 274. An upper double pivot link 277 includes upwardly projecting distal and proximal pivot pins that engage respectively an upper distal pin hole in the upper proximally projecting tang 273 and an upper proximal pin hole in an upper distally projecting tang 264 on the closure tube 260. A lower double pivot link 278 includes upwardly projecting distal and proximal pivot pins that engage respectively a lower distal pin hole in the lower proximally projecting tang 274 and a lower proximal pin hole in the lower distally projecting tang 265.

As can be seen in FIGS. 5 and 6, the surgical end effector 700 includes an elongate channel 702 that is configured to operably support a surgical staple cartridge 800 therein. The elongate channel 702 has a proximal end portion 704 that includes two upstanding lateral walls 706. The surgical end effector 700 further includes an anvil 710 that has an anvil body 712 that has a staple-forming undersurface 714 formed thereon. The proximal end 716 of the anvil body 712 includes a laterally protruding anvil trunnion 718. A trunnion slot 708 is provided in each lateral wall 706 of the elongate channel 702 for receiving a corresponding one of the anvil trunnions 718 therein. Such arrangement serves to movably affix the anvil 710 to the elongate channel 702 for selective pivotable travel between open and closed or clamped positions. The anvil 710 includes a tab 720 that is engageable with a horseshoe-shaped slot 722 in the end effector closure sleeve 272. When the closure tube 260 and, more particularly, the end effector closure sleeve 272, is moved distally, a side wall of the slot 722 can engage the tab 720 to rotate the anvil 710 toward the elongate channel 702. To open the anvil 710, the closure tube 260 and, more particularly, the end effector closure sleeve 272 is moved in the proximal direction. In doing so, a central tab portion defined by the horseshoe shaped slot 722 cooperates with the tab 720 on the anvil 710 to pivot the anvil 710 to an open position. Other anvil and closure arrangements are disclosed in U.S. patent application Ser. No. 14/742,914, entitled MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS, filed Jun. 18, 2015, now U.S. Pat. No. 10,405,863, the entire disclosure of which is hereby incorporated by reference herein.

Referring now to FIGS. 6-8, an exemplary staple cartridge 800 comprises a cartridge body 802 that may be molded for example, from a polymer material and be configured to be removably retained within the elongate channel 702. The staple cartridge body 802 includes a centrally disposed elongate slot 804 that is configured to receive a tissue cutting member 750 therein. A plurality of staple cavities 810a, 810b, 810c are arranged in the cartridge body 802 on each side of the elongate slot 804. In the embodiment depicted in FIGS. 6-8, the staple cavities 810a, 810b, 810c are generally oriented in a “herringbone-like” pattern. Each staple cavity 810a, 810b, 810c is configured to removably store a staple therein, although it is possible that some staple cavities 810a, 810b, 810c may not contain a staple stored therein. As will be discussed in further detail below, the staple cartridge 800 further comprises a plurality of staple drivers 900a, 900b that are movably positioned within the cartridge body 802 in conjunction with corresponding staple cavities. Each staple driver 900a, 900b is configured to support one or more staples thereon and/or lift the staples out of their respective staple cavities 810a, 810b, 810c at the same time, or concurrently when contacted by a sled or camming actuator 760.

Referring to FIG. 6, as indicated above, the end effector 700 can include a tissue cutting member 750 that is configured to incise tissue captured between the staple cartridge 800 and the anvil 710. In the illustrated example, the tissue cutting member 750 is coupled to or integrally formed on a distal end of the firing beam 280 and is oriented for movement within the elongate slot 804. Distal advancement of the firing beam 280 will therefore result in the distal advancement of the tissue cutting member 750 within the elongate slot 804 in the staple cartridge body 802. The anvil 710 also includes a longitudinal slot configured to at least partially receive a portion of the tissue cutting member 750; however, embodiments are envisioned in which only one of the cartridge 800 and the anvil 710 includes a slot configured to receive a tissue cutting member. In the illustrated embodiment, the tissue cutting member 750 comprises at least one first projection 752 extending therefrom which is configured to engage the anvil 710 and at least one second projection 754 that is configured to engage the elongate channel 702. The projections 752 and 754 can position the anvil 710 and the staple cartridge 800 relative to one another. As the tissue cutting member 750 is advanced distally, the projections 752 and 754 can position the anvil 710 and set the tissue gap between the staple forming undersurface 714 of the anvil 710 and the deck surface 816 of the staple cartridge 800 supported in the elongate channel 702.

As can be seen in FIG. 6, for example, the sled or camming actuator 760 is configured to be engaged by the tissue cutting member 750 as the tissue cutting member 750 is distally driven through the staple cartridge 800 by the firing beam 280. In other arrangements, however, the sled 760 and tissue cutting member 750 may be formed as a single component. In still other arrangements that do not employ a tissue cutting member, the firing beam may contact the sled or camming member or be integrally formed therewith. The sled 760 comprises one or more ramp or camming surfaces which are configured to drivingly contact or slide under the staple drivers 900a, 900b and lift the staple drivers 900a, 900b upwardly toward the deck surface 816 of the staple cartridge 800. In the illustrated embodiment, the sled 760 comprises four ramp or camming surfaces or camming members 762, 764, 766 and 768. As will be discussed in further detail below, the sled 760 is movable from a proximal end 803 of the staple cartridge 800 toward a distal end 811 of the cartridge 800 to sequentially lift the staple drivers 900a, 900b in their respective “driver arrays” on each side of the elongate slot 804. When the drivers 900a, 900b are driven toward the deck surface 816 by the sled 760, the staple drivers 900a, 900b lift the staples supported thereon toward the staple forming undersurface 714 of the anvil 710. As the sled 760 is progressed distally, the staples are driven against the staple-forming undersurface 714 of the anvil 710 and are ejected from the staple cavities 810a, 810b, 810c by the staple drivers 900a, 900b. The staple cartridge 800 can further comprise a support pan 780 attached thereto which extends around the bottom of the staple cartridge body 802 and retains the staple drivers 900a, 900b, the staples, and/or the sled 760 within the cartridge 800.

As indicated above, in the illustrated exemplary embodiment, the surgical instrument 10 includes an articulation drive system 500, which when actuated can articulate the end effector 700 about an articulation joint 270. When the proximal articulation driver 230 is pushed in a first direction, the end effector 700 can be rotated in a first direction and, when the proximal articulation driver 230 is pushed in a second direction, the end effector 700 can be rotated in a second, or opposite, direction. In other embodiments, the end effector is not capable of articulation. Referring now to FIG. 6, the illustrated end effector 700 includes an end effector mounting assembly 790 that is adapted to be pivotally mounted to, for example, a portion of the articulation lock 350 (FIG. 4) that is configured to be rotatably received within the mounting hole 792 in the end effector mounting assembly 790. In the illustrated embodiment, the end effector mounting assembly 790 is mounted to the elongate channel 702 via a spring pin 796 which extends through apertures 705 defined in the elongate channel 702 and the end effector mounting assembly 790. As described in further detail in U.S. Patent Application Publication No. 2014/0263541, which has been herein incorporated by reference in its entirety, the articulation lock 350 may be movable between a first, locked or engaged, position in which the lock is engaged with the end effector mounting assembly 790 and a second, or unlocked or disengaged, position. When the articulation lock 350 is in its engaged or locked position, the articulation lock 350 can hold the end effector 700 in position. When the articulation lock 350 is in its disengaged position, the end effector 700 can be rotated about the articulation joint 270. Other articulation arrangements are disclosed in U.S. patent application Ser. No. 14/314,788, entitled ROBOTICALLY-CONTROLLED SHAFT BASED ROTARY DRIVE SYSTEMS FOR SURGICAL INSTRUMENTS, which was filed on Jun. 25, 2014, now U.S. Pat. No. 9,186,143, and which is herein incorporated by reference in its entirety. Still other articulation arrangements are disclosed in U.S. Patent Application Publication No. 2013/0168435, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, which was filed on Feb. 26, 2013, now U.S. Pat. No. 9,138,225, which is hereby incorporated by reference herein in its entirety.

Turning now to FIGS. 7 and 8, the staple cavities 810a, 810b, 810c of the staple cartridge 800 open through the deck surface 816 and can be positioned and arranged such that the staples stored in the staple cavities 810a, 810b, 810c are deployed as part of an extensible or “flexible” or “elastic” staple line. The staple cavities 810a, 810b, 810c are arranged in a “staple cavity array” generally designated as 806. In at least one arrangement, the staple cavity array 806 comprises a first row 807 of staple cavities 810a which removably stores a first row of staples. The first row 807 of staple cavities 810a extends along a first longitudinal axis 812a adjacent the elongate slot 804. The staple cavity array 806 also comprises a second row 808 of staple cavities 810b which removably stores a second row of staples. The second row 808 of staple cavities 810b extends along a second longitudinal axis 812b adjacent the first row 807 of staple cavities 810a. The staple cavity array 806 further comprises a third row 809 of staple cavities 810c which removably store a third row of staples. The third row 809 of staple cavities 810c extends along a third longitudinal axis 812c adjacent the second row 808 of staple cavities 810b. The first longitudinal axis 812a is parallel, or at least substantially parallel, to the second longitudinal axis 812b; however, other arrangements are possible in which the first longitudinal axis 812a is not parallel to the second longitudinal axis 812b. The second longitudinal axis 812b is parallel, or at least substantially parallel, to the third longitudinal axis 812c; however, other arrangements are possible in which the second longitudinal axis 812b is not parallel to the third longitudinal axis 812c. The first longitudinal axis 812a is parallel, or at least substantially parallel, to the third longitudinal axis 812c; however, other arrangements are possible in which the first longitudinal axis 812a is not parallel to the third longitudinal axis 812c. Referring again to FIGS. 7 and 8, the staple cartridge 800 comprises a first portion of the staple cavity array 806 including a first row 807 of staple cavities 810a, a second row 808 of second staple cavities 810b, and a third row 809 of third staple cavities 810c on a first side 805 of the longitudinal slot 804 and a second portion of the cavity array 806 including a first row 810a, a second row 810b, and a third row 810c on a second side 801 of the longitudinal slot 804. The first cavity array portion is a mirror image of the second cavity array portion with respect to the longitudinal slot; however, other arrangements may be utilized.

Still referring to FIG. 7, each of the first staple cavities 810a is oriented at a first angle 824a with respect a first reference axis 997a that is perpendicular to the first longitudinal axis 812a. Also in the illustrated arrangement, each of the second staple cavities 810b is oriented at a second angle 824b with respect to a second reference axis 997b that is perpendicular to the second longitudinal axis 812b. In addition, each of the third staple cavities 810c is oriented at a third angle 824c with respect to a third reference axis 997c that is perpendicular to the third longitudinal axis 812c. The first angle 824a is different than the second angle 824b; however, in other embodiments, the first angle 824a and the second angle 824b can be the same. The third angle 824c is different than the second angle 824b; however, in other embodiments, the third angle 824c and the second angle 824b can be the same. The first angle 824a is the same as the third angle 824c; however, in other embodiments, the first angle 824a and the third angle 824c can be different. In at least one embodiment, angle 824a may be approximately forty-five (45) degrees (with a range of ±thirty (30) degrees for example); angle 824b may be approximately fifty (50) degrees (with a range of ±thirty (30) degrees, for example); and angle 824c may be approximately forty-five (45) degrees with a range of ±thirty (30) degrees, for example).

The staple cartridge 800 is configured to deploy the staple pattern 813 depicted in FIG. 9. The staple cartridge 800 is configured to deploy a first row 817 of staples 820a along a first longitudinal axis 822a, a second row 818 of staples 820b along a second longitudinal axis 822b, and a third row 819 of staples 820c along a third longitudinal axis 822c. In various instances, the staple cartridge 800 is configured to deploy a first row 817 of staples 820a, a second row 818 of staples 820b, and a third row 819 of staples 820c on a first side of a longitudinal incision 826 and a first row 817 of staples 820a, a second row 818 of staples 820b, and a third row 819 of staples 820c on a second side of the longitudinal incision 826. The first rows 817 of staples 820a can be positioned adjacent the longitudinal incision 826 and the third row 819 of staples 820c can be positioned furthest away from the longitudinal incision 826. Each second row 818 of staples 820b can be positioned intermediate a first row 817 of staples 820a and a third row 819 of staples 820c.

Further to the above, the first staples 820a are removably stored in the first staple cavities 810a, the second staples 820b are removably stored in the second staple cavities 810b, and the third staples 820c are removably stored in the third staple cavities 810c. The staple cavities 810a-810c are configured and arranged to deploy the staples 820a-820c in the arrangement depicted in FIGS. 9 and 10. For example, the first staples 820a are oriented at the first angle 824a with respect to a first reference axis 999a that is perpendicular to the first longitudinal axis 822a. The second staples 820b are oriented at the second angle 824b with respect to a second reference axis 999b that is perpendicular to the second longitudinal axis 822b. The third staples 820c are oriented at the third angle 824c with respect to a third reference axis 999c that is perpendicular to the third longitudinal axis 822c.

The first staples 820a, the second staples 820b, and the third staples 820c can be positioned and arranged such that they provide “laterally-overlapping” staple lines. More particularly, referring again to FIG. 9, the second longitudinal row 818 of second staples 820b is positioned laterally with respect to the first longitudinal row 817 of first staples 820a such that the second staples 820b are aligned with the gaps between the first staples 820a and, similarly, the third longitudinal row 819 of third staples 820c is positioned laterally with respect to the second longitudinal row 818 of second staples 820b such that the third staples 820c are aligned with the gaps between the second staples 820b. Such an arrangement can limit the flow of blood from the tissue T to the longitudinal incision 826.

Further to the above, the staple pattern disclosed in FIG. 9 comprises six longitudinal rows of staples. Other embodiments are envisioned which comprise less than six rows of staples, such as four rows of staples, for example, or more than six rows of staples, such as eight rows of staples, for example. The first staples 820a, the second staples 820b, and the third staples 820c can comprise any suitable configuration such as, for example, a V-shaped configuration or a U-shaped configuration. A staple comprising a V-shaped configuration can include a base or crown, a first leg extending from a first end of the base or crown, and a second leg extending from a second end of the base or crown, wherein the first leg and the second leg extend in directions which are non-parallel to one another. A staple comprising a U-shaped configuration can include a base or crown, a first leg extending from a first end of the base or crown, and a second leg extending from a second end of the base or crown, wherein the first leg and the second leg extend in directions which are parallel to one another.

With regard to the staple pattern disclosed in FIG. 9, for example, each first staple 820a comprises a first staple base or crown 827a (FIG. 12) that has a first proximal staple leg 825a and a first distal staple leg 823a protruding therefrom. A staple cartridge 800 configured to deploy the staple pattern 813 disclosed in FIG. 9 can include a proximal end 803 and a distal end 811. The first proximal staple leg 825a can be closer to the proximal end 803 of the staple cartridge 800 than the first distal staple leg 823a and, similarly, the first distal staple leg 823a can be closer to the distal end 811 of the staple cartridge 800 than the first proximal staple leg 825a. The first crown 827a of each first staple 820a can define a first base axis “FBA”. Each of the first proximal staple leg 825a and the first distal staple leg 823a can extend from the first base axis FBA. The first staples 820a can be positioned and arranged such that the first base axes FBA's extend toward the longitudinal cut line 826 and toward the distal end of the staple cartridge 800. Stated another way, the first base axis FBA may be transverse to the elongate slot 804.

With regard to the staple pattern 813 disclosed in FIG. 9, for example, each second staple 820b comprises a second staple base or crown 827b (FIG. 12) that has a second proximal staple leg 825b and a second distal staple leg 823b protruding therefrom. The second proximal staple leg 825b can be closer to the proximal end 803 of the staple cartridge 800 than the second distal staple leg 823b and, similarly, the second distal staple leg 823b can be closer to the distal end 811 of the staple cartridge 800 than the second proximal staple leg 825b. The base second crown 827b of each second staple 820b can define a second base axis “SBA”. The second proximal staple leg 825b and the second distal staple leg 823b can extend from the second base axis SBA. The second staples 820b can be positioned and arranged such that the second base axes SBA's extend toward the longitudinal incision 826 and toward the proximal end 803 of the staple cartridge 800. In the illustrated example, the second base axes SBA are transverse to the first base axes as well as to the elongate slot 804.

With regard to the staple pattern 813 disclosed in FIG. 9, for example, each third staple 820c comprises a third base or crown 827c (FIG. 12) that has a third proximal staple leg 825c and a third distal staple leg 823c protruding therefrom. The third proximal staple leg 825c can be closer to the proximal end 803 of the staple cartridge 800 than the third distal staple leg 823c and, similarly, the third distal staple leg 823c can be closer to the distal end 811 of the staple cartridge 800 than the third proximal staple leg 825c. The third crown 827c of each third staple 820c can define a third base axis “TBA”. The third proximal staple leg 825c and the third distal staple leg 823c can extend from the third base axis TBA. The third staples 820c can be positioned and arranged such that the third base axes TBA's extend toward the longitudinal cut line 826 and toward the distal end of the staple cartridge. In the illustrated example, the third base axes TBA are parallel to the first base axes FBA and are transverse to the second base axes SBA as well as to the elongate slot 804. This is but one exemplary embodiment and any suitable arrangement could be utilized.

Further to the above, the first staples 820a straddle the first longitudinal axis 822a. See FIG. 9. The first distal legs 823a of the first staples 820a are positioned on one side of the first longitudinal axis 822a and the first proximal legs 825a are positioned on the other side of the first longitudinal axis 822a. Stated another way, the legs of the first staples 820a are offset with respect to the first longitudinal axis 822a. Alternative embodiments are envisioned in which the first staples 820a are aligned with or collinear with the first longitudinal axis 822a. The second staples 820b straddle the second longitudinal axis 822b. The second distal legs 823b of the second staples 820b are positioned on one side of the second longitudinal axis 822b and the second proximal legs 825b are positioned on the other side of the second longitudinal axis 822b. Stated another way, the legs of the second staples 820b are offset with respect to the second longitudinal axis 822b. Alternative embodiments are envisioned in which the second staples 820b are aligned with or collinear with the second longitudinal axis 822b.

In the illustrated example, the third staples 820c straddle the third longitudinal axis 820c. The third distal legs 823c of the third staples 820c are positioned on one side of the third longitudinal axis 820c and the third proximal legs 825c are positioned on the other side of the third longitudinal axis 822c. Stated another way, the legs of the third staples 820c are offset with respect to the third longitudinal axis 822c. Alternative embodiments are envisioned in which the third staples 820c are aligned with or collinear with the third longitudinal axis 822c. In certain embodiments, a first staple 820a can comprise a first proximal leg 825a which is aligned with the second distal leg 823b of an adjacent second staple 820b. Similarly, a third staple 820c can comprise a third proximal leg 825c which is aligned with the second distal leg 823b of an adjacent second staple 820b. In various embodiments, a first staple 820a can comprise a first proximal leg 825a which is positioned distally with respect to the second distal leg 823b of an adjacent second staple 820b. Similarly, a third staple 820c can comprise a third proximal leg 825c which is positioned distally with respect to the second distal leg 823b of an adjacent second staple 820b. The row of second staples 820b is bounded by the row of first staples 820a and the row of third staples 820c. A second staple 820b is bounded on one side by a first staple 820a and on the other side by a third staple 820c. More particularly, a first staple 820a is positioned laterally inwardly with respect to the second proximal leg 825b of a second staple 820b and, similarly, a third staple 820c is positioned laterally outwardly with respect to the second distal leg 823b of the second staple 820b. As a result, the first staples 820a can provide a boundary on one side of the second staples 820b and the third staples 820b can provide a boundary on the other side of the second staples 820b.

A traditional staple pattern 829 is illustrated in FIG. 11. This staple pattern 829 comprises a first row 836 of first staples 830a positioned along a first longitudinal axis 832a, a second row 838 of second staples 830b positioned along a second longitudinal axis 832b, and a third row 840 of third staples 830c positioned along a third longitudinal axis 832c positioned on a first side of a longitudinal incision 835 in the tissue T. The first staples 830a are aligned, or at least substantially aligned, with the first longitudinal axis 832a; the second staples 830b are aligned, or at least substantially aligned, with the second longitudinal axis 832b; and the third staples 830c are aligned, or at least substantially aligned, with the third longitudinal axis 832c. Stated another way, the first staples 830a are not oriented at an angle with respect to the first longitudinal axis 832a, the second staples 830b are not oriented at an angle with respect to the second longitudinal axis 832b, and the third staples 830c are not oriented at an angle with respect to the third longitudinal axis 832c. This traditional staple pattern also comprises a first row 836 of staples 830a positioned along a first longitudinal axis 832a, a second row 838 of staples 830b positioned along a second longitudinal axis 832b, and a third row 840 of staples 830c positioned along a third longitudinal axis 832c positioned on a second, or opposite, side of the longitudinal incision 835.

When a longitudinal tensile force is applied to the tissue T stapled by the staple pattern 829 illustrated in FIG. 11, the tissue T will stretch longitudinally. Moreover, in various instances, the staples 830a, 830b and 830c can translate longitudinally as the tissue T is stretched longitudinally. Such an arrangement can be suitable in many circumstances; however, the staples 830a, 830b and 830c can restrict the stretching and/or movement of the tissue T. In some instances, the tissue T that has been stapled by the staples 830a, 830b and 830c may be far less flexible than the adjacent tissue that has not been stapled. Stated another way, the staple pattern 829 comprising the staples 830a, 830b, and 830c can create a sudden change in the material properties of the tissue. In at least one instance, a large strain gradient can be created within the tissue T as a result of the staple pattern which, in turn, can create a large stress gradient within the tissue T.

When the staples 830a-830c are ejected from a staple cartridge, the legs of the staples can puncture the tissue T. As a result, the staple legs create holes in the tissue. Various types of tissues are resilient and can stretch around the staple legs as the staple legs pass through the tissue. In various instances, the resiliency of the tissue can permit the tissue to stretch and resiliently return toward the staple legs to reduce or eliminate gaps present between the tissue and the staple legs. Such resiliency or elasticity can also permit the tissue to stretch when a stretching force is applied to the tissue; however, such resiliency can be inhibited by certain staple patterns. In at least one instance, the staple pattern 829 depicted in FIG. 11 can inhibit the longitudinal stretching of the tissue. When a longitudinal stretching force is applied to the tissue stapled by the staple pattern of FIG. 11, the tissue may begin to pull away from the staple legs and create gaps therebetween. In some instances, especially in bariatric resection applications, such gaps can result in increased bleeding from the stomach tissue. In certain instances, especially in lung resection applications, air leaks can result in the lung tissue, for example.

The staple pattern 813 depicted FIGS. 9 and 10 is more flexible or elastic than “traditional” staple pattern 829 arrangements of the type depicted in FIG. 11. For example, when a longitudinal tensile force is applied to the tissue T, referring now to FIG. 10, the staples 820a, 820b, and 820c can, one, translate longitudinally as the tissue is stretched longitudinally and/or, two, rotate as the tissue is stretched longitudinally. Moreover, the compliant staple pattern 813 depicted in FIG. 9 can reduce or eliminate the gaps between the staple legs and the tissue T when a longitudinal stretching force is applied to the tissue and, as a result, reduce the bleeding and/or air leaks between the staple legs and the tissue. The staple pattern 813 depicted in FIG. 9 is depicted in an unstretched condition. When the tissue stapled by the staple pattern depicted in FIG. 9 is stretched longitudinally, the staples can move longitudinally with the tissue and/or rotate within the tissue, as illustrated in FIG. 10. U.S. patent application Ser. No. 14/498,121, entitled FASTENER CARTRIDGE FOR CREATING A FLEXIBLE STAPLE LINE, filed Sep. 26, 2014, now U.S. Pat. No. 9,801,627, the entire disclosure of which is hereby incorporated by reference herein discloses various advantages as well as other variations of the elastic or compliant staple lines described above.

As indicated above, the staples 820a, 820b, 820c are supported on corresponding drivers 900a, 900b that are movably supported in cavities formed in the cartridge body 802. To achieve staples with consistent “formed” shapes, it may be desirable for each of the staples to exit out of their respective cavity so that the staple legs thereof are generally perpendicular to the corresponding portion of the staple forming undersurface 714 of the anvil 710. As indicated above, the staple drivers on which the staples are supported are driven upwardly when they are drivingly contacted by the corresponding ramps or camming members of the distally-moving sled or camming member 760. Because the sled ramps are moving in directions that are essentially transverse to the direction in which the drivers are moving, the driving motion applied by the sled ramps to the drivers could, at times, skew a staple driver within its respective cavity as it is driven upward therein. Such skewing of the staple driver(s) may undesirably result in one, an increase in the force required to drive the firing beam and/or two result in the skewing of the staples as they are ejected from the cartridge body which could ultimately lead to inconsistently formed staples or even malformed staples. Thus, it may be desirable to employ staple driver arrangements and corresponding cartridge body arrangements that afford sufficient amounts of support to the staple drivers as they are drivingly contacted by the sled ramps.

FIGS. 12-14 illustrate a staple driver 900a according to at least one embodiment of the present invention. In at least one arrangement, the staple drivers 900b may be mirror images of staple drivers 900a. As can be seen in FIG. 12, one staple driver 900a can support three staples 820a, 820b, 820c thereon. The staple driver 900a includes a first or innermost staple support portion 910 that is configured to support a first staple 820a thereon, a second or central staple support portion 930 that is configured to support a second staple 820b thereon and a third or outermost staple support portion 950 that is configured to support a third staple 820c thereon. As used in this context, the term “innermost” refers to the staple support portion that is closest to the elongate slot 804 in the cartridge body 802 and the term “outermost” refers to the staple support portion that is the farthest away from the elongate slot 804.

As can be seen in FIG. 12, the first staple support portion 910 comprises a first distal support column 914 and a first proximal support column 918. The first staple support portion 910 further includes a first distal support cradle 916 and a first proximal support cradle 920 for supporting portions of the first staple crown 827a. As can be further seen in FIG. 12, when the first staple crown 827a of the first staple 820a is supported on the support cradles 916 and 920, the first distal leg 823a is essentially axially aligned with the first distal support column 914 and the first proximal leg 825a is essentially axially aligned with the first proximal support column 918.

Still referring to FIG. 12, the driver 900a further comprises second staple support portion 930 that comprises a second distal support column 934 and a second proximal support column 938. The second staple support portion 930 further includes a second distal support cradle 936 and a second proximal support cradle 940 for supporting portions of the second staple crown 827b therein. As can also be seen in FIG. 12, when the second staple crown 827b of the second staple 820b is supported in the second cradles 936, 940, the second distal leg 823b is essentially axially aligned with the second distal support column 934 and the second proximal leg 825b is essentially axially aligned with the second proximal support column 938.

As can also be seen in FIG. 12, the driver 900a comprises a third staple support portion 950 that includes a third distal support column 954 and a third proximal support column 958. The third staple support portion 950 further includes a third distal support cradle 956 and a third proximal support cradle 960 that are configured to support portions of the third staple crown 827c of the third staple 820c therein. As can be seen in FIG. 12, when the third crown 827c of the third staple 820c is supported in the third cradles 956, 960, the third distal leg 823c is essentially axially aligned with the third distal support column 954 and the third proximal leg 825c is essentially axially aligned with the third proximal support column 958.

Still referring to FIGS. 12-14, in at least one arrangement the first staple support portion 910 is coupled to the second staple support portion 930 by a first or distal connection member 970. The first connection member 970 includes a first cam portion that has a first camming surface or ramp 974 formed on the underside thereof. The second staple support portion 930 is likewise connected to the third staple support portion 950 by a second or proximal connection member 980. A second cam member 982 protrudes from or is attached to the third staple support portion 950 and has a second camming surface or ramp 984 formed thereon. In the illustrated arrangement, the first and second camming surfaces 974, 984 are formed with the same angle and are essentially parallel to each other. In other arrangements, however, the first and second camming surfaces 974, 984 may differ from each other. The camming angle of the first and second camming surface 974, 984 may relate to the cam angles of the corresponding ramp or camming surfaces of the sled 760. In at least one embodiment, the staple driver 900a (and 900b) is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the staple driver 900a (and 900b) may be separately fabricated from other materials and be attached together by adhesive, solder, etc.

FIG. 15 is a bottom perspective view of a portion of one form of the surgical staple cartridge body 802. As indicated above, in at least one embodiment, the cartridge body 802 includes an elongate slot 804 that may be centrally disposed in the body 802. In the embodiment depicted in FIG. 15, for example, the elongate slot 804 bifurcates the cartridge body 802 into two body portions 850, 870 and extends along the centrally-disposed cartridge axis “CA”. As can be seen in that Figure, the first body portion 850 includes a first cartridge wall portion 852 that includes first support grooves or slots 854 that are each arranged on a corresponding first slot axis “FSA” that is transverse to the cartridge axis CA. The first body portion 850 further includes a second cartridge wall portion 856 that contains second support grooves or slots 858 therein that are each arranged on a corresponding second slot axis “SSA” that is transverse to the cartridge axis CA. Located between the first cartridge wall portion 852 and the second cartridge wall portion 856 are a plurality of spaced, staple driver guides 860. In at least one arrangement, the staple driver guides 860 are integrally formed with one or both of the cartridge wall portions 852, 856 in the cartridge body 802. In other arrangements, the staple driver guides 860 are attached to the wall portions of the cartridge body 802. Each staple driver guide 860 may be configured to slidably interlock with or, stated another way, slidably support two adjacent staple drivers 900a. See FIG. 17.

Referring now to FIGS. 16 and 17, in at least one arrangement, each of the staple drivers 900a includes opposed, hooked shaped slots 901, 903 that are configured to be “hookingly engaged” by corresponding opposed hook-shaped portions 862, 864, respectively of the staple driver guide 860. The hook-shaped portions 862 are configured to slidably support the first proximal support column 918 of a corresponding staple driver 900a and the hook-shaped portions 864 are configured to slidably support a third distal support column 954 of a corresponding staple driver 900a. In addition, the staple driver guide 860 further includes a proximal slot 863 that is configured to slidably support the second distal support column 934 of a corresponding staple driver 900a as well as a distal slot 868 that is configured to slidably support the second proximal support column 938 of the corresponding staple driver 900a. Thus, each staple driver 900a that is in sliding engagement with a corresponding staple driver guide 860 is slidably movable relative to the staple driver guide 860 when the staple driver 900a is drivingly contacted by the sled ramps or camming surfaces 762, 764.

Referring again to FIG. 15, the second body portion 870 includes a primary cartridge wall portion 872 that includes primary staple leg grooves or slots 874 therein that are each arranged on a corresponding primary slot axis “PSA” that is transverse to the cartridge axis CA. The second body portion further includes a secondary cartridge wall portion 876 that contains second support grooves or slots 878 therein that are each oriented on a corresponding secondary slot axis SDSA that is transverse to the cartridge axis CA. Located between the primary cartridge wall portion 872 and the secondary cartridge wall portion 876 are a plurality of other spaced driver guides 860 that are each configured to slidably interlock with two adjacent staple drivers 900b which may be mirror images of staple drivers 900a in the manner described above. Thus, each staple driver 900b that is in slidable engagement with a corresponding driver guide 860 is slidably movable relative to the driver guide 860 when the staple driver 900b is drivingly contacted by the sled ramps or camming members 766, 768. See FIG. 6.

In the illustrated embodiment, staple drivers 900a are arranged in first “staple driver array” generally designated as 905a as shown in FIGS. 16 and 17. When the staple drivers 900a are arranged as shown in FIGS. 16 and 17, each staple driver 900a may be in slidable engagement with two corresponding staple guides 860. See FIG. 17. In addition, the first distal support column 914 of each staple driver 900a may be slidably received within a corresponding first support groove or slots 854 in the first cartridge wall portion 852. See FIGS. 8 and 15. Likewise, the third proximal support column 958 of each staple driver 900a may be slidably received within a corresponding second support groove or slot 858 in the second cartridge wall portion 856. Thus, each of the support columns of the staple driver 900a are slidably supported by a corresponding staple driver guide 860 or they are supported by the corresponding cartridge wall portion. Such arrangement may serve to prevent any skewing of the support columns when the staple driver is driven upward within the cartridge body.

Referring again to FIG. 16, it can be seen that each of the first cam portions 972 of the staple drivers 900a are aligned along a first cam axis “FCA”. Thus, in at least one embodiment, each of the first camming surfaces 974 is axially aligned on the first cam axis FCA. Also, each of the second cam members 982 of the staple drivers 900a is axially aligned along a second cam axis “SCA”. Thus, each of the second camming surfaces 984 of the staple drivers 900a is axially aligned along the second cam axis SCA. In at least one arrangement, for example, the cam axes FCA and SCA are parallel to each other as well as to the elongate slot 804 (represented in segmented lines in FIG. 16) in the staple cartridge. Also in the illustrated staple driver array 905b, each of the first cam members 972 of the staple drivers 900b are aligned along a primary first cam axis “PCA”. Thus, in at least one embodiment, each of the first camming surfaces 974 of the staple drivers 900b are axially aligned on the primary cam axis PCA. Also, each of the second cam members 982 of the staple drivers 900b are all axially aligned along a secondary cam axis “SDCA”. Thus, each of the second camming surfaces 984 of the staple drivers 900b are axially aligned along the secondary cam axis SDCA.

FIGS. 18 and 19 illustrate the position of the sled or camming actuator 760 relative to the staple drivers 900a, 900b. As can be seen in FIG. 18, in the array 905a of staple drivers 900a, the ramp or camming member 764 is aligned with the second cam axis SCA. The ramp surface or camming member 762 is aligned with the first cam axis FCA. The ramp or camming member 766 is aligned on the primary cam axis PCA and the ramp or camming member 768 is aligned with the secondary cam axis SDCA. Thus, the ramp or camming member 764 is situated to proceed under a portion of each of the crowns 827c of staples 820c that are supported on the drivers 900a. The ramp or camming surface 762 is situated to proceed under a portion of each of the crowns 827c of staples 820a that are supported on the drivers 900a. Likewise, in the array 905b of the staple drivers 900b, the ramp or camming member 766 is situated to proceed under a portion of the crowns 827a of each of the staples 820a supported on the drivers 900b. The ramp or camming member 768 is situated to proceed under a portion of the crown 827c of each of the staples 820c supported on the drivers 900b. Stated another way, none of the ramps or camming members 764, 762, 766, 768 are aligned with any of the staple legs of the staples 820a, 820b, 820c that are supported on the drivers 900a, 900b. Such arrangement therefore enables the third proximal support columns 958 of each of the staple drivers 900a to be slidably received within corresponding second support grooves or slots 858 in the second cartridge wall portion 856 of the cartridge body 802. In addition, the first distal support columns 914 of each of the staple drivers 900a are slidably received within corresponding first support grooves or slots 854 in the first cartridge wall portion 852 of the cartridge 800. Likewise, each of the support columns 918, 934, 938, 954 is also slidably supported in corresponding driver guides 860 that are formed in or attached to the cartridge body 802. Each of the driver guides 860 may have the same height or similar height as the heights of the wall portions 852, 856.

Referring to FIG. 19 for example, the first and second cartridge wall portions 852, 856 (not shown in FIG. 19) have a height represented by “H”. The staple driver guides 860 may have the same or similar heights “H”. This height may also essentially comprise the height of the cartridge body 802 in at least some embodiments. Other embodiments may employ a “stepped deck” which is a deck surface that has more than one planar portion that have different heights which may be measured from the bottom of the cartridge body for example. In FIG. 19, element 816 may represent the staple deck surface (or at least one staple deck surface in embodiments employing a stepped deck) and 781 may represent a surface upon which the staple drivers 900a, 900b sit when they are in an unactuated orientation within the cartridge body. For example, element number 781 may represent the upper surface of the support pan 780. See FIG. 6. In at least one arrangement, the driver guides 860 may also have a height that is equal to or nearly equal to height “H” of the cartridge wall portions 852, 856. Thus, the support columns of each driver 900a, 900b are essentially slidably supported throughout their entire path of travel (distance “H”) when they are driven upward in the cartridge body when contacted by the ramps or camming members on the sled 760. In other embodiments, the support columns of each driver 900a, 900b are each supported for a distance or height that is at least (0.134 inch staple+at least 0.066 inch driver (0.2 inches total) for a staple cartridge that may be used to staple lung tissue for example). Stated another way, the driver can be advanced a distance that is at least as long as the height of the staple (e.g., height of 820). The staple crown is “ejected” from the staple pocket in the cartridge to prevent tissue from being stuck between the driver and the cartridge deck in its fully advanced state. Such feature may help to avoid the staple drivers 900a, 900b from skewing during actuation which may reduce the likelihood of the formation of malformed staples.

When the surgical instrument is “fired” or, stated another way, when the firing drive system 80 is actuated to drive the firing beam 280 distally, the tissue cutting member 750 contacts the sled or camming member 760 and drives the camming member 760 distally through the staple cartridge 800. As can be seen in FIG. 16, the camming members 982 of the staple driver 900a are located “inboard” (i.e., closer to the elongate slot 804) from the support columns 958 (and the staple legs 825c supported thereon). Likewise, the camming members 982 of the staple drivers 900b are located inboard of the support columns 958 of those staple drivers 900b and the staple legs 825c supported thereon. Such arrangements permit those support columns 958 to be completely slidably supported through their entire range of upward travel by the corresponding wall portions 856, 876 of the staple cartridge. In addition, the support columns 934, 938, 918, 954 are supported through their entire range of upward travel by the corresponding staple driver guides 860 formed in the cartridge body 802. Likewise the support column 914 of each of the staple drivers 900a, 900b are slidably supported in the corresponding wall portions 852, 872 of the cartridge body 802 through their entire range of upward travel.

Still referring to FIGS. 16 and 17, the driver array 905a comprises a plurality of staple drivers 900a that are each configured to support three staples 820a, 820b, 820c thereon. Of course during use, each driver 900a may actually support one, two or all three of such staples. On each staple driver 900a, staple 820a lies along axis FBA. Stated more precisely, the staple crown 827a of staple 820a lies along axis FBA. Staple 820c lies along axis TBA. Stated more precisely, the staple crown 827c of staple 820c lies along the third base axis TBA. In at least one arrangement axes FBA and TBA are parallel to each other. Staple 820b is centrally supported between staples 820a and 820c and lies along an axis SBA. Stated more precisely, the staple crown of 827b lies along the second base axis SBA. In the illustrated arrangement, SBA is transverse to axes FBA and TBA. Stated another way, the staple driver 900a is configured to support two surgical staples that are parallel to each other or extend in the same direction and one staple that is transverse to the other two staples or extends in another direction that differs from the directions in which the other two staples extend. In the illustrated arrangement, when the staple drivers 900a, 900b are all operably supported in the staple cartridge 800, all of the axes FBA, SBA, TBA are each transverse to the elongate slot 804.

As can be appreciated from reference to FIG. 16, when the staple drivers 900a are all operably supported in the staple cartridge in the staple driver array 905a, the staple drivers 900a form a first longitudinal row 1200a of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the first longitudinal row 1200a extend in a first direction as was described above. Likewise, the staple drivers 900a form a second longitudinal row 1202a of staples 820b that are adjacent the first longitudinal row 1200a. The staples 820b in the second longitudinal row 1202a extend in a second direction that is different from the first direction of the staples 820a in the first longitudinal row 1200a. In addition, the staple drivers 900a form a third longitudinal row 1204a of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The third longitudinal row 1204a is adjacent to the second longitudinal row 1202a.

Still referring to FIG. 16, when the staple drivers 900b are all operably supported in the staple cartridge in the staple driver array 905b, the staple drivers 900b form a first longitudinal row 1200b of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the first longitudinal row 1200b extend in a first direction as was described above. Likewise, the staple drivers 900b form a second longitudinal row 1202b of staples 820b that are adjacent the first longitudinal row 1200b. The staples 820b in the second longitudinal row 1202a extend in a second direction that is different from the first direction of the staples 820a in the first longitudinal row 1200a. In addition, the staple drivers 900b form a third longitudinal row 1204b of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The third longitudinal row 1204b is adjacent to the second longitudinal row 1202b.

Other staple driver arrays 990a, 990b are illustrated in FIGS. 20 and 21. As can be seen in those Figures, the staple driver array 990a employs a distal staple driver 1000a and a proximal staple driver 1100a in addition to a plurality of the staple drivers 900a. Likewise, the staple driver array 990b includes a distal staple driver 1000b and a proximal staple driver 1100b. Distal staple driver 1000b may essentially be a mirror image of distal staple driver 1000a and proximal staple driver 1100b may essentially be a mirror image of proximal staple driver 1100a. FIGS. 22-24 illustrate one exemplary form of a distal staple driver 1000a with it being understood that, in at least one arrangement, the distal staple driver 1000b essentially contains the same features as a distal staple driver 1000a, but is a mirror image thereof. Each distal staple driver 1000a, 1000b includes a distal staple support portion 1010 that is configured to support a corresponding distal most staple 820cd thereon. As can be seen in FIGS. 22-24, the distal staple support portion 1010 comprises a distal support column 1014 and a proximal support column 1018. The distal staple support portion 1010 further includes a distal support cradle 1016 and a proximal support cradle 1020 for supporting portions of the staple crown 827c of the corresponding distal staple 820cd. When the staple crown 827c of the distal staple 820cd is supported on the support cradles 1016 and 1020, the first distal leg 823c of the staple 820cd is essentially axially aligned with the first distal support column 1016 and the first proximal leg 825c is essentially axially aligned with the first proximal support column 1018. In at least one arrangement, the distal staple drivers 1000a, 1000b include a distal connection member 1070. The distal connection member 1070 is configured to slidably engage the corresponding distal-most driver guide (designated as 860D in FIG. 21).

In at least one arrangement, the distal connection member 1070 includes a hook-shaped distal slot 1072 that is configured to be “hookingly engaged” by the hook-shaped portion 864 on the corresponding distal-most driver guide 860D. In addition, the distal connection member 1070 may include a projection 1074 that is configured to be slidably received within a corresponding slot 868 in the distal most driver guide 860D. See FIG. 21. Thus, each distal staple driver 1000a, 1000b is slidably engaged with a corresponding driver guide 860. In addition, in the array 990a of staple drivers 900a, 1000a, the proximal support column 1018 of the distal staple driver 1000a may be slidably received within a corresponding second support groove or slot 858 in the second cartridge wall portion 856. Likewise, the proximal support column 1018 of the distal staple driver 1100b may be slidably received within a corresponding second support groove or slot 878 in the secondary cartridge wall portion 876. As can also be seen in FIGS. 23 and 24, a first cam member 1022 protrudes from or is attached to the distal staple support portion 1010 and has a first camming surface or ramp 1024 formed thereon. The distal connection member 1070 further includes a second distal cam portion 1026 that has a second or distal camming surface or ramp 1028 formed thereon as shown in FIGS. 23 and 24. In at least one arrangement, the camming surfaces 1024 have the same slope or angle as the slope/angle of camming surfaces 984. Likewise, the camming surfaces 1028 have the same slope/angle as the slope/angle of camming surfaces 974. In at least one embodiment, each distal staple driver 1000a, 1000b is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the distal staple drivers 1000a, 1000b may be separately fabricated from other materials and be attached together by adhesive, solder, etc.

FIGS. 25-27 illustrate an exemplary proximal staple driver 1100a. Proximal staple driver 1100b may essentially be a mirror image of proximal staple driver 1100a. Each proximal staple driver 1100a, 1100b includes. a proximal staple support portion 1110 that is configured to support a corresponding proximal most staple 820ap thereon. As can be seen in FIGS. 25-27, the proximal staple support portion 1110 comprises a distal support column 1114 and a proximal support column 1118. The proximal staple support portion 1110 further includes a distal support cradle 1116 and a proximal support cradle 1120 for supporting portions of the staple crown 827a of the corresponding proximal staple 820ap. When the staple crown 827a of the proximal staple 820ap is supported on the support cradles 1116 and 1120, the distal leg 823a of the staple 820ap is essentially axially aligned with the distal support column 1116 and the proximal leg 825a is essentially axially aligned with the proximal support column 1118. In at least one arrangement, the proximal staple drivers 1100a, 1100b include a body member 1170. The body member 1170 is configured to slidably engage the corresponding proximal-most driver guide (designated as 860P in FIG. 21).

In at least one arrangement, the body member 1170 includes a hook-shaped distal slot 1172 that is configured to be “hookingly engaged” by the hook-shaped portion 862 of the proximal-most driver guide 860P. In addition, the body member 1170 may include a projection 1174 that is configured to be slidably received within a corresponding slot 869 in the proximal most staple driver guide 860P. Thus, each proximal staple driver 1100a, 1100b is slidably engaged with a corresponding driver guide 860P. In addition, in the array 990a of staple drivers 900a, 1000a, 1100a, the distal support column 1114 of the proximal staple driver 1100a may be slidably received within a corresponding first staple leg groove 854 in the first cartridge wall portion 852. Likewise, the distal support column 1114 of the proximal staple driver 1110b may be slidably received within a corresponding primary staple leg groove 874 in the primary cartridge wall portion 872. As can also be seen in FIGS. 26 and 27, a first proximal cam portion 1122 protrudes from or is attached to the body member 1170 and has a first proximal camming surface or ramp 1124 formed thereon. The body member 1170 also includes a second distal cam portion or ramp 1126 that has a second distal camming surface 1128 formed thereon. In at least one arrangement, the camming surfaces 1124 have the same slope or angle as the slopes/angles of the camming surfaces or ramps 984, 1024. Likewise, the camming surfaces 1128 may have the same slope/angle as the slope/angle of camming surface 974 and 1028. In at least one embodiment, each proximal staple driver 1100a, 1100b is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the proximal staple drivers 1100a, 1100b may be separately fabricated from other materials and be attached together by adhesive, solder, etc.

Referring again to FIG. 20, it can be seen that in the staple driver array 990a in the illustrated arrangement, the distal cam portion 1126 of the proximal staple driver 1100a as well as each of the first cam members 972 of the staple drivers 900a, as well as the distal cam portion 1026 of the distal staple driver 1000a are all aligned along a first cam axis FCA. Thus, in at least one embodiment, each of the first distal camming surfaces 1028, 1128 as well as each of the first camming surfaces 974 is axially aligned on the first cam axis FCA. Also, the second proximal cam portion 1122 of the proximal staple driver 1100a and the proximal cam portion 1022 of the distal staple driver 1000a, as well as each of the second cam members 982 of the staple drivers 900a is all axially aligned along a second cam axis SCA. Thus, the proximal camming surfaces 1024, 1124 and the second camming surfaces 984 of the staple drivers 900a are axially aligned along the second cam axis SCA. Also in the illustrated staple driver array 990b, the distal cam portion 1126 of the proximal staple driver 1100b as well as the distal cam portion 1026 of the distal staple driver 1000b as well as each of the cam members 972 of the staple drivers 900b are all aligned along a primary cam axis PCA. Thus, in at least one embodiment, the distal camming surfaces 1128, 1028, as well as each of the first camming surfaces 974 in the staple driver array 990b are axially aligned on the primary cam axis PCA.

Still referring to FIG. 20, the staple driver array 990b in the illustrated arrangement, the first distal cam portion 1126 of the proximal staple driver 1100b as well as each of the first cam members 972 of the staple drivers 900b as well as the first distal cam portion 1026 of the distal staple driver 1000b are all aligned along a primary cam axis PCA. Thus, in at least one embodiment, each of the first distal camming surfaces 1028, 1128 as well as each of the first camming surfaces 974 in the staple driver array 990b is axially aligned on the primary cam axis PCA. Also, the second proximal cam portion 1122 of the proximal staple driver 1100b and second proximal cam portion 1022 of the distal staple driver 1000b, as well as each of the second cam members 982 of the staple drivers 900b are all axially aligned along a secondary cam axis SDCA. Thus each of the proximal camming surfaces 1024, 1124 and the second camming surfaces 984 of the staple drivers 900b are axially aligned along the second cam axis SDCA.

As was discussed above, in the array 990a, the ramp or camming surface 764 of the sled or camming member 760 is aligned with the second cam axis SCA. Likewise, the ramp or camming surface 762 is aligned with the first cam axis FCA. The ramp or camming surface 766 is aligned on the primary cam axis PCA and the ramp or camming surface 768 is aligned with the secondary cam axis SDCA. Thus, the ramp surface 764 is aligned with a portion of each of the crowns 827c of staples 820c. The ramp surface 762 is aligned with a portion of each of the crowns 827c of staples 820a as well as the crowns 827c of the staples 820cd. Likewise, in the array 990b of the staple drivers 1000b, 900b, 1100b, the ramp surface 766 is aligned with a portion of the crowns 827a of each of the staples 820a as well as a portion of the crown 827a of the proximal most staple 820ap. The ramp surface 768 is aligned with a portion of the crown 827c of each of the staples 820c as well as a portion of the crown 827c of the distal most staple 820cd. Stated another way, none of the ramps 764, 762, 766, 768 are aligned with any of the staple legs of the staples 820a, 820b, 820c, 820cd and 820ap. Such arrangement therefore enables the third proximal support columns 958 of each of the staple drivers 900a to be slidably received within corresponding second support grooves or slots 858 in the second cartridge wall portion 856 of the cartridge body 802. As well as the proximal support column 1018 of the distal staple driver 1000a to be slidably received within a corresponding support groove or slot 858 in the cartridge wall portion 856. In addition, the first distal support columns 914 of each of the staple drivers 900a are slidably received within corresponding first support grooves or slots 854 in the first cartridge wall portion 852 of the cartridge 800. In addition, the distal support column 1114 of the proximal staple driver 1100a is slidably received within a support groove or slot 854. In the staple driver array 990a, each of the support columns 1014, 918, 934, 938, 954, 1118 are also slidably supported in corresponding driver guides 860D, 860, 860P that are formed in the cartridge body 802 and may have the same heights or similar heights as the heights of the wall portions 852, 856.

When the surgical instrument is “fired” or stated another way, when the firing drive system 80 is actuated to drive the firing beam 280 distally, the tissue cutting member 750 contacts the sled or camming member 760 and drives the camming member 760 distally through the staple cartridge 800. As can be seen in FIG. 20, the camming members 982 of the staple driver 900a are located “inboard” from the support columns 958 (and the staple legs 825c supported thereon). Likewise, the camming member 1022 of the distal staple driver 1000a is located inboard of the proximal support column 1018 (and the staple leg 825c of the distal most staple 820cd supported thereon). In addition, the camming members 972 are all located inboard of the proximal support columns 914 (and the staple legs 823a of the staples 820a supported thereon). Also, the camming member 1126 of the proximal staple driver 1100a is located inboard of the support column 1114 (and the staple leg 823a of the proximal most staple 820ap supported thereon). The drivers 1000b, 900b, 1100b in driver array 990b are similarly configured. Such arrangements permit the support columns to either be slidably supported in corresponding slots in the cartridge wall portions or in slots in corresponding driver guides formed within the cartridge body through their entire range of upward travel.

As can be appreciated from reference to FIG. 20, when the staple drivers 900a, 1000a and 1100a are all operably supported in the staple cartridge in the staple driver array 990a, the staple drivers 900a, 1000a, 1100a form a first longitudinal row 1210a of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the first longitudinal row 1210a extend in a first direction as was described above. Likewise, the staple drivers 900a form a second longitudinal row 1212a of staples 820b that are adjacent the first longitudinal row 1210a. The staples 820b in the second longitudinal row 1212a extend in a second direction that is different from the first direction of the staples 820a in the first longitudinal row 1210a. In addition, the staple drivers 900a form a third longitudinal row 1214a of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The third longitudinal row 1214a is adjacent to the second longitudinal row 1212a.

Still referring to FIG. 20, when the staple drivers 900b are all operably supported in the staple cartridge in the staple driver array 990b, the staple drivers 900b form a first longitudinal row 1210b of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the first longitudinal row 1201b extend in a first direction as was described above. Likewise, the staple drivers 900b form a second longitudinal row 1212b of staples 820b that are adjacent the first longitudinal row 1210b. The staples 820b in the second longitudinal row 1210b extend in a second direction that is different from the first direction of the staples 820a in the first longitudinal row 1210b. In addition, the staple drivers 900b form a third longitudinal row 1214b of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. Stated another way, the staple crown of the staples 820a may lie along an axis and the staples 820c may lie along another axis that is parallel to the axis along which the staple crowns of the staples 820a lie as will be discussed in further detail below. The third longitudinal row 1214b is adjacent to the second longitudinal row 1212b.

Thus, when employing the staple driver arrays 990a, 990b, there are two staples extending side by side in the same direction or along parallel axes along both ends of each of the staple lines. In particular, the distal driver 1000a supports a distal most staple 820cd in the longitudinal row of staples 1214a that is extending in the same direction and essentially beside the distal most staple 820a in the longitudinal row 1210a. Similarly, the proximal driver 1100a supports a proximal most staple 820ap in the longitudinal row 1210a of staples that extends in the same direction and is essentially beside the proximal most staple 820c in the longitudinal row 1214a. Likewise, distal driver 1000b supports a distal most staple 820cd in the longitudinal row of staples 1214b that is extending in the same direction and essentially beside the distal most staple 820a in the longitudinal row 1210b. Similarly, the proximal driver 1100b supports a proximal most staple 820ap in the longitudinal row 1210b of staples that extends in the same direction and is essentially beside the proximal most staple 820c in the longitudinal row 1214b. Such staple pattern may provide a redundant seal arrangement at both ends of each line of staples. As used in this context, the term “line of staples” collectively refers to the longitudinal rows of staples on one side of the elongate slot 804 in the staple cartridge body 802. For example, line of staples, generally designated as 1220a, collectively refers to the longitudinal rows 1200a, 1202a, 1204a. Line of staples 1220b collectively refers to the longitudinal rows 1200b, 1202b, 1204b.

Other staple driver arrays 1300a, 1300b are illustrated in FIGS. 28 and 29. As can be seen in those Figures, the staple driver array 1300a employs a distal staple driver 1000a and a plurality of staple drivers 900a in the manners described above. This array also employs a proximal staple driver 1310a that operably supports a total of four staples. FIGS. 30-32 illustrate one exemplary form of a proximal staple driver 1310a with it being understood that, in at least one arrangement, the proximal staple driver 1310b essentially contains the same features as a proximal staple driver 1310a and may be a mirror image thereof. Each proximal staple driver 1310a, 1310b comprises a driver body 1311. In at least one form, the driver body 1311 includes a first or innermost staple support portion 1320 that is configured to support a staple 820a thereon, a second or central staple support portion 1350 that is configured to support a staple 820b thereon, third support portion 1370 that is configured to support a staple 820c thereon and a fourth or proximal most staple support portion 1390 that is configured to support a proximal most staple 820cp thereon.

As can be seen in FIGS. 30 and 31, the first staple support portion 1320 comprises a first distal support column 1324 and a first proximal support column 1328. The first staple support portion 1320 further includes a first distal support cradle 1326 and a first proximal support cradle 1330 for supporting portions of the first staple crown 827a. As can be seen in FIG. 31, when the first staple crown 827a of the first staple 820a is supported on the support cradles 1326 and 1330, the first distal leg 823a is essentially axially aligned with the first distal support column 1324 and the first proximal leg 825a is essentially axially aligned with the first proximal support column 1328. In addition, the staple crown 827a is supported or oriented along a first base axis FBA.

Still referring to FIGS. 30 and 31, the proximal staple driver 1310a further comprises second staple support portion 1350 that comprises a second distal support column 1354 and a second proximal support column 1358. The second staple support portion 1350 further includes a second distal support cradle 1356 and a second proximal support cradle 1360 for supporting portions of the second staple crown 827b therein. As can be seen in FIG. 31, when the second staple crown 827b of the second staple 820b is supported in the cradles 1356, 1360, the second distal leg 823b is essentially axially aligned with the second distal support column 1354 and the second proximal leg 825b is essentially axially aligned with the second proximal support column 1358. In addition, the staple crown 827b is supported or oriented along a second base axis SBA that, in at least one arrangement, is transverse to the first base axis FBA.

As can also be seen in FIGS. 30 and 31, the proximal staple driver 1310a comprises a third staple support portion 1370 that includes a third distal support column 1374 and a third proximal support column 1378. The third staple support portion 1370 further includes a third distal support cradle 1376 and a third proximal support cradle 1380 configured to support portions of the third staple crown 827c of the third staple 820c therein. As can be seen in FIG. 31, when the third crown 827c of the third staple 820c is supported in the cradles 1376, 1380, the third distal leg 823c is essentially axially aligned with the third distal support column 1374 and the third proximal leg 825c is essentially axially aligned with the third proximal support column 1378. In addition, the staple crown 827c is supported or oriented along a third base axis TBA that is, in at least one arrangement, parallel with the first base axis FBA and transverse to the second base axis SBA.

Still referring to FIGS. 30 and 31, the proximal staple driver 1310a comprises a fourth staple support portion 1390 that includes a fourth distal support column 1394 and a fourth proximal support column 1398. The fourth staple support portion 1390 further includes a fourth distal support cradle 1396 and a third proximal support cradle 1400 configured to support portions of the fourth staple crown 827cp of the proximal most or fourth staple 820cp therein. As can be seen in FIG. 31, when the fourth crown 827cp of the fourth staple 820cp is supported in the cradles 1396, 1400, the fourth distal leg 823cp is essentially axially aligned with the fourth distal support column 1394 and the fourth proximal leg 825cp is essentially axially aligned with the fourth proximal support column 1398. In addition, the staple crown 827cp is supported or oriented along a proximal base axis PBA that is, in at least one arrangement, parallel with the first base axis and the third base axis TBA and transverse to the second base axis SBA.

In at least one arrangement, the first staple support portion 1320, the second staple support portion 1350, the third staple support portion 1370 and the fourth staple support portion 1390 are all coupled together by a connector portion 1410. In at least one arrangement, the connector portion 1410 is formed with a centrally disposed opening or aperture 1412 that is configured to slidably receive the proximal most driver guide 860P therein. See FIG. 29. The connector portion 1410 is formed with a first hook-shaped slot 1414 that is adapted to be hookingly engaged by a hooked shaped portion 862P and a second hook shaped slot 1416 that is adapted to be hookingly engaged by a hook shaped portion 864P on the proximal most driver guide 860P that is formed in the cartridge body. In addition, a third slot 1418 is formed in the connector portion 1410 for slidably engaging a correspondingly shaped portion 866P of the driver guide 860P. A fourth slot 1420 is formed in the connector portion 1410 for slidably engaging a hook shaped portion 862 of the adjacent driver guide 860. See FIG. 29. Also in the illustrated embodiment, the connector portion 1410 includes a fifth slot 1422 for slidably receiving a correspondingly shaped portion 868P of the proximal most driver guide 860P. In addition, in the array 1300a of staple drivers 900a, 1000a, 1310a, the support columns 1324, 1394 of the proximal staple driver 1310a may be slidably received within a corresponding first support groove or slot 854 in the first cartridge wall portion 852 in the manner described above. In addition, the support column 1378 may be slidably supported in a corresponding support groove or slot 858 in the second cartridge wall portion 856. Likewise, the support columns 1324, 1394 of the proximal staple driver 1310b may be slidably received within a corresponding primary support groove or slot 874 in the primary cartridge wall portion 872 in the manner described above. In addition, the support column 1378 of the proximal staple driver 1310b may be slidably supported in a corresponding support groove or slot 878 in the secondary cartridge wall portion 876.

As can also be seen in FIGS. 31 and 32, the connector portion 1410 includes a first cam portion 1430 that has a first camming surface or ramp 1432 formed thereon. The connector portion 1410 also includes a second cam portion 1434 that has a second a second camming surface 1436 formed thereon. In at least one arrangement, the camming surfaces 1432, 1436 have the same slope or angle which may be the same or different from the slope(s) and/or angles(s) of the camming surfaces or ramps 974, 984. In at least one embodiment, each proximal staple driver 1310a, 1310b is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the proximal staple drivers 1310a, 1310b may be separately fabricated from other materials and be attached together by adhesive, solder, etc.

Referring again to FIG. 28, it can be seen that in the staple driver array 1300a in the illustrated arrangement, the first cam portion 1430 of the proximal staple driver 1310a and the distal cam portion 1026 of the distal staple driver 1000a, as well as each of the first cam members 972 of the staple drivers 900a are all axially aligned along a first cam axis FCA. Thus the proximal camming surface 1028, the second camming surfaces 974 of the staple drivers 900a and the camming surface 1432 are all axially aligned along the first cam axis FCA. The second cam portion 1434 of the proximal staple driver 1310a, as well as each of the second cam members 982 of the staple drivers 900a, as well as the cam member 1022 of the distal staple driver 1000a are all aligned along a second cam axis SCA. Thus, in at least one embodiment, the camming surface 1436, as well as each of the camming surfaces 984 and camming surface 1024 are all axially aligned on the second cam axis SCA. Also in the illustrated staple driver array 1300b, the cam portion 1430 of the proximal staple driver 1310b, as well as each of the cam members 972 of the staple drivers 900b, as well as the cam portion 1026 of the distal staple driver 1000b are all aligned along a primary cam axis PCA. Thus, the second camming surface 1432 of the proximal staple driver 1310b, the second camming surfaces 974 of the staple drivers 900b and the camming surface 1028 of the distal staple driver 1000b are all axially aligned along the second primary cam axis PCA. Still referring to FIG. 28, in the staple driver array 1300b of the illustrated arrangement, the second cam portion 1434 of the proximal staple driver 1310b, as well as each of the cam members 982 of the staple drivers 900b as well as the first proximal cam portion 1022 of the distal staple driver 1000b are all aligned along a secondary cam axis SDCA. Thus, in at least one embodiment, each of the camming surfaces 1436 as well as each of the camming surfaces 984 and camming surface 1024 are axially aligned on the secondary cam axis SDCA.

As can be appreciated from reference to FIG. 28, when the staple drivers 900a, 1000a and 1310a are all operably supported in the staple cartridge in the staple driver array 1300a, the staple drivers 900a, 1000a, 1310a form a first longitudinal row 1450a of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the first longitudinal row 1450a extend in a first direction as was described above. Likewise, the staple drivers 900a and the proximal staple driver 1310a form a second longitudinal row 1460a of staples 820b that are adjacent the first longitudinal row 1450a. The staples 820b in the second longitudinal row 1460a extend in a second direction that is different from the first direction of the staples 820a in the first longitudinal row 1450a. In addition, the staple drivers 1000a, 900a and 1310a form a third longitudinal row 1470a of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The third longitudinal row 1470a is adjacent to the second longitudinal row 1460a.

Still referring to FIG. 28, when the staple drivers 1000b, 900b and 1310b are all operably supported in the staple cartridge in the staple driver array 1300b, the staple drivers 1000b, 900b and 1310b form a primary longitudinal row 1450b of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the primary longitudinal row 1450b extend in a first direction as was described above. Likewise, the staple drivers 900b and 1310b form a secondary longitudinal row 1460b of staples 820b that are adjacent the primary longitudinal row 1450b. The staples 820b in the secondary longitudinal row 1460b extend in a second direction that is different from the first direction of the staples 820a in the primary longitudinal row 1450b. In addition, the staple drivers 1000b, 900b and 1310b form a tertiary longitudinal row 1470b of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The tertiary longitudinal row 1470b is adjacent to the secondary longitudinal row 1460b.

Thus, when employing the staple driver arrays 1300a, 1300b, there are two staples extending side by side in the same direction or along parallel axes along both ends of each of the staple lines. In particular, the distal driver 1000a supports a distal most staple 820cd in the longitudinal row of staples 1470a that is extending in the same direction and essentially beside the distal most staple in the longitudinal row 1450a. Similarly, the proximal driver 1310a supports two proximal most staples 820c and 820cp in the longitudinal rows 1450a and 1470a, respectively, of staples that extend in the same direction as the proximal most staple in the longitudinal row 1470a. Likewise, distal driver 1000b supports a distal most staple 820cd in the longitudinal row of staples 1470b that is extending in the same direction and essentially beside the distal most staple in the longitudinal row 1450b. Similarly, the proximal driver 1310b supports a proximal most staple in the longitudinal row 1450b of staples that extends in the same direction and is essentially beside the proximal most staple in the longitudinal row 1470b. Such staple pattern may provide a redundant seal arrangement at both ends of each line of staples. As used in this context, the term “line of staples” collectively refers to the longitudinal rows of staples on one side of the elongate slot 804 in the staple cartridge body 802. For example, line of staples, generally designated as 1480a, collectively refers to the longitudinal rows 1450a, 1460a, 1470a of staples. Line of staples 1480b collectively refers to the longitudinal rows 1450b, 1460b, 1470b of staples.

As was discussed above, in the array 1300a, the ramp or camming member 764 of the sled or camming actuator 760 is aligned with the second cam axis SCA. Likewise, the ramp or camming member 762 is aligned with the first cam axis FCA. The ramp or camming member 766 is aligned on the primary cam axis PCA and the ramp or camming member 768 is aligned with the secondary cam axis SDCA. Thus, the ramp or camming member 764 is aligned with a portion of each of the crowns 827c of staples 820c and 820cd. The ramp or camming member 762 is aligned with a portion of each of the crowns 827a of staples 820a as well as the crown 827c of the proximal most staple 820cp. Likewise, in the array 1300b of the staple drivers 1000b, 900b, 1310b, the ramp or camming member 766 is aligned with a portion of the crowns 827a of each of the staples 820a as well as a portion of the crown 827c of the proximal most staple 820cp. The ramp or camming member 768 is aligned with a portion of the crown 827c of each of the staples 820c as well as a portion of the crown 827c of the distal most staple 820cd. Stated another way, none of the ramps or camming members 764, 762, 766, 768 are aligned with any of the staple legs of the staples 820a, 820b, 820c, 820cd and 820cp. Such arrangement therefore enables the third proximal support columns 958 of each of the staple drivers 900a, as well as the proximal support column 1018 of the distal staple driver 1000a, as well as the support column 1378 of the proximal staple driver 1310 a to be slidably received within corresponding second support grooves or slots 858 in the second cartridge wall portion 856 of the cartridge body 802. Likewise, the first distal support columns 914 of each of the staple drivers 900a, as well as the support columns 1324, 1394 of the proximal staple driver 1310a are all slidably received within corresponding first support grooves or slots 854 in the first cartridge wall portion 852 of the cartridge 800. In the staple driver array 1300a, each of the support columns 1014, 918, 934, 938, 954, 1328, 1354, 1358, 1374, 1398 are also slidably supported in corresponding driver guides 860D, 860, 860P that are formed in the cartridge body 802 and may have the same heights or similar heights as the heights of the wall portions 852, 856.

Other staple driver arrays 1500a, 1500b are illustrated in FIGS. 33 and 34. As can be seen in those Figures, the staple driver array 1500a employs a plurality of staple drivers 1510a that operably supports three staples. The staple driver array 1500a also includes a distal staple driver 1610a that operably supports two staples. Likewise, staple driver array 1500b includes a plurality of staple drivers 1510b and a distal staple driver 1610b. Staple drivers 1510b may be mirror images of staple drivers 1510a and include the same features. Distal staple drivers 1610b may be mirror images of staple drivers 1610a and include the same features.

FIGS. 35-37 illustrate one exemplary form of a staple driver 1510a with it being understood that, in at least one arrangement, a staple driver 1510b essentially contains the same features as a staple driver 1510a and may be a mirror image thereof. Each staple driver 1510a, 1510b comprises a staple driver body 1511. In the illustrated arrangement, the driver body 1511 includes a first or innermost staple support portion 1520 that is configured to support a staple 820a thereon, a second or central staple support portion 1550 that is configured to support a staple 820b thereon and a third support portion 1570 that is configured to support a staple 820c thereon. As can be seen in FIG. 35, the first staple support portion 1520 comprises a first distal support column 1524 and a first proximal support column 1528. The first staple support portion 1520 further includes a first distal support cradle 1526 and a first proximal support cradle 1530 for supporting portions of the staple crown 827a of a staple 820a. As can be seen in FIG. 31, when the staple crown 827a of the staple 820a is supported on the support cradles 1526 and 1530, the distal leg 823a is essentially axially aligned with the first distal support column 1524 and the first proximal leg 825a is essentially axially aligned with the first proximal support column 1528. When the staple 820a is supported on the first staple support portion 1520, the staple crown 827a is aligned on a first base axis FBA.

Still referring to FIGS. 35 and 36, the proximal staple driver 1510a further comprises second staple support portion 1550 that comprises a second distal support column 1554 and a second proximal support column 1558. The second staple support portion 1550 further includes a second distal support cradle 1556 and a second proximal support cradle 1560 for supporting portions of a staple crown 827b of a staple 820b therein. As can be seen in FIG. 36, when the staple crown 827b of the staple 820b is supported in the cradles 1556, 1560, the distal leg 823b is essentially axially aligned with the second distal support column 1554 and the proximal leg 825b is essentially axially aligned with the second proximal support column 1558. When the staple 820b is supported on the second staple support portion 1550, the staple crown 827b is aligned on a second base axis SBA. In the illustrated arrangement, the second base axis SBA is transverse to the first base axis FBA.

As can also be seen in FIGS. 35 and 36, the proximal staple driver 1510a comprises a third staple support portion 1570 that includes a third distal support column 1574 and a third proximal support column 1578. The third staple support portion 1570 further includes a third distal support cradle 1576 and a third proximal support cradle 1580 configured to support portions of a staple crown 827c of a third staple 820c therein. As can be seen in FIG. 31, when the crown 827c of the staple 820c is supported in the cradles 1576, 1580, the distal leg 823c is essentially axially aligned with the distal support column 1574 and the proximal leg 825c is essentially axially aligned with the third proximal support column 1578. When the staple 820c is supported on the third staple support portion 1570, the staple crown 827c is aligned on a third base axis TBA. In the illustrated arrangement, the third base axis TBA is parallel to the first base axis FBA and transverse to the second base axis SBA.

Still referring to FIGS. 35-37, in at least one arrangement, the first staple support portion 1520, the second staple support portion 1550 and the third staple support portion 1570 are all coupled together by a connector portion 1590. In at least one arrangement, the connector portion 1590 is formed with a centrally disposed opening or aperture 1592 that is configured to slidably receive a corresponding first driver guide 1700 therein. See FIG. 34. The connector portion 1590 is formed with a first hook-shaped slot 1594 that is adapted to be hookingly engage by a hooked shaped portion 1702 on the first driver guide 1700. The hook shaped portion 1702 is adapted to slidably support the support column 1574 therein. In addition, as can be further seen in FIG. 34, each first driver guide 1700 includes a slot 1704 that is configured to slidably receive the second proximal support column 1558 of the corresponding staple driver 1510a therein. Each staple driver 1510a is also configured to slidably engage a second driver guide 1720 as shown in FIG. 34. Each second driver guide 1720 includes a first slot 1722 that is configured to slidably receive therein a first proximal support column 1528 of a corresponding staple driver 1510a. In addition, each second driver guide 1720 further has a second slot 1724 that is configured to slidably receive therein a second distal support column 1554 of the corresponding staple driver 1510a therein.

As can also be seen in FIGS. 35 and 36, the connector portion 1590 includes a first cam portion 1596 that has a first camming surface or ramp 1598 formed thereon. The connector portion 1590 also includes a second cam portion 1600 that has a second a second camming surface 1602 formed thereon. In at least one arrangement, the camming surfaces 1598, 1602 have the same slope or angle or they may have different slopes/angles. In at least one embodiment, each staple driver 1510a, 1510b is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the proximal staple drivers 1510a, 1510b may be separately fabricated from other materials and be attached together by adhesive, solder, etc.

The staple driver array 1500a in the illustrated embodiment also comprises a distal staple driver 1610a that is configured to operably support two staples. FIGS. 38-40 illustrate one exemplary form of a distal staple driver 1610a with it being understood that, in at least one arrangement, a staple driver 1610b essentially contains the same features as a staple driver 1610a and may be a mirror image thereof. Each staple driver 1610a, 1610b includes a driver body 1611. In the illustrated arrangement, each driver body 1611 includes a first staple support portion 1620 that is configured to support a staple 820a thereon and a second staple support portion 1650 that is configured to support a staple 820c thereon. As can be seen in FIG. 30, the first staple support portion 1620 comprises a first distal support column 1624 and a first proximal support column 1628. The first staple support portion 1620 further includes a first distal support cradle 1626 and a first proximal support cradle 1630 for supporting portions of the first staple crown 827a. As can be seen in FIG. 39, when the staple crown 827a of the staple 820a is supported on the support cradles 1626 and 1630, the distal leg 823a is essentially axially aligned with the first distal support column 1624 and the proximal leg 825a is essentially axially aligned with the first proximal support column 1628. When the staple 820a is supported on the first staple support portion 1620, the staple crown 827a is aligned on a first base axis FBA.

Still referring to FIGS. 38 and 39, the distal staple driver 1610a further comprises second staple support portion 1650 that comprises a second distal support column 1654 and a second proximal support column 1658. The second staple support portion 1650 further includes a second distal support cradle 1656 and a second proximal support cradle 1660 for supporting portions of the staple crown 827c of a staple 820c therein. As can be seen in FIG. 39, when the staple crown 827c of the staple 820c is supported in the cradles 1656, 1660, the distal leg 823c is essentially axially aligned with the second distal support column 1654 and the proximal leg 825c is essentially axially aligned with the second proximal support column 1658. When the staple 820c is supported on the second staple support portion 1650, the staple crown 827c is aligned on a second base axis SBA. In the illustrated arrangement, the second base axis SBA is parallel to the first base axis FBA.

In at least one arrangement, the first staple support portion 1620 and the second staple support portion 1650 of the distal staple driver 1610a are coupled together by a connector portion 1690. In at least one arrangement, the driver body portion 1690 is formed with a centrally disposed opening or aperture 1692 that is configured to slidably receive a corresponding distal driver guide 1730d therein. See FIG. 34. The distal driver guide 1730d includes a slot 1732 that is configured to slidably receive the first distal support column 1624 of the distal staple driver 1610a therein. The distal staple driver 1610a is also configured to slidably engage the distal most second driver guide 1720d as shown in FIG. 34. The distal most second staple driver guide 1720d includes a first slot 1722d that is configured to slidably receive therein the first proximal support column 1628 of the distal staple driver 1610a. In addition, the distal most second staple driver guide 1720d further has a second slot 1724d that is configured to slidably receive therein a second distal support column 1554 of the corresponding staple driver 1510a therein.

As can also be seen in FIGS. 39 and 40, the connector portion 1690 includes a first cam portion 1694 that has a first camming surface or ramp 1696 formed thereon. The connector portion 1690 also includes a second cam portion 1698 that has a second camming surface 1700 formed thereon. In at least one arrangement, the camming surfaces 1696, 1700 have the same slope or angle or they may have different slopes/angles. In at least one embodiment, each distal driver 1610a, 1610b is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the distal drivers 1610a, 1610b may be separately fabricated from other materials and be attached together by adhesive, solder, etc.

Referring again to FIG. 33, it can be seen that in the staple driver array 1500a in the illustrated arrangement, the first cam portion 1596 of each of the staple drivers 1510a and the cam portion 1694 of the distal staple driver 1610a are all axially aligned along a first cam axis FCA. Thus the camming surface 1598 of each of the drivers 1510a and the camming surface 1696 of the distal driver 1610a are axially aligned along the first cam axis FCA. The second cam portion 1600 of each of the drivers 1510a and the cam portion 1698 of the distal staple driver 1610a are all aligned along a second cam axis SCA. Thus, in at least one embodiment, the camming surface 1602 of each of the drivers 1510a and the camming surface 1700 of the distal driver 1610a are axially aligned on the second cam axis SCA. Also in the illustrated staple driver array 1500b, the cam portion 1596 of each of the drivers 1510b and the cam portion 1694 of the distal driver 1610b are all aligned along a primary cam axis PCA. Thus, the camming surface 1598 of each of the drivers 1510b and the camming surface 1696 of the distal driver 1610b are axially aligned along the primary cam axis PCA. Still referring to FIG. 33, in the staple driver array 1500b of the illustrated arrangement, the cam portion 1600 of each of the drivers 1510b and the cam portion 1698 of the distal driver 1610b are all aligned along a secondary cam axis SDCA. Thus, in at least one embodiment, the camming surface 1602 of each of the drivers 1510b and the camming surface 1700 of the distal driver 1610b are axially aligned on the secondary cam axis SDCA.

As can be appreciated from reference to FIG. 33, when the drivers 1510a and 1610a are all operably supported in the staple cartridge in the staple driver array 1500a, the staple drivers 1510a, 1610a form a first longitudinal row 1750a of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the first longitudinal row 1750a extend in a first direction as was described above. Likewise, the drivers 1510a form a second longitudinal row 1760a of staples 820b that are adjacent the first longitudinal row 1750a. The staples 820b in the second longitudinal row 1760a extend in a second direction that is different from the first direction of the staples 820a in the first longitudinal row 1750a. In addition, the drivers 1510a and 1610a form a third longitudinal row 1770a of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The third longitudinal row 1770a is adjacent to the second longitudinal row 1760a.

Still referring to FIG. 33, when the staple drivers 1510b and 1610b are all operably supported in the staple cartridge in the staple driver array 1500b, the staple drivers 1510b and 1610b form a primary longitudinal row 1750b of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the primary longitudinal row 1750b extend in a first direction as was described above. Likewise, the staple drivers 1510b form a secondary longitudinal row 1760b of staples 820b that are adjacent the primary longitudinal row 1750b. The staples 820b in the secondary longitudinal row 1760b extend in a second direction that is different from the first direction of the staples 820a in the primary longitudinal row 1750b. In addition, the staple drivers 1510b and 1610b form a tertiary longitudinal row 1770b of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The tertiary longitudinal row 1770b is adjacent to the secondary longitudinal row 1760b.

Thus, when employing the staple driver arrays 1500a, 1500b, there are two staples extending side by side in the same direction or along parallel axes along both ends of each of the staple lines. In particular, the distal driver 1610a supports two distal most staples in the longitudinal rows 1750a, 1770a that each extend in the same direction. Similarly, the proximal most driver 1510a supports two proximal most staples in the longitudinal rows 1550a and 1570a of staples that extend in the same direction. Likewise, distal driver 1610b supports two distal most staples in the longitudinal rows 1750b, 1770b of staples that extend in the same direction. Such staple pattern may provide a redundant seal arrangement at both ends of each line of staples. As used in this context, the term “line of staples” collectively refers to the longitudinal rows of staples on one side of the elongate slot 804 in the staple cartridge body 802. For example, line of staples, generally designated as 1780a, collectively refers to the longitudinal rows 1750a, 1760a, 1770a of staples. Line of staples 1780b collectively refers to the longitudinal rows 1750b, 1760b, 1770b of staples.

As was discussed above, in the array 1500a, the ramp or camming surface 764 of the sled or camming actuator 760 is aligned with the second cam axis SCA. Likewise, the ramp or camming member 762 is aligned with the first cam axis FCA. The ramp or camming member 766 is aligned on the primary cam axis PCA and the ramp or camming member 768 is aligned with the secondary cam axis SDCA. Thus, the ramp or camming member 764 is aligned with a portion of each of the crowns 827c of staples 820c. The ramp or camming member 762 is aligned with a portion of each of the crowns 827a of staples 820a. Likewise, in the array 1500b of the staple drivers 1510b, 1610b, the ramp or camming member 766 is aligned with a portion of the crowns 827a of each of the staples 820a. The ramp or camming member 768 is aligned with a portion of the crown 827c of each of the staples 820c. Stated another way, none of the ramps or camming members 764, 762, 766, 768 are aligned with any of the staple legs of the staples 820a, 820c. Such arrangement therefore enables the third proximal support columns 1578 of each of the staple drivers 1510a, as well as the proximal support column 1658 of the distal staple driver 1610a to be slidably received within corresponding second support grooves or slots 858 in the second cartridge wall portion 856 of the cartridge body 802. Likewise, the first distal support columns 1524 of each of the staple drivers 1510a, as well as the support column 1624 of the distal staple driver 1610a are all slidably received within corresponding first support grooves or slots 854 in the first cartridge wall portion 852 of the cartridge 800. In the staple driver array 1500a, each of the support columns 1654, 1628, 1554, 1558, 1574, 1528 are also slidably supported in corresponding driver guides 1700, 1720, 1730d that are formed in the cartridge body 802 and may have the same heights or similar heights as the heights of the cartridge wall portions 852, 856.

Other staple driver arrays 1800a, 1800b are illustrated in FIGS. 41 and 42. As can be seen in those Figures, the staple driver array 1800a employs a plurality of staple drivers 1810a that operably supports three staples. The staple driver array 1800a also includes a proximal staple driver 1910a that operably supports two staples. Likewise, staple driver array 1800b includes a plurality of staple drivers 1810b and a proximal staple driver 1910b. Staple drivers 1810b may be mirror images of staple drivers 1810a and include the same features. Proximal staple drivers 1910b may be mirror images of staple drivers 1910a and include the same features.

FIGS. 43-45 illustrate one exemplary form of a staple driver 1810a with it being understood that, in at least one arrangement, a staple driver 1810b essentially contains the same features as a staple driver 1810a and may be a mirror image thereof. Each staple driver 1810a, 1810b comprises a staple driver body 1811. In the illustrated arrangement, the driver body 1811 includes a first or innermost staple support portion 1820 that is configured to support a staple 820a thereon, a second or central staple support portion 1850 that is configured to support a staple 820b thereon and a third support portion 1870 that is configured to support a staple 820c thereon. As can be seen in FIG. 43, the first staple support portion 1820 comprises a first distal support column 1824 and a first proximal support column 1828. The first staple support portion 1820 further includes a first distal support cradle 1826 and a first proximal support cradle 1830 for supporting portions of the staple crown 827a of a staple 820a. As can be seen in FIG. 44, when the staple crown 827a of the staple 820a is supported on the support cradles 1826 and 1830, the distal leg 823a is essentially axially aligned with the first distal support column 1824 and the first proximal leg 825a is essentially axially aligned with the first proximal support column 1828. When the staple 820a is supported on the first staple support portion 1820, the staple crown 827a is aligned on a first base axis FBA.

Still referring to FIGS. 43 and 44, the staple driver 1810a further comprises second staple support portion 1850 that comprises a second distal support column 1854 and a second proximal support column 1858. The second staple support portion 1850 further includes a second distal support cradle 1856 and a second proximal support cradle 1860 for supporting portions of a staple crown 827b of a staple 820b therein. As can be seen in FIG. 44, when the staple crown 827b of the staple 820b is supported in the cradles 1856, 1860, the distal leg 823b is essentially axially aligned with the second distal support column 1854 and the proximal leg 825b is essentially axially aligned with the second proximal support column 1858. When the staple 820b is supported on the second staple support portion 1850, the staple crown 827b is aligned on a second base axis SBA. In the illustrated arrangement, the second base axis SBA is transverse to the first base axis FBA. See FIG. 43.

As can also be seen in FIGS. 43 and 44, the staple driver 1810a comprises a third staple support portion 1870 that includes a third distal support column 1874 and a third proximal support column 1878. The third staple support portion 1870 further includes a third distal support cradle 1876 and a third proximal support cradle 1880 configured to support portions of a staple crown 827c of a third staple 820c therein. As can be seen in FIG. 44, when the crown 827c of the staple 820c is supported in the cradles 1876, 1880, the distal leg 823c is essentially axially aligned with the distal support column 1874 and the proximal leg 825c is essentially axially aligned with the third proximal support column 1878. When the staple 820c is supported on the third staple support portion 1870, the staple crown 827c is aligned on a third base axis TBA. In the illustrated arrangement, the third base axis TBA is parallel to the first base axis FBA and transverse to the second base axis SBA. See FIG. 43.

Still referring to FIGS. 43-45, in at least one arrangement, the first staple support portion 1820, the second staple support portion 1850 and the third staple support portion 1870 are all coupled together by a connector portion 1890. In at least one arrangement, the connector portion 1890 is formed with a centrally disposed opening or aperture 1892 that is configured to slidably receive a corresponding first driver guide 2000 therein. See FIG. 42. The connector portion 1890 is formed with a first hook-shaped slot 1894 that is adapted to be hookingly engaged by a hooked shaped portion 2002 on the first driver guide 2000. The hook shaped portion 2002 is adapted to slidably support the support column 1828 therein. In addition, as can be further seen in FIG. 42, each first driver guide 2000 includes a slot 2004 that is configured to slidably receive the support column 1878 of the corresponding staple driver 1810a therein. Each staple driver 1810a is also configured to slidably engage a second driver guide 2020 as shown in FIG. 42. Each second driver guide 2020 includes a first slot 2022 that is configured to slidably receive therein a support column 1858 of a corresponding staple driver 1810a. In addition, each second driver guide 2020 further has a second slot 2024 that is configured to slidably receive therein a support column 1874 of the corresponding staple driver 1810a therein.

As can also be seen in FIGS. 44 and 45, the connector portion 1890 includes a first cam portion 1896 that has a first camming surface or ramp 1898 formed thereon. The connector portion 1890 also includes a second cam portion 1900 that has a second a second camming surface 1902 formed thereon. In at least one arrangement, the camming surfaces 1898, 1902 have the same slope or angle or they may have different slopes/angles. In at least one embodiment, each staple driver 1810a, 1810b is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the proximal staple drivers 1810a, 1810b may be separately fabricated from other materials and be attached together by adhesive, solder, etc.

The staple driver array 1800a in the illustrated embodiment also comprises a proximal staple driver 1910a that is configured to operably support two staples. FIGS. 46-48 illustrate one exemplary form of a distal staple driver 1910a with it being understood that, in at least one arrangement, a staple driver 1910b essentially contains the same features as a staple driver 1910a and may be a mirror image thereof. Each staple driver 1910a, 1910b includes a driver body 1911. In the illustrated arrangement, each driver body 1911 includes a first staple support portion 1920 that is configured to support a staple 820a thereon and a second staple support portion 1950 that is configured to support a staple 820c thereon. As can be seen in FIG. 46, the first staple support portion 1920 comprises a first distal support column 1924 and a first proximal support column 1928. The first staple support portion 1920 further includes a first distal support cradle 1926 and a first proximal support cradle 1930 for supporting portions of the first staple crown 827a. As can be seen in FIG. 47, when the staple crown 827a of the staple 820a is supported on the support cradles 1926 and 1930, the distal leg 823a is essentially axially aligned with the first distal support column 1924 and the proximal leg 825a is essentially axially aligned with the first proximal support column 1928. When the staple 820a is supported on the first staple support portion 1920, the staple crown 827a is aligned on a first base axis FBA. See FIG. 47.

Still referring to FIGS. 46 and 47, the distal staple driver 1910a further comprises second staple support portion 1950 that comprises a second distal support column 1954 and a second proximal support column 1958. The second staple support portion 1950 further includes a second distal support cradle 1956 and a second proximal support cradle 1960 for supporting portions of the staple crown 827c of a staple 820c therein. As can be seen in FIG. 47, when the staple crown 827c of the staple 820c is supported in the cradles 1956, 1960, the distal leg 823c is essentially axially aligned with the second distal support column 1954 and the proximal leg 825c is essentially axially aligned with the second proximal support column 1958. When the staple 820c is supported on the second staple support portion 1950, the staple crown 827c is aligned on a second base axis SBA. In the illustrated arrangement, the second base axis SBA is parallel to the first base axis FBA.

Still referring to FIGS. 46-48, in at least one arrangement, the first staple support portion 1920 and the second staple support portion 1950 of the proximal staple driver 1910a are coupled together by a connector portion 1990. In at least one arrangement, the connector portion 1990 is formed to slidably mate with a proximal most second driver guide 2020P. See FIG. 42. The support column 1954 of the proximal driver 1910a is configured to be slidably supported in the slot 2024 in the proximal most second driver guide 2020P.

As can also be seen in FIGS. 47 and 48, the connector portion 1990 includes a first cam portion 1992 that has a first camming surface or ramp 1994 formed thereon. The connector portion 1990 also includes a second cam portion 1996 that has a second camming surface 1998 formed thereon. In at least one arrangement, the camming surfaces 1994, 1998 have the same slope or angle or they may have different slopes/angles. In at least one embodiment, each proximal driver 1910a, 1910b is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the distal drivers 1910a, 1910b may be separately fabricated from other materials and be attached together by adhesive, solder, etc.

Referring again to FIG. 41, it can be seen that in the staple driver array 1800a in the illustrated arrangement, the cam portion 1896 of each of the staple drivers 1810a and the cam portion 1992 of the proximal staple driver 1910a are all axially aligned along a first cam axis FCA. Thus the camming surface 1994 of each of the drivers 1910a and the camming surface 1994 of the proximal driver 1910a are axially aligned along the first cam axis FCA. The second cam portion 1900 of each of the drivers 1910a and the cam portion 1996 of the proximal staple driver 1910a are all aligned along a second cam axis SCA. Thus, in at least one embodiment, the camming surface 1902 of each of the drivers 1910a and the camming surface 1998 of the proximal driver 1910a are axially aligned on the second cam axis SCA. Also in the illustrated staple driver array 1900b, the cam portion 1896 of each of the drivers 1810b and the cam portion 1992 of the proximal driver 1910b are all aligned along a primary cam axis PCA. Thus, the camming surface 1898 of each of the drivers 1810b and the camming surface 1994 of the proximal driver 1910b are axially aligned along the primary cam axis PCA. Still referring to FIG. 41, in the staple driver array 1800b of the illustrated arrangement, the cam portion 1900 of each of the drivers 1810b and the cam portion 1996 of the proximal driver 1910b are all aligned along a secondary cam axis SDCA. Thus, in at least one embodiment, the camming surface 1902 of each of the drivers 1810b and the camming surface 1998 of the proximal driver 1910b are axially aligned on the secondary cam axis SDCA.

As can be appreciated from reference to FIG. 41, when the drivers 1810a and 1910a are all operably supported in the staple cartridge in the staple driver array 1800a, the staple drivers 1810a, 1910a form a first longitudinal row 2050a of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the first longitudinal row 2050a extend in a first direction as was described above. Likewise, the drivers 1810a form a second longitudinal row 2060a of staples 820b that are adjacent the first longitudinal row 2050a. The staples 820b in the second longitudinal row 2060a extend in a second direction that is different from the first direction of the staples 820a in the first longitudinal row 2050a. In addition, the drivers 1810a and 1910a form a third longitudinal row 2070a of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The third longitudinal row 2070a is adjacent to the second longitudinal row 2070a.

Still referring to FIG. 41, when the staple drivers 1810b and 1910b are all operably supported in the staple cartridge in the staple driver array 1800b, the staple drivers 1810b and 1910b form a primary longitudinal row 2050b of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the primary longitudinal row 2050b extend in a first direction as was described above. Likewise, the staple drivers 1810b form a secondary longitudinal row 2060b of staples 820b that are adjacent the primary longitudinal row 2050b. The staples 820b in the secondary longitudinal row 2060b extend in a second direction that is different from the first direction of the staples 820a in the primary longitudinal row 2050b. In addition, the staple drivers 1810b and 1910b form a tertiary longitudinal row 2070b of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The tertiary longitudinal row 2070b is adjacent to the secondary longitudinal row 2060b.

Thus, when employing the staple driver arrays 1800a, 1800b, there are two staples extending side by side in the same direction or along parallel axes along both ends of each of the staple lines. In particular, the proximal driver 1910a supports two distal most staples in the longitudinal rows 2050a, 2070a that each extend in the same direction. Similarly, the distal most driver 1810a supports two proximal most staples in the longitudinal rows 2050a and 2070a of staples that extend in the same direction. Such staple pattern may provide a redundant seal arrangement at both ends of each line of staples. As used in this context, the term “line of staples” collectively refers to the longitudinal rows of staples on one side of the elongate slot 804 in the staple cartridge body 802. For example, line of staples, generally designated as 2080a, collectively refers to the longitudinal rows 2050a, 2060a, 2070a of staples. Line of staples 2080b collectively refers to the longitudinal rows 2050b, 2060b, 2070b of staples.

As was discussed above, in the array 1800a, the ramp or camming member 764 of the sled or camming actuator 760 is aligned with the second cam axis SCA. Likewise, the ramp or camming member 762 is aligned with the first cam axis FCA. The ramp or camming member 766 is aligned on the primary cam axis PCA and the ramp or camming member 768 is aligned with the secondary cam axis SDCA. Thus, the ramp or camming member 764 is aligned with a portion of each of the crowns 827c of staples 820c. The ramp or camming member 762 is aligned with a portion of each of the crowns 827a of staples 820a. Likewise, in the array 1800b of the staple drivers 1810b, 1910b, the ramp or camming member 766 is aligned with a portion of the crowns 827a of each of the staples 820a. The ramp or camming member 768 is aligned with a portion of the crown 827c of each of the staples 820c. Stated another way, none of the ramps or camming members 764, 762, 766, 768 are aligned with any of the staple legs of the staples 820a, 820c. Such arrangement therefore enables the third proximal support columns 1878 of each of the staple drivers 1810a, as well as the proximal support column 1958 of the proximal staple driver 1910a to be slidably received within corresponding second support grooves or slots 858 in the second cartridge wall portion 856 of the cartridge body 802. Likewise, the first distal support columns 1824 of each of the staple drivers 1810a, as well as the support column 1924 of the proximal staple driver 1910a are all slidably received within corresponding first support grooves or slots 854 in the first cartridge wall portion 852 of the cartridge 800. In the staple driver array 1800a, each of the support columns 1874, 1828, 1854, 1858, 1954, 1928 are also slidably supported in corresponding driver guides 2000, 2020, 2020P that are formed in the cartridge body 802.

Other staple driver arrays 2100a, 2100b are illustrated in FIGS. 49 and 50. As can be seen in those Figures, the staple driver array 2100a employs a plurality of staple drivers 2110a that operably support five staples and a plurality of drivers 2310a that operably support four staples. Likewise, staple driver array 2100b includes a plurality of staple drivers 2310b and a distal staple driver 2310b. Staple drivers 2110b may be mirror images of staple drivers 2110a and include the same features. Staple drivers 2310b may be mirror images of staple drivers 2310a and include the same features.

FIGS. 51-53 illustrate one exemplary form of a staple driver 2110a with it being understood that, in at least one arrangement, a staple driver 2110b essentially contains the same features as a staple driver 2110a and may be a mirror image thereof. Each staple driver 2110a, 2110b comprises a staple driver body 2111. In the illustrated arrangement, the driver body 2111 includes a first staple support portion 2120 that is configured to support a staple 820a thereon. As can be seen in FIG. 51, the first staple support portion 2120 comprises a first distal support column 2124 and a first proximal support column 2128. The first staple support portion 2120 further includes a first distal support cradle 2126 and a first proximal support cradle 2130 for supporting portions of the staple crown 827a of a corresponding staple 820a thereon. As can be seen in FIG. 52, when the staple crown 827a of the staple 820a is supported on the support cradles 2126 and 2130, the distal leg 823a is essentially axially aligned with the first distal support column 2124 and the first proximal leg 825a is essentially axially aligned with the first proximal support column 2128. When the staple 820a is supported on the first staple support portion 2120, the staple crown 827a is aligned on a first base axis FBA.

Still referring to FIGS. 51 and 52, the staple driver 2110a further comprises a primary staple support portion 2140 that comprises a second distal support column 2142 and a second proximal support column 2146. The second staple support portion 2140 further includes a second distal support cradle 2144 and a second proximal support cradle 2148 for supporting portions of a staple crown 827c of a staple 820c therein. As can be seen in FIG. 52, when the staple crown 827c of the staple 820c is supported in the cradles 2144, 2148, the distal leg 823c is essentially axially aligned with the second distal support column 2142 and the proximal leg 825c is essentially axially aligned with the second proximal support column 2146. When the staple 820c is supported on the primary staple support portion 2140, the staple crown 827c is aligned on a primary base axis PBA. In the illustrated arrangement, the primary base axis PBA is parallel to the first base axis FBA. See FIG. 51.

The staple driver 2110a further comprises second staple support portion 2150 that comprises a second distal support column 2154 and a second proximal support column 2158. The second staple support portion 2150 further includes a second distal support cradle 2156 and a second proximal support cradle 2160 for supporting portions of a staple crown 827b of a staple 820b therein. As can be seen in FIG. 52, when the staple crown 827b of the staple 820b is supported in the cradles 2156, 2160, the distal leg 823b is essentially axially aligned with the second distal support column 2154 and the proximal leg 825b is essentially axially aligned with the second proximal support column 2158. When the staple 820b is supported on the second staple support portion 2150, the staple crown 827b is aligned on a second base axis SBA. In the illustrated arrangement, the second base axis SBA is transverse to the first base axis FBA and the primary base axis PBA. See FIG. 51.

As can also be seen in FIGS. 51 and 52, the staple driver 2110a comprises a third staple support portion 2160 that includes a third distal support column 2162 and a third proximal support column 2166. The third staple support portion 2160 further includes a third distal support cradle 2164 and a third proximal support cradle 2168 configured to support portions of a staple crown 827a of a staple 820a therein. As can be seen in FIG. 52, when the crown 827a of the staple 820a is supported in the cradles 2164, 2168, the distal leg 823a is essentially axially aligned with the distal support column 2162 and the proximal leg 825a is essentially axially aligned with the third proximal support column 2166. When the staple 820a is supported on the third staple support portion 2160, the staple crown 827a is aligned on a third base axis TBA. In the illustrated arrangement, the third base axis TBA is parallel to the first base axis FBA and the primary base axis PBA and transverse to the second base axis SBA. See FIG. 51.

As can be further seen in FIGS. 51 and 52, the staple driver 2110a comprises a fourth staple support portion 2170 that includes a fourth distal support column 2172 and a fourth proximal support column 2176. The fourth staple support portion 2170 further includes a fourth distal support cradle 2174 and a fourth proximal support cradle 2178 configured to support portions of a staple crown 827c of a staple 820c therein. As can be seen in FIG. 52, when the crown 827c of the staple 820c is supported in the cradles 2174, 2178, the distal leg 823c is essentially axially aligned with the distal support column 2172 and the proximal leg 825c is essentially axially aligned with the fourth proximal support column 2176. When the staple 820c is supported on the fourth staple support portion 2160, the staple crown 827a is aligned on a fourth base axis FTBA. In the illustrated arrangement, the fourth base axis FTBA is parallel to the first base axis FBA, the primary base axis PBA and the third base axis TBA and is transverse to the second base axis SBA. See FIG. 51.

Still referring to FIGS. 51-53, in at least one arrangement, the first staple support portion 2120, the primary staple support portion 2140, the second staple support portion 2150, the third staple support portion 2160 and the fourth staple support portion 2170 are all coupled together by a connector portion 2190. In at least one arrangement, the connector portion 2190 is formed with a first opening or aperture 2191 that is configured to slidably receive a corresponding first driver guide 2200 therein as will be further discussed below. See FIGS. 50 and 50A. The connector portion 2190 is formed with a first hook-shaped slot 2192 that is adapted to hookingly engage a hooked shaped portion 2202 on the first driver guide 2200. In one instance, the hook shaped portion 2202 has a slot 2204 that is adapted to slidably support a corresponding support column 2172 therein. See FIG. 50A. In another instance, the slot 2204 is configured to receive a corresponding support portion 2144 therein as shown in FIG. 50A. In addition, as can be further seen in FIG. 50A, each first driver guide 2200 includes a slot 2206 that is configured to slidably receive the support column 2156 of the corresponding staple driver 2110a therein. As can be seen in FIGS. 50A and 51, the connector portion 2190 further has a second opening 2194 therethrough that is configured to slidably engage a second driver guide 2220. Each second driver guide 2220 includes a first hook shaped portion 2222 that has a slot 2224 therein. In one instance, the slot 2224 is configured to slidably receive therein a support column 2128 of a corresponding staple driver 2110a. In addition, each second driver guide 2220 further has a second slot 2226 that is configured, in one instance, to slidably receive therein a support column 2152 of the corresponding staple driver 2110a therein.

As can also be seen in FIGS. 52 and 53, the connector portion 2190 includes a first cam portion 2195 that has a first camming surface or ramp 2196 formed thereon. The connector portion 2190 also includes a second cam portion 2197 that has a second a second camming surface 2198 formed thereon. In at least one arrangement, the camming surfaces 2196, 2198 have the same slope or angle or they may have different slopes/angles. In at least one embodiment, each staple driver 2110a, 2110b is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the proximal staple drivers 2110a, 2110b may be separately fabricated from other materials and be attached together by adhesive, solder, etc.

The staple driver array 2100a in the illustrated embodiment also comprises a second staple driver 2310a that is configured to operably support four staples. FIGS. 54-56 illustrate one exemplary form of a distal staple driver 2310a with it being understood that, in at least one arrangement, a staple driver 2310b essentially contains the same features as a staple driver 2310a and may be a mirror image thereof. Each staple driver 2310a, 2310b includes a driver body 2311. In the illustrated arrangement, each driver body 2311 includes a first staple support portion 2320 that is configured to support a staple 820a thereon, a second staple support portion 2330 that is configured to support a staple 820b thereon, a third staple support portion 2340 that is configured to operably support another staple 820b thereon and a fourth staple support portion 2350 that is configured to operably support a staple 820c thereon. As can be seen in FIG. 54, the first staple support portion 2320 comprises a first distal support column 2322 and a first proximal support column 2326. The first staple support portion 2320 further includes a first distal support cradle 2324 and a first proximal support cradle 2328 for supporting portions of the first staple crown 827a. As can be seen in FIG. 55, when the staple crown 827a of the staple 820a is supported on the support cradles 2324 and 2328, the distal leg 823a is essentially axially aligned with the first distal support column 2322 and the proximal leg 825a is essentially axially aligned with the first proximal support column 2326. When the staple 820a is supported on the first staple support portion 1620, the staple crown 827a is aligned on a first base axis FBA. See FIG. 54.

Still referring to FIGS. 54 and 55, the second staple driver 2310a further comprises second staple support portion 2330 that comprises a second distal support column 2332 and a second proximal support column 2326. The second staple support portion 2330 further includes a second distal support cradle 2334 and a second proximal support cradle 2338 for supporting portions of the staple crown 827b of a staple 820b therein. As can be seen in FIG. 55, when the staple crown 827b of the staple 820b is supported in the cradles 2334, 2338, the distal leg 823b is essentially axially aligned with the second distal support column 2332 and the proximal leg 825b is essentially axially aligned with the second proximal support column 2336. When the staple 820b is supported on the second staple support portion 2330, the staple crown 827b is aligned on a second base axis SBA. In the illustrated arrangement, the second base axis SBA is transverse to the first base axis FBA.

Also in the illustrated embodiment, the second staple driver 2310a further comprises a third staple support portion 2340 that comprises a third distal support column 2342 and a third proximal support column 2346. The third staple support portion 2340 further includes a third distal support cradle 2344 and a third proximal support cradle 2348 for supporting portions of the staple crown 827b of another staple 820b therein. As can be seen in FIG. 55, when the staple crown 827b of the other staple 820b is supported in the cradles 2344, 2348, the distal leg 823b is essentially axially aligned with the third distal support column 2342 and the proximal leg 825b is essentially axially aligned with the third proximal support column 2346. When the other staple 820b is supported on the third staple support portion 2340, the staple crown 827b is aligned on a third base axis TBA. In the illustrated arrangement, the third base axis TBA is parallel with the second base axis SBA and transverse to the first base axis FBA.

Still referring to FIGS. 54 and 55, the second staple driver 2310a further comprises fourth staple support portion 2350 that comprises a fourth distal support column 2352 and a second proximal support column 2356. The fourth staple support portion 2350 further includes a fourth distal support cradle 2354 and a fourth proximal support cradle 2358 for supporting portions of the staple crown 827c of a staple 820c therein. As can be seen in FIG. 55, when the staple crown 827c of the staple 820c is supported in the cradles 2354, 2358, the distal leg 823c is essentially axially aligned with the fourth distal support column 2352 and the proximal leg 825c is essentially axially aligned with the fourth proximal support column 2356. When the staple 820c is supported on the fourth staple support portion 2350, the staple crown 827c is aligned on a fourth base axis FTBA. In the illustrated arrangement, the fourth base axis FTBA is parallel to the first base axis FBA and transverse to the second base axis SBA and the third base axis TBA.

In at least one arrangement, the first staple support portion 2320, the second staple support portion 2330, the third staple support portion 2340 and the fourth staple support portion 2350 of the second staple driver 2310a are coupled together by a connector portion 2390. In the illustrated example, the connector portion 2390 is formed to slidably mate with a corresponding first staple guide 2200 and a second staple guide 2220. In particular, the connector portion 2390 has a first opening 2391 therein that is configured to slidably receive therein a corresponding first staple guide 2200 therein. When the staple driver 2310a slidably interfaces with the corresponding first staple guides 2200, the support column 2346 is slidably received in the slot 2206 in the corresponding first driver guide 2200. Likewise, the column 2336 is slidably received in the slot 2206 of another first driver guide 2200. In addition, an inverted first driver guide 22001 interfaces between the first and second drivers 2110a and 2310a. As can be seen in FIG. 50, the support column 2166 of the first driver guide 2110a is slidably received within the slot 2004 in the inverted first driver guide 22001 and the support column 2332 of the corresponding second driver guide 2310a is slidably received within the slot 2206 of the inverted first driver guide 22001. In addition, the support column 2342 of the second driver guide 2310a is slidably received within a slot 2226 in a corresponding second driver guide 2220 and the support column 2326 is slidably received within the slot 2224 in the corresponding second driver guide 2220.

As can also be seen in FIGS. 55 and 56, the connector portion 2390 includes a first cam portion 2392 that has a first camming surface or ramp 2394 formed thereon. The connector portion 2390 also includes a second cam portion 2396 that has a second camming surface 2398 formed thereon. In at least one arrangement, the camming surfaces 2394, 2398 have the same slope or angle or they may have different slopes/angles. In at least one embodiment, each second driver 2310a, 2310b is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the second drivers 2310a, 2310b may be separately fabricated from other materials and be attached together by adhesive, solder, etc.

Referring again to FIG. 49, it can be seen that in the staple driver array 2100a in the illustrated arrangement, the cam portion 2195 of each of the first staple drivers 2110a and the cam portion 2392 of each of the second staple drivers 2310a are all axially aligned along a first cam axis FCA. Thus, the camming surface 2196 of each of the first drivers 2110a and the camming surface 2394 of each of the second drivers 2310a are axially aligned along the first cam axis FCA. As can also be seen in FIG. 49, the second cam portion 2197 of each of the first drivers 2110a and the cam portion 2396 of each of the second staple drivers 2310a are all aligned along a second cam axis SCA. Thus, in at least one embodiment, the camming surface 2198 of each of the first drivers 2110a and the camming surface 2398 of each of the second drivers 2310a are axially aligned on the second cam axis SCA. Also in the illustrated staple driver array 2100b, the cam portion 2195 of each of the first drivers 2110b and the cam portion 2392 of each of the second drivers 2310b are all aligned along a primary cam axis PCA. Thus, the camming surface 2196 of each of the first drivers 2110b and the camming surface 2394 of the each of the second drivers 2310b are axially aligned along the primary cam axis PCA. Still referring to FIG. 49, in the staple driver array 2100b of the illustrated arrangement, the cam portion 2197 of each of the first drivers 2110b and the cam portion 2396 of each of the second drivers 2310b are all aligned along a secondary cam axis SDCA. Thus, in at least one embodiment, the camming surface 2198 of each of the first drivers 2110b and the camming surface 2398 of each of the second drivers 2310b are axially aligned on the secondary cam axis SDCA.

As can be appreciated from reference to FIG. 49, when the first drivers 2110a and the second drivers 2310a are all operably supported in the staple cartridge in the staple driver array 2100a, the staple drivers 2110a, 2310a form a first longitudinal row 2450a of staples that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples in the first longitudinal row 2450a extends in a first direction as was described above. Likewise, the drivers 2110a and 2310a form a second longitudinal row 2460a of staples that are adjacent the first longitudinal row 2450a. The staples in the second longitudinal row 2460a extend in a second direction that is different from the first direction of the staples in the first longitudinal row 2450a. In addition, the drivers 2110a and 2310a form a third longitudinal row 2470a of staples that are oriented in a third direction which may or may not be in the same direction as staples in the first longitudinal row 2450a. For example, in the illustrated embodiment, the first and third directions are the same. The third longitudinal row 2470a is adjacent to the second longitudinal row 2060a.

Still referring to FIG. 49, when the staple drivers 2110b and 2310b are all operably supported in the staple cartridge in the staple driver array 2100b, the staple drivers 2110b and 2310b form a primary longitudinal row 2450b of staples that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples in the primary longitudinal row 2050b extend in a first direction as was described above. Likewise, the staple drivers 2110b and 2310b form a secondary longitudinal row 2460b of staples that are adjacent the primary longitudinal row 2450b. The staples in the secondary longitudinal row 2460b extend in a second direction that is different from the first direction of the staples in the primary longitudinal row 2450b. In addition, the staple drivers 2110b and 2310b form a tertiary longitudinal row 2470b of staples that are oriented in a third direction which may or may not be in the same direction as staples in the primary longitudinal row 2450b. For example, in the illustrated embodiment, the first and third directions are the same. The tertiary longitudinal row 2470b is adjacent to the secondary longitudinal row 2460b.

Thus, when employing the staple driver arrays 2100a, 2100b, there are two staples extending side by side in the same direction or along parallel axes along both ends of each of the staple lines. In particular, the proximal most first driver 2110a supports two proximal most staples in the longitudinal rows 2450a, 2470a that each extending in the same direction. Similarly, the distal most first driver 2110a supports two proximal most staples in the longitudinal rows 2450a and 2470a of staples that extend in the same direction. The same staple patterns are also established in the staple driver array 2100b. Such staple patterns may provide a redundant seal arrangement at both ends of each line of staples. As used in this context, the term “line of staples” collectively refers to the longitudinal rows of staples on one side of the elongate slot 804 in the staple cartridge body 802. For example, line of staples, generally designated as 2480a, collectively refers to the longitudinal rows 2450a, 2460a, 2470a of staples. Line of staples 2480b collectively refers to the longitudinal rows 2450b, 2460b, 2470b of staples.

As was discussed above, in the array 2100a, the ramp or camming member 764 of the sled or camming actuator 760 is aligned with the second cam axis SCA. Likewise, the ramp or camming member 762 is aligned with the first cam axis FCA. The ramp or camming member 766 is aligned on the primary cam axis PCA and the ramp or camming member 768 is aligned with the secondary cam axis SDCA. Thus, the ramp or camming member 764 is aligned with a portion of each of the crowns of staples in the longitudinal row 2470a of staples. The ramp or camming member 762 is aligned with a portion of each of the crowns of the staples in longitudinal row 2450a. Likewise, in the array 2100b of the staple drivers 2110b, 2310b, the ramp or camming member 766 is aligned with a portion of the crowns of each of the staples in the longitudinal row 2450b of staples. The ramp or camming member 768 is aligned with a portion of the crown of each of the staples in longitudinal row 2470b of staples. Stated another way, none of the ramps or camming members 764, 762, 766, 768 are aligned with any of the staple legs of the staples in longitudinal rows 2470a, 2450a, 2450b, 2470b. Such arrangement therefore enables the support columns 2176 and 2146 of each of the first drivers 2110a as well as the support column 2356 of each of the second drivers 2310a to be slidably received within corresponding second support grooves or slots 858 in the second cartridge wall portion 856 of the cartridge body 802. Likewise, the columns 2162 and 2124 of each of the first drivers 2110a as well as the support column 2322 of each of the second drivers 2310a are all slidably received within corresponding first support grooves or slots 854 in the first cartridge wall portion 852 of the cartridge 800. The remaining support columns of each of the first and second drivers 2110a, 2310a are all slidably received within corresponding driver guides 2200, 2220, 22001. The same arrangement is achieved in the staple driver array 2100b.

Other staple driver arrays 2500a, 2500b are illustrated in FIGS. 57 and 58. As can be seen in those Figures, the staple driver array 2500a is similar to the staple driver array 2100a described above, except that the distal most driver in the array is a distal staple driver 2610a that is adjacent to a second staple driver 2310a. Whereas, in the staple driver array 2100a, the first staple driver 2110a is the distal most driver. The distal staple driver 2610a operably supports two staples. Likewise, staple driver array 2500b includes a plurality of first staple drivers 2110b and a plurality of second staple driver 2310b as well as a distal staple driver 2610b. Staple driver 2610b may be mirror images of staple driver 2610a and include the same features.

FIGS. 59-61 illustrate one exemplary form of a distal staple driver 2610a with it being understood that, in at least one arrangement, a distal staple driver 2610b essentially contains the same features as a distal staple driver 2610a and may be a mirror image thereof. Each staple driver 2610a, 2610b comprises a staple driver body 2611. In the illustrated arrangement, the driver body 2611 includes a first or innermost staple support portion 2620 that is configured to support a staple 820a thereon and a second or central staple support portion 2650 that is configured to support a staple 820c thereon. As can be seen in FIG. 59, the first staple support portion 2620 comprises a first distal support column 2622 and a first proximal support column 2626. The first staple support portion 2620 further includes a first distal support cradle 2624 and a first proximal support cradle 2628 for supporting portions of the staple crown 827a of a staple 820a. As can be seen in FIG. 60, when the staple crown 827a of the staple 820a is supported on the support cradles 2624 and 2628, the distal leg 823a is essentially axially aligned with the first distal support column 2622 and the first proximal leg 825a is essentially axially aligned with the first proximal support column 2626. When the staple 820a is supported on the first staple support portion 2620, the staple crown 827a is aligned on a first base axis FBA.

Still referring to FIGS. 59 and 60, the distal staple driver 2610a further comprises second staple support portion 2650 that comprises a second distal support column 2652 and a second proximal support column 2656. The second staple support portion 2650 further includes a second distal support cradle 2654 and a second proximal support cradle 2658 for supporting portions of a staple crown 827c of a staple 820c therein. As can be seen in FIG. 60, when the staple crown 827c of the staple 820c is supported in the cradles 2654, 2658, the distal leg 823c is essentially axially aligned with the second distal support column 2652 and the proximal leg 825c is essentially axially aligned with the second proximal support column 2656. When the staple 820c is supported on the second staple support portion 2650, the staple crown 827c is aligned on a second base axis SBA. In the illustrated arrangement, the second base axis SBA is parallel with the first base axis FBA.

In at least one arrangement, the first staple support portion 2620 and the second staple support portion 2650 are coupled together by a connector portion 2690 that is configured to slidably interface with the inverted driver guide 22001. As can be seen in FIG. 58, for example, the support column 2626 of the distal driver 2610a is slidably received within the slot 2204 in the inverted driver guide 22001. As can also be seen in FIGS. 59-61, the connector portion 2690 includes a first cam portion 2692 that has a first camming surface or ramp 2694 formed thereon. The connector portion 2690 also includes a second cam portion 2696 that has a second a second camming surface 2698 formed thereon. In at least one arrangement, the camming surfaces 2694, 2698 have the same slope or angle or as the corresponding camming surfaces on the first and second drivers 2310a, 2310a. In at least one embodiment, each staple driver 2610a, 2610b is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the distal staple drivers 2610a, 2610b may be separately fabricated from other materials and be attached together by adhesive, solder, etc.

Referring again to FIG. 57, it can be seen that in the staple driver array 2500a in the illustrated arrangement, the cam portion 2195 of each of the first staple drivers 2110a and the cam portion 2392 of each of the second drivers 2310a, as well as the cam portion 2692 of the distal driver 2610a are all axially aligned along a first cam axis FCA. Thus the camming surface 2196 of each of the first drivers 2110a and the camming surface 2394 of each of the second drivers 2310a, as well as the camming surface 2694 of the distal driver 2610a are axially aligned along the first cam axis FCA. The cam portion 2197 of each of the first drivers 2110a and the cam portion 2396 of each of the second drivers 2310a, as well as the cam portion 2696 of the distal driver 2610a are all aligned along a second cam axis SCA. Thus, in at least one embodiment, the camming surface 2198 of each of the first drivers 2110a and the camming surface 2398 of each of the second drivers 2310a, as well as the camming surface of the distal driver 2610a are axially aligned on the second cam axis SCA. Also in the illustrated staple driver array 2500b, the cam portion 2195 of each of the first drivers 2110b and the cam portion 2392 of each of the second drivers 2310b, as well as the cam portion 2692 of the distal driver 2610b are all aligned along a primary cam axis PCA. Thus, the camming surface 2196 of each of the first drivers 2110b and the camming surface 2394 of each of the second drivers 2310b, as well as the camming surface 2694 of the distal driver 2610b are axially aligned along the primary cam axis PCA. Still referring to FIG. 57, in the staple driver array 2500b of the illustrated arrangement, the cam portion 2197 of each of the first drivers 2110b and the cam portion 2396 of each of the second drivers 2310b as well as the cam portion 2696 of the distal driver 2610b are all aligned along a secondary cam axis SDCA. Thus, in at least one embodiment, the camming surface 2198 of each of the first drivers 2110b and the camming surface 2398 of each of the second drivers 2310b as well as the camming surface 2698 of the distal driver 2610b are axially aligned on the secondary cam axis SDCA.

As can be appreciated from reference to FIG. 57, when the drivers 2110a, 2310a and 2610a are all operably supported in the staple cartridge in the staple driver array 2500a, the staple drivers 2110a, 2310a, 2610a form a first longitudinal row 2750a of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the first longitudinal row 2750a extend in a first direction as was described above. Likewise, the drivers 2110a and 2310a form a second longitudinal row 2760a of staples 820b that are adjacent the first longitudinal row 2750a. The staples 820b in the second longitudinal row 2760a extend in a second direction that is different from the first direction of the staples 820a in the first longitudinal row 2750a. In addition, the drivers 2110a, 2310a, 2610a form a third longitudinal row 2770a of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The third longitudinal row 2770a is adjacent to the second longitudinal row 2760a.

Still referring to FIG. 57, when the staple drivers 2110b, 2310b, 2610b are all operably supported in the staple cartridge in the staple driver array 2500b, the staple drivers 2110b and 2310b and 2610b form a primary longitudinal row 2750b of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the primary longitudinal row 2750b extend in a first direction as was described above. Likewise, the staple drivers 2110b and 2310b form a secondary longitudinal row 2760b of staples 820b that are adjacent the primary longitudinal row 2750b. The staples 820b in the secondary longitudinal row 2760b extend in a second direction that is different from the first direction of the staples 820a in the primary longitudinal row 1750b. In addition, the staple drivers 2110b, 2310b and 2610b form a tertiary longitudinal row 2770b of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The tertiary longitudinal row 2770b is adjacent to the secondary longitudinal row 2760b.

Thus, when employing the staple driver arrays 2500a, 2500b, there are two staples extending side by side in the same direction or along parallel axes along both ends of each of the staple lines. In particular, the distal driver 2610a supports two distal most staples in the longitudinal rows 2750a, 2770a that each extending in the same direction. Similarly, the proximal most first driver 2110a supports two proximal most staples in the longitudinal rows 2750a and 2770a of staples that extend in the same direction. Such staple pattern may provide a redundant seal arrangement at both ends of each line of staples.

Other staple driver arrays 2800a, 2800b are illustrated in FIGS. 62 and 63. As can be seen in those Figures, the staple driver array 2800a employs a plurality of staple drivers 2610a that were described above. A staple driver 2610a comprises a proximal most driver and another staple driver 2610a forms a distal most driver in the driver array 2800a. Additional staple drivers 2610a alternate with staple drivers 2910a that are each configured to operably support a single staple 820b thereon.

FIGS. 64-66 illustrate one exemplary form of a staple driver 2910a with it being understood that, in at least one arrangement, a distal staple driver 2910b essentially contains the same features as a distal staple driver 2910a and may be a mirror image thereof. Each staple driver 2910a, 2910b comprises a staple driver body 2911. In the illustrated arrangement, the driver body 2911 includes a first staple support portion 2920 that is configured to support a staple 820b thereon. As can be seen in FIG. 64, the first staple support portion 2920 comprises a first distal support column 2922 and a first proximal support column 2926. The first staple support portion 2920 further includes a first distal support cradle 2924 and a first proximal support cradle 2928 for supporting portions of the staple crown 827b of a staple 820b. As can be seen in FIG. 65, when the staple crown 827b of the staple 820b is supported on the support cradles 2924 and 2928, the distal leg 823b is essentially axially aligned with the first distal support column 2922 and the first proximal leg 825b is essentially axially aligned with the first proximal support column 2926. When the staple 820b is supported on the first staple support portion 2920, the staple crown 827b is aligned on a primary base axis PBA that is transverse to the first and second base axes of the drivers 2610a.

In the illustrated embodiment, the staple driver 2910a further comprises a connector portion 2990 that is configured to slidably interface with first and second driver guides 3000, 3100 that are formed in the staple cartridge. Referring to FIG. 63, a first driver guide 3000 includes a first hook-shaped portion 3002 that has a slot 3004 therein that is configured to slidably engage a support column 2652 of a corresponding staple driver 2610a. In addition, the first driver guide 3000 includes a second hook shaped portion 3006 that has a slot 3008 that is configured to slidably engage a support column 2926 of a corresponding staple driver 2910a. The second driver guide 3100 essentially comprises an inverted driver guide 3000. As can be seen in FIG. 63, the second driver guide 3100 includes a first hook shaped portion 3102 that has a slot 3104 that is configured to slidably engage a support column 2926 of a corresponding driver 2910a. The second driver guide 3100 further has a second hook shaped portion 3106 that has a slot 3108 that is configured to slidably engage the support column 2922 of the corresponding driver 2910a. As can also be seen in FIGS. 64-66, the connector portion 2990 includes a first cam portion 2992 that has a first camming surface or ramp 2994 formed thereon. The connector portion 2990 also includes a second cam portion 2996 that has a second a second camming surface 2998 formed thereon. In at least one arrangement, the camming surfaces 2994, 2998 have the same slope or angle as the corresponding camming surfaces on the drivers 2610a. In at least one embodiment, each staple driver 2910a, is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the staple drivers 2910a, 2910b may be separately fabricated from other materials and be attached together by adhesive, solder, etc.

Referring again to FIG. 62, it can be seen that in the staple driver array 2800a in the illustrated arrangement, the cam portion 2692 of each of the staple drivers 2610a and the cam portion 2992 of each of the drivers 2910a are all axially aligned along a first cam axis FCA. Thus the camming surface 2694 of each of the drivers 2610a and the camming surface 2994 of each of the drivers 2910a are axially aligned along the first cam axis FCA. The cam portion 2696 of each of the drivers 2610a and the cam portion 2996 of each of the drivers 2910a are all aligned along a second cam axis SCA. Thus, in at least one embodiment, the camming surface 2698 of each of the drivers 2610a and the camming surface 2998 of each of the drivers 2910a are axially aligned on the second cam axis SCA. Also in the illustrated staple driver array 2800b, the cam portion 2692 of each of the drivers 2610b and the cam portion 2992 of each of the drivers 2910b are aligned along a primary cam axis PCA. Thus, the camming surface 2694 of each of the drivers 2610b and the camming surface 2994 of each of the drivers 2910b are axially aligned along the primary cam axis PCA. Still referring to FIG. 62, in the staple driver array 2800b of the illustrated arrangement, the cam portion 2696 of each of the drivers 2610b and the cam portion 2996 of each of the drivers 2910b are all aligned along a secondary cam axis SDCA. Thus, in at least one embodiment, the camming surface 2698 of each of the drivers 2610b and the camming surface 2998 of each of the drivers 2910b are axially aligned on the secondary cam axis SDCA.

As can be appreciated from reference to FIG. 62, when the drivers 2610a and 2910a are all operably supported in the staple cartridge in the staple driver array 2800a, the staple drivers 2610a form a first longitudinal row 3050a of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the first longitudinal row 3050a extend in a first direction as was described above. Likewise, the drivers 2910a form a second longitudinal row 3060a of staples 820b that are adjacent the first longitudinal row 3050a. The staples 820b in the second longitudinal row 3060a extend in a second direction that is different from the first direction of the staples 820a in the first longitudinal row 3050a. In addition, the drivers 2610a form a third longitudinal row 3070a of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The third longitudinal row 3070a is adjacent to the second longitudinal row 3060a.

Still referring to FIG. 62, when the staple drivers 2610b and 2910b are all operably supported in the staple cartridge in the staple driver array 2800b, the staple drivers 2610b form a primary longitudinal row 3050b of staples 820a that is adjacent to elongate slot 804 in the cartridge body 802. Each of the staples 820a in the primary longitudinal row 3050b extend in a first direction as was described above. Likewise, the staple drivers 2910b form a secondary longitudinal row 3060b of staples 820b that are adjacent the primary longitudinal row 3050b. The staples 820b in the secondary longitudinal row 3060b extend in a second direction that is different from the first direction of the staples 820a in the primary longitudinal row 3050b. In addition, the staple drivers 2610b form a tertiary longitudinal row 3070b of staples 820c that are oriented in a third direction which may or may not be in the same direction as staples 820a. For example, in the illustrated embodiment, the first and third directions are the same. The tertiary longitudinal row 3070b is adjacent to the secondary longitudinal row 3060b.

Thus, when employing the staple driver arrays 2800a, 2800b, there are two staples extending side by side in the same direction or along parallel axes along both ends of each of the staple lines. In particular, the distal driver 2610a supports two distal most staples in the longitudinal rows 3050a, 3070a that each extend in the same direction. Similarly, the proximal most driver 2610a supports two proximal most staples in the longitudinal rows 3050a and 3070a of staples that extend in the same direction. Such staple pattern may provide a redundant seal arrangement at both ends of each line of staples.

Other staple driver arrays 3100a, 3100b are illustrated in FIGS. 67 and 68. As can be seen in those Figures, the staple driver array 3100a employs a plurality of staple drivers 3210a, 3310a, 3410a that each support a single staple thereon. Likewise, staple driver array 3100b includes a plurality of staple drivers 3210b, 3310b, 3410b. Staple drivers 3210a may be mirror images of staple drivers 3210b and include the same features. Staple drivers 3310a may be mirror images of staple drivers 3310b and include the same features. Staple drivers 3410a may be mirror images of staple drivers 3410b and include the same features.

As can be seen in FIG. 69, a first driver 3210b includes a first staple supporting portion 3220 that has a distal cradle 3222 and a proximal cradle 3224 formed therein. The first staple supporting portion 3220 is configured to operably support a first staple (not shown) therein. When the first staple is supported in the first staple supporting portion 3220, the staple crown of the first staple is supported along a first base axis FBA. Also in the illustrated arrangement, a second driver 3310b includes a second staple supporting portion 3320 that has a distal cradle 3322 and a proximal cradle 3324 formed therein. The second staple supporting portion 3320 is configured to operably support a second staple (not shown) thereon. When the second staple is supported in the second staple supporting portion 3320, the staple crown of the second staple is supported along a second base axis SBA that is transverse to the first base axis FBA. The illustrated staple driver array 3100b also includes a third staple driver 3410b that has a third staple supporting portion 3420. The third staple supporting portion 3420 includes a proximal cradle 3422 and a distal cradle 3424 formed therein and is configured to operably support a third staple (not shown) thereon. When the third staple is supported on the third staple supporting portion 3420, the crown of the third staple is supported along a third base axis TBA that is parallel to the first base axis FBA and transverse to the second base axis SBA.

Still referring to FIG. 69, each of the drivers 3210b, 3310b, 3410b has a pair of cam portions protruding therefrom that each have a cam or ramp surface formed thereon. For example, a first driver 3210b includes a first cam portion 3230 that has a ramp or camming surface 3232 formed thereon and a second cam portion 3234 that has a ramp or camming surface 3236 formed thereon. To provide clearance for the adjacent proximal second driver 3310b, the proximal end 3237 of the second cam portion 3234 has an angle 3238 formed thereon as shown in FIG. 69. A second driver 3310b includes a first cam portion 3330 that has a ramp or camming surface 3332 formed thereon and a second cam portion 3334 that has a ramp or camming surface 3336 formed thereon. To provide clearance for the adjacent proximal first driver 3210b and adjacent proximal third driver 3410b, the proximal end of 3331 of the first cam portion 3330 has a first angle 3333 formed thereon and the proximal end 3335 of the second cam portion 3334 has an angle 3337 formed thereon as shown in FIG. 69. A third driver 3410b includes a first cam portion 3430 that has a ramp or camming surface 3432 formed thereon and a second cam portion 3434 that has a ramp or camming surface 3436 formed thereon. To provide clearance for the adjacent proximal second driver 3310b, the proximal end 3431 of the first cam portion 3430 has an angle 3433 formed thereon. FIGS. 70 and 71 illustrate a second driver 3310b to show the ramps or camming surfaces 3332, 3336 with it being understood that the first and third drivers 3210a, 3410a are similarly constructed.

In the illustrated embodiment, each of the drivers 3210b, 3310b, 3410b has two cam portions with ramps or camming surfaces that are parallel to each other. Thus, each of the drivers 3210b, 3310b, 3410b is actuated by two ramps or camming members on the sled or cam actuator. In this embodiment, however, the sled or cam actuator is formed with a total of eight ramps (four on each side of the elongate slot 804). The camming surfaces on each of the drivers 3210b, 3310b, 3410b are configured at an angle that cooperates with the angle of the corresponding sled ramp or camming member to drive the respective driver upward within the staple cartridge as the sled or cam actuator is driven distally through the staple cartridge.

FIG. 72 illustrates an exemplary staple cartridge 4800 that has a cartridge body 4802 that includes an elongate slot 4804 for accommodating the tissue cutting member in the manner described herein. The elongate slot 4804 is centrally disposed along the cartridge axis CA and s bifurcates the cartridge body 4802 into two body portions 4810 and 4910. FIG. 73 illustrates a bottom perspective view of a portion of one form of the surgical staple cartridge body 802′. As can be seen in that Figure, the first body portion 4810 includes a first cartridge wall portion 4812 that includes first support grooves or slots 4814 therein that are each oriented on a corresponding first slot axis FSA that is transverse to the cartridge axis CA. The second body portion 4810 further includes a second cartridge wall portion 4820 that contains second support grooves or slots 4822 therein that are each oriented on a corresponding second slot axis SSA that is transverse to the cartridge axis CA. Located between the first cartridge wall portion 4812 and the second cartridge wall portion 4820 are four spaced slots 4830, 4832, 4834, 4836 for receiving corresponding ramps or camming members of the sled or cam actuator. Slots 4830 and 4832 define a plurality of segmented guide rails 4840 that each has a slot 4842 therein. Likewise, slots 4832 and 4834 define another plurality of segmented guide rails 4850 that each has two slots 4852 and 4854 therein. In addition, slots 4834 and 4836 define another plurality of segment guide rails 4860 that each has a slot 4862 therein.

Still referring to FIG. 73, the segmented guide rails 4840 are segmented by slots 4844 that are oriented to accommodate a staple supporting portion 3220 of a corresponding first staple driver 3210a. In addition, the ends of the staple supporting portion 3220 are received in corresponding slots 4814 and 4852 so that each of the first drivers 3210a is completely slidably supported in the cartridge body 4802 through its range of upward travel therein. Similarly, the segmented guide rails 4850 are segmented by second slots 4856 that are oriented to accommodate a staple supporting portion 3320 of a corresponding second staple driver 3310a. In addition, the ends of the staple supporting portion 3320 are received in corresponding slots 4842 and 4862 so that each of the second staple drivers 3310a is completely slidably supported in the cartridge body 4802 through its range of upward travel therein. Further, the segmented guide rails 4860 are segmented by third slots 4864 that are oriented to accommodate a staple supporting portion 3420 of a corresponding second staple driver 3410a. In addition, the ends of the staple supporting portion 3420 are received in corresponding slots 4822 and 4854 so that each of the third staple drivers 3410a is completely slidably supported in the cartridge body 4802 through its range of upward travel therein. It will be appreciated that the slots 4844, 4856 and 4864 extend through a deck surface 4805 of the cartridge body 4802 to enable the staples to exit the cartridge body 4802. The slots 4844, 4856, 4864 may also be referred to as “staple cavities”. See FIG. 72.

Likewise, the second body portion 4910 includes a first cartridge wall portion 4912 that includes first support grooves or slots 4914 therein that each lie along a corresponding primary slot axis PSA that is transverse to the cartridge axis CA. The second body portion 4910 further includes a second cartridge wall portion 4920 that contains second support grooves or slots 4922 therein that each lie along a corresponding secondary slot axis SDSA that is transverse to the cartridge axis CA. Located between the first cartridge wall portion 4912 and the second cartridge wall portion 4920 are four spaced slots 4930, 4932, 4934, 4936 for receiving corresponding ramps or camming members of the sled or cam actuator. Slots 4930 and 4932 define a plurality of segmented guide rails 4940 that each has a slot 4942 therein. Likewise, slots 4932 and 4934 define another plurality of segmented guide rails 4950 that each has two slots 4952 and 4954 therein. In addition, slots 4934 and 4936 define another plurality of segment guide rails 4960 that each has a slot 4962 therein.

Still referring to FIG. 73, the segmented guide rails 4940 are segmented by slots 4944 that are oriented to accommodate a staple supporting portion 3220 of a corresponding first staple driver 3210b. In addition, the ends of the staple supporting portion 3220 are received in corresponding slots 4914 and 4952 so that each of the first drivers 3210b is completely slidably supported in the cartridge body 4802 through its range of upward travel therein. Similarly, the segmented guide rails 4950 are segmented by second slots 4956 that are oriented to accommodate a staple supporting portion 3320 of a corresponding second staple driver 3310b. In addition, the ends of the staple supporting portion 3320 are received in corresponding slots 4942 and 4962 so that each of the second staple drivers 3310b is completely slidably supported in the cartridge body 4802 through its range of upward travel therein. Further, the segmented guide rails 4960 are segmented by third slots 4964 that are oriented to accommodate a staple supporting portion 3420 of a corresponding second staple driver 3410b. In addition, the ends of the staple supporting portion 3420 are received in corresponding slots 4922 and 4954 so that each of the third staple drivers 3410b is completely slidably supported in the cartridge body 4802 through its range of upward travel therein. It will be appreciated that the slots 4944, 4956 and 4964 extend through the deck surface 4805 of the cartridge body 4802 to enable the staples to exit the cartridge body 4802. The slots 4944, 4956, 4964 may also be referred to as “staple cavities”. See FIG. 72.

In the illustrated arrangement, when the drivers 3210a, 3310a, 3410a are installed in the cartridge body 4802 to form the staple driver array 3100a, the cam portion 3230 of each of the first drivers 3210a are axially aligned on a first cam axis FCA defined by the first slot 4830. Thus, the camming surfaces 3232 are also axially aligned on the first cam axis FCA for camming contact with a corresponding camming member or ramp on the sled or camming actuator. Likewise, the camming portion 3234 of each first driver 3210a as well as each of the camming portions 3330 of the second drivers 3310a are axially aligned on a second cam axis SCA defined by the slot 4832. Thus, the camming surfaces 3236 and 3332 are also axially aligned on the second cam axis SCA for camming contact with a corresponding camming member or ramp on the sled or camming actuator. In addition, the camming portion 3430 of each third driver 3410a as well as each of the camming portions 3334 of each of the second drivers 3310a are axially aligned on a third cam axis TCA defined by the slot 4834. Thus, the camming surfaces 3432 and 3336 are also axially aligned on the third cam axis TCA for camming contact with a corresponding camming member or ramp on the sled or camming actuator. Also, the camming portion 3434 of each third driver 3410a is axially aligned on a fourth axis FTCA defined by the slot 4836. Thus, the camming surfaces 3436 are also axially aligned on the fourth cam axis FTCA for camming contact with a corresponding camming member or ramp on the sled or camming actuator.

Also in the illustrated staple driver array 3100b, the cam portion 3230 of each of the first drivers 3210b are axially aligned on a primary cam axis PCA defined by the first slot 4930. Thus, the camming surfaces 3232 are also axially aligned on the first cam axis PCA for camming contact with a corresponding camming member or ramp on the sled or camming actuator. Likewise, the camming portion 3234 of each first driver 3210b as well as each of the camming portions 3330 of the second drivers 3310b are axially aligned on a secondary cam axis SDCA defined by the slot 4932. Thus, the camming surfaces 3236 and 3332 are also axially aligned on the secondary cam axis SDCA for camming contact with a corresponding camming member or ramp on the sled or camming actuator. In addition, the camming portion 3430 of each third driver 3410b as well as each of the camming portions 3334 of each of the second drivers 3310b are axially aligned on a tertiary cam axis TRCA defined by the slot 4934. Thus, the camming surfaces 3432 and 3336 are also axially aligned on the tertiary cam axis TRCA for camming contact with a corresponding camming member or ramp on the sled or camming actuator. Also, the camming portion 3434 of each third driver 3410a is axially aligned on another fourth axis FRCA defined by the slot 4936. Thus, the camming surfaces 3436 are also axially aligned on the another fourth cam axis FRCA for camming contact with a corresponding camming member or ramp on the sled or camming actuator.

In at least one arrangement, the camming surfaces 3232, 3236, 3332, 3336, 3432, 3436 may be formed with identical slopes or angles or they may have different slopes. However, in the illustrated arrangement, for example, the camming surfaces 3232 are oriented or otherwise configured to operably match the angle/orientation of the camming member or ramp of the sled or camming actuator. Also in the illustrated arrangement, the camming surfaces 3236 and 3332 are formed with the same slope or angle and/or are otherwise configured to operably match the angle/orientation of the corresponding camming member or ramp of the sled or camming actuator. However, it is conceivable that the angle or slope of the camming surfaces 3236, 3332 are not the same as the angle or slope of the camming surfaces 3232. Likewise, the camming surfaces 3432 and 3336 are formed with the same slope or angle and/or are otherwise configured to operably match the angle/orientation of the corresponding camming member or ramp of the sled or camming actuator. However, it is conceivable that the angle or slope of the camming surfaces 3432, 3336 are not the same as the angle or slope of the camming surfaces 3232, 3234, 3332. Also in the illustrated arrangement, the camming surfaces 3436 are formed with the same slope or angle and/or are otherwise configured to operably match the angle/orientation of the corresponding camming member or ramp of the sled or camming actuator. However, it is conceivable that the angle or slope of the camming surfaces 3436 is not the same as the angle or slope of the camming surfaces 3232, 3234, 3332, 3432, 3336.

Still referring to FIG. 67, when the staple drivers 3210a, 3310a, 3410a are all operably supported in the staple cartridge in the staple driver array 3100a, the staple drivers 3210a form a first longitudinal row 5000a of staples that is adjacent to elongate slot 804 in the cartridge body 4802. Each of the staples in the first longitudinal row 5000a extend in a first direction as was described above. Likewise, the staple drivers 3310a form a second longitudinal row 5010a of staples that are adjacent the first longitudinal row 5000a. The staples in the second longitudinal row 5010a extend in a second direction that is different from the first direction of the staples in the first longitudinal row 5000a. In addition, the staple drivers 3410a form a third longitudinal row 5020a of staples that are oriented in a third direction which may or may not be in the same direction as the staples in the second longitudinal row 5010a. For example, in the illustrated embodiment, the first and third directions are the same. The third longitudinal row 5020a is adjacent to the second longitudinal row 5010a.

In the illustrated arrangement, when the staple drivers 3210b, 3310b, 3410b are all operably supported in the staple cartridge in the staple driver array 3100b, the staple drivers 3210b form a primary longitudinal row 5000b of staples that is adjacent to elongate slot 804 in the cartridge body 4802. Each of the staples in the primary longitudinal row 5000b extend in a first direction as was described above. Likewise, the staple drivers 3310b form a secondary longitudinal row 5010b of staples that are adjacent the primary longitudinal row 5000b. The staples in the secondary longitudinal row 5010b extend in a second direction that is different from the first direction of the staples in the primary longitudinal row 5000b. In addition, the staple drivers 3410b form a tertiary longitudinal row 5020b of staples that are oriented in a third direction which may or may not be in the same direction as staples in the secondary longitudinal row 5010b. For example, in the illustrated embodiment, the first and third directions are the same. The tertiary longitudinal row 5020b is adjacent to the secondary longitudinal row 5010b.

FIG. 74 illustrates a portion of another surgical staple cartridge 6000 that is configured to achieve lines of staples that each have different formed heights and that may employ various staple driver array arrangements disclosed herein. The surgical staple cartridge 6000 includes a cartridge body 6002 that has an elongate slot 6004 that divides the cartridge body into a first cartridge portion 6010 and a second cartridge portion 6110. The first cartridge portion 6010 includes a “stepped deck” 6012. In the illustrated example, the lowest deck surface or “first” deck portion is designated as 6020. A series of slots or first staple pockets 6022 that are configured to support a first longitudinal line 6030 of first surgical staples 7000 are provided in the first deck portion 6020. In the illustrated embodiment, the first staple pockets 6022 in the line 6030 are parallel to each other and are each oriented on a corresponding first axis FA.

As can be further seen in FIG. 74, the stepped deck 6012 further includes a second deck portion 6040 that has a height or thickness “T1”. Stated another way, the second deck portion 6040 extends above the first deck portion 6020 the thickness T1. In one example, T1 may be approximately 0.01 inches. However, other thicknesses or height differences may be employed. For example, T1 may range from 0.005 inches-0.025 inches. A second series of slots or second staple pockets 6042 are oriented in the second deck portion 6040 to support a second line 6050 of second staples 7020 therein. The second staple pockets 6042 are parallel to each other and are each aligned on a second axis SA. The second axes may be transverse to the first axes FA.

Still referring to FIG. 74, the first stepped deck 6012 further includes a third deck portion 6060 that has a height or thickness “T2”. Stated another way, the third deck portion 6060 extends above the first deck portion 6020 the thickness T2. In one example, T2 may be approximately 0.02 inches. However, other thicknesses or height differences may be employed. For example, T1 may range from 0.005 inches-0.030 inches. A third series of slots or second staple pockets 6062 are oriented in the third deck portion 6060 to support a third line 6070 of third staples 7020 therein. The third staple pockets 6062 are parallel to each other and are each aligned on a third axis TA. The third axes may be parallel to the first axes FA and transverse to the second axes SA, for example.

In use, when the anvil of the surgical instrument is locked in a closed position wherein the staple forming undersurface of the anvil is positioned in confronting relationship with the deck of the staple cartridge 6000, the third deck portion 6070 will be closer to the undersurface of the anvil than the second deck portion 6040 and the first deck portion 6020. Likewise, the second deck portion 6040 is closer to the staple forming undersurface of the anvil than the first deck portion 6020. Thus, as illustrated in FIG. 75, the third staples 7030 supported in the third staple pockets 6062 will have a third forming height “TFH” that is less than the second forming height “SFH” of the second staples 7020 supported in the second staple pockets 6042 and second forming height SFH of the second staples 7020 is less than the first forming height “FFH” of the staples supported in the first staple pockets 6022. As shown in FIG. 74, the line 6070 of third staples 7030 may be adjacent to the elongate slot 6004. Thus, the staples 7030 that are the closest to the cut line in the tissue will have the shortest formed height.

The second cartridge portion 6110 includes a primary deck portion 6120 that is the lowest deck surface. A series of slots or primary staple pockets 6122 that are configured to support a primary longitudinal line 6130 of first surgical staples 7000 are provided in the primary deck portion 6120. In the illustrated embodiment, the primary staple pockets 6122 in the primary line 6130 are parallel to each other and are each oriented on a corresponding primary axis PA. As can be further seen in FIG. 74, the stepped deck 6012 further includes a secondary deck portion 6140 that has a height or thickness “T1”. Stated another way, the secondary deck portion 6140 extends above the primary deck portion 6120 the thickness T1′. In the illustrated arrangement T1′ is equal to T1. However, other arrangements are contemplated wherein T1′ does not equal T1. A second series of slots or second staple pockets 6142 are oriented in the secondary deck portion 6140 to support a secondary line 6150 of second staples 7020 therein. The secondary staple pockets 6142 are parallel to each other and are each aligned on a secondary axis SDA. The secondary axes SDA may be transverse to the primary axes PA.

Still referring to FIG. 74, the stepped deck 6012 further includes a tertiary deck portion 6160 that has a height or thickness “T2”. Stated another way, the tertiary deck portion 6160 extends above the primary deck portion 6120 the thickness T2′. In the illustrated arrangement, T2′ is equal to T2. However, other arrangements are contemplated wherein T2′ does not equal T2. A tertiary series of slots or tertiary staple pockets 6162 are oriented in the tertiary deck portion 6160 to support a tertiary line 6170 of third staples 7030 therein. The tertiary staple pockets 6162 are parallel to each other and are each aligned on a tertiary axis TRA. The tertiary axes TRA may be parallel to the primary axes PA and transverse to the secondary axes SDA, for example.

In use, when the anvil of the surgical instrument is locked in a closed position wherein the staple forming undersurface of the anvil is positioned in confronting relationship with the deck of the staple cartridge 6000, the tertiary deck portion 6160 will be closer to the undersurface than the second deck portion 6040 and the first deck portion 6020. Likewise, the secondary deck portion 6140 is closer to the staple forming undersurface of the anvil than the primary deck portion 6120. Thus, as illustrated in FIG. 75, the third staples 7030 supported in the third staple pockets 6062 will have a third forming height “TFH” that is less than the second forming height “SFH” of the second staples 7020 supported in the secondary staple pockets 6142 and second forming height SFH of the second staples 7020 is less than the first forming height “FFH” of the staples supported in the primary staple pockets 6122. As shown in FIG. 74, the line 6170 of third staples 7030 may be adjacent to the elongate slot 6004. Thus, the staples 7030 that are the closest to the cut line in the tissue will have the shortest formed height.

Various staple driver arrangements disclosed herein may be effectively employed with the above-described stepped deck arrangement to achieve staples having different formed heights. All of the various driver combinations and stepped deck configurations are contemplated herein. The various staples employed may start with different unformed heights. For example, all of the staples in one line of staples may have the same height, but have a different height than all of the staples in another line or other lines of staples in the cartridge. The staples may be U-shaped or be V-shaped. The staples may have different wire diameters. Further details regarding staple configurations, cartridge and driver arrangements for forming staples with different formed heights are disclosed in U.S. Pat. No. 7,669,746, entitled STAPLE CARTRIDGES FOR FORMING STAPLES HAVING DIFFERENT FORMED HEIGHTS; U.S. Pat. No. 7,500,979, entitled SURGICAL STAPLING DEVICE WITH MULTIPLE STACKED ACTUATOR WEDGE CAMS FOR DRIVING STAPLE DRIVERS; U.S. Pat. No. 7,673,781, entitled SURGICAL STAPLING DEVICE WITH STAPLE DRIVER THAT SUPPORTS MULTIPLE WIRE DIAMETER STAPLES; U.S. Pat. No. 8,636,187, entitled SURGICAL STAPLING SYSTEMS THAT PRODUCE FORMED STAPLES HAVING DIFFERENT LENGTHS; U.S. Pat. No. 7,934,630, entitled STAPLE CARTRIDGES FOR FORMING STAPLES HAVING DIFFERENT FORMED HEIGHTS; U.S. Pat. No. 8,567,656, entitled STAPLE CARTRIDGES FOR FORMING STAPLES HAVING DIFFERENT FORMED HEIGHTS; U.S. Pat. No. 8,464,923, entitled STAPLE CARTRIDGES FOR FORMING STAPLES HAVING DIFFERENT FORMED HEIGHTS, the entire disclosures of each being hereby incorporated by reference herein.

As the present Detailed Description proceeds, it will be understood that the various forms of surgical staple cartridges disclosed herein may also be effectively employed in connection with robotically-controlled surgical systems. Thus, the term “housing” may also encompass a housing or similar portion of a robotic system that houses or otherwise operably supports at least one drive system that is configured to generate and apply at least one control motion which could be used to actuate the elongate shaft assemblies disclosed herein and their respective equivalents. The term “frame” may refer to a portion of a handheld surgical instrument. The term “frame” may also represent a portion of a robotically controlled surgical instrument and/or a portion of the robotic system that may be used to operably control a surgical instrument. For example, the shaft assemblies disclosed herein may be employed with various robotic systems, instruments, components and methods disclosed in U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, which is hereby incorporated by reference herein in its entirety.

The surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example. The motor or motor(s) may comprise a portion or portions of a robotically controlled system.

The surgical instrument systems described herein are motivated by one or more electric motors; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example.

Example 1—A surgical staple driver array for operable use with a surgical staple cartridge. In at least one configuration, the surgical staple driver array comprises a distal staple driver that is slidably supportable in the surgical staple cartridge and is configured to operably support a single distal surgical staple thereon that is oriented in a distal direction. A plurality of intermediate staple drivers is configured to be slidably supported in the surgical staple cartridge in series, wherein a distal most one of the intermediate staple drivers is adjacent to the distal staple driver. Each of the intermediate staple drivers is configured to operably support a first surgical staple that is oriented in a first direction as well as a second surgical staple that is oriented in a second direction and a third surgical staple that is oriented in a third direction. A proximal staple driver is slidably supported adjacent a proximal most one of the intermediate staple drivers. The proximal staple driver is configured to operably support a proximal surgical staple that is oriented in a proximal direction.

Example 2—The surgical staple driver array of Example 1, wherein the distal direction is parallel to at least one of the first, second and third directions.

Example 3—The surgical staple driver array of Examples 1 or 2, wherein the proximal direction is parallel to at least one of the first, second and third directions.

Example 4—The surgical staple driver array of Examples 1, 2 or 3, wherein the distal direction, the first direction, the third direction and the proximal direction are parallel to each other.

Example 5—The surgical staple driver array of Examples 1, 2, 3 or 4, wherein a distal crown of the distal surgical staple is supported along a distal base axis and a first crown of the first surgical staple is supported along a first base axis that is parallel to the distal base axis.

Example 6—The surgical staple driver array of Example 5, wherein a second staple crown of the second surgical staple is supported along a second base axis that is transverse to the first base axis.

Example 7—The surgical staple driver array of Examples 5 or 6, wherein a third staple crown of the third surgical staple is supported along a third base axis that is parallel to the first base axis.

Example 8—The surgical staple driver array of Example 7, wherein a proximal staple crown of the proximal surgical staple is supported along a proximal base axis that is parallel to the third base axis of the third surgical staple supported in the proximal most one of the intermediate staple drivers.

Example 9—A surgical staple cartridge that comprises a cartridge body that comprises a proximal end and a distal end. A distal staple driver is movably supported in the cartridge body and is configured to support a single, distal most surgical staple thereon that is oriented in a distal direction. A plurality of intermediate staple drivers is movably supported in the cartridge body in series, wherein a distal most one of the intermediate staple drivers is adjacent to the distal staple driver. Each intermediate staple driver supports a first surgical staple in a first direction, a second surgical staple in a second direction and a third surgical staple in a third direction. A proximal staple driver is slidably supported adjacent a proximal most one of the intermediate staple drivers. The proximal staple driver is configured to operably support a proximal surgical staple that is oriented in a proximal direction.

Example 10—The surgical staple cartridge of Example 9, wherein a distal crown of the distal surgical staple is supported along a distal base axis and a first crown of the first surgical staple is supported along a first base axis that is parallel to the distal base axis. A second staple crown of the second surgical staple is supported along a second base axis that is transverse to the first base axis. A third staple crown of the third surgical staple is supported along a third base axis that is parallel to the first base axis. A proximal staple crown of the proximal surgical staple is supported along a proximal base axis that is parallel to the third base axis of the third surgical staple that is supported in the proximal most intermediate staple driver.

Example 11—The surgical staple cartridge of Examples 9 or 10, wherein the distal staple driver comprises a distal staple support member that comprises a distal support column that is configured to support a distal leg of the distal surgical staple thereon. The distal staple support member further comprises a proximal support column that is configured to support a proximal leg of the distal surgical staple thereon. One of the distal and proximal support columns is slidably supported in one of a first wall portion and a second wall portion of the cartridge body.

Example 12—The surgical staple cartridge of Example 11, wherein the distal staple driver further comprises a distal camming surface that is aligned on a first cam axis that extends transversely between the distal and proximal support columns.

Example 13—The surgical staple cartridge of Examples 9, 10, 11 or 12, wherein at least one of the intermediate staple drivers comprises a first staple support member that comprises a first distal support column that is configured to support a first distal leg of a corresponding first surgical staple thereon. The first staple support member further comprises a first proximal support column that is configured to support a first proximal leg of the corresponding first surgical staple thereon. The intermediate staple driver further comprises a second staple support member that comprises a second distal support column that is configured to support a second distal leg of a corresponding second surgical staple thereon. The second staple support member further comprises a second proximal support column that is configured to support a second proximal leg of the corresponding second surgical staple thereon. The intermediate staple driver further comprises a third staple support member that comprises a third distal support column that is configured to support a third distal leg of a corresponding third surgical staple thereon. The third staple support member further comprises a third proximal support column that is configured to support a third proximal leg of the corresponding third surgical staple thereon. One of the third distal support column and the third proximal support column is slidably supported in one of first and second wall portions of the cartridge body.

Example 14—The surgical staple cartridge of Examples 9, 10, 11, 12 or 13, wherein the proximal staple driver comprises a proximal staple support member that comprises another distal support column that is configured to support another distal leg of the proximal surgical staple thereon. The proximal staple support member further comprises another proximal support column that is configured to support another proximal leg of the proximal surgical staple thereon. One of the another distal and the another proximal support columns is slidably supported in one of a first wall portion and a second wall portion of the cartridge body.

Example 15—The surgical staple cartridge of Example 14, further comprising at least one distal camming surface on the distal staple support member and at least one first camming surface on at least one of the first, second and third staple support members. At least one proximal camming surface is on the proximal staple support member.

Example 16—The surgical staple cartridge of Example 15, wherein the at least one distal camming surface, the at least one first camming surface and the at least one proximal camming surface are aligned on a common camming axis.

Example 17—The surgical staple cartridge of Examples 15 or 16, wherein the at least one distal camming surface comprises a first distal camming surface and a second distal camming surface that is spaced from the first distal camming surface. The first camming surface comprises a first camming surface and a second camming surface that is spaced from the first camming surface. At least one proximal camming surface comprises a first proximal camming surface and a second proximal camming surface.

Example 18—The surgical staple cartridge of Example 17, wherein the first distal camming surface, the first camming surface and the first proximal camming surface are aligned on a first camming axis and wherein the second distal camming surface, the second camming surface and the second proximal camming surface are aligned on a second camming axis.

Example 19—The surgical staple cartridge of Example 18, wherein the first camming surface is on the first staple support member and the second camming surface is on the third staple support member.

Example 20—A surgical instrument, comprising an axially movable sled that comprises first and second camming members. The surgical instrument further comprises a surgical staple cartridge and at least one distal staple driver that is movably supported in the surgical staple cartridge. Each distal staple driver is configured to operably support a corresponding distal staple thereon and comprises a first distal camming surface that is aligned for camming contact with the first camming member and a second distal camming surface that is aligned for camming contact with the second camming member. A plurality of intermediate staple drivers is movably supported in the surgical staple cartridge in series. A distal most one of the intermediate staple drivers is adjacent to one of the at least one distal staple drivers. Each of the intermediate staple drivers supports a corresponding first surgical staple, a corresponding second surgical staple and a corresponding third surgical staple thereon. Each intermediate staple driver comprises a first camming surface that is aligned for camming contact with the first camming member and a second camming surface that is aligned for camming contact with the second camming member. A proximal staple driver is slidably supported adjacent a proximal most one of the intermediate staple drivers. The proximal staple driver is configured to operably support a corresponding proximal surgical staple thereon and comprises a first proximal camming surface that is aligned for camming contact with the first camming member and a second proximal camming surface that is aligned for camming contact with the second camming member.

Example 21—A surgical staple driver array for operable use with a surgical staple cartridge. In at least one form, the surgical staple driver array comprises a distal staple driver that is configured to be slidably supported in the surgical staple cartridge. The surgical staple driver array is also configured to operably support at least two distal surgical staples thereon that are each oriented in a distal direction. At least one first intermediate staple driver is configured to be slidably supported in the surgical staple cartridge. The intermediate staple driver operably supports at least two first surgical staples that are each oriented in a first direction and at least two second surgical staples that are each oriented in a second direction that differs from the first direction. At least one second intermediate staple driver is configured to be slidably supported adjacent at least one of the distal staple drivers and a corresponding one of the at least one first intermediate staple drivers. Each of the at least one second intermediate staple drivers is configured to operably support five, second surgical staples thereon wherein at least two of the second surgical staples are each oriented in a primary direction and at least one other of the second surgical staples is oriented in a secondary direction that differs from the primary direction.

Example 22—The surgical staple driver array of Example 21, wherein at least one of the first and second directions is parallel to the distal direction.

Example 23—The surgical staple driver array of Examples 21 or 22, wherein the first and second directions are transverse to each other.

Example 24—The surgical staple driver array of Examples 21, 22 or 23, wherein at least one of the primary and secondary directions is parallel to the distal direction.

Example 25—The surgical staple driver array of Examples 21, 22, 23 or 24, wherein four of the second surgical staples are oriented in the primary direction and one other of the second staples is oriented in the secondary direction.

Example 26—The surgical staple driver array of Examples 21, 22, 23, 24 or 25, wherein one of the distal surgical staples comprises a distal crown that is aligned on a first distal base axis and another of the distal surgical staples comprises another distal crown that is aligned on a second distal base axis that is parallel to the first distal base axis. One of the first surgical staples comprises a first staple crown that is aligned on a first base axis and another one of the first surgical staples comprises another first staple crown that is aligned on another first base axis that is parallel to the first base axis. One of the second surgical staples comprises a second staple crown that is aligned on a second base axis and another of the second surgical staples comprises another second staple crown that is aligned on another second base axis that is parallel to the second base axis.

Example 27—The surgical staple driver array of Example 26, wherein the first and second distal base axes are parallel with the first base axis and the another first base axis and wherein the second base axis and the another second base axis are transverse to the first base axis and the another first base axis.

Example 28—The surgical staple driver array of Examples 21, 22, 23, 24, 25, 26 or 27, wherein the distal staple driver comprises at least one distal camming surface and wherein at least one of the at least one first intermediate staple drivers comprises at least one first camming surface and wherein at least one of the at least one second intermediate staple drivers comprises at least one primary camming surface and wherein the at least one distal camming surface and the at least one first camming surface and the at least one primary camming surface are axially aligned along a first camming axis.

Example 29—The surgical staple driver array of Example 28, wherein the distal staple driver comprises a first distal camming surface and a second distal camming surface that is spaced from the first distal camming surface. Each of the at least one first intermediate staple drivers comprises a first camming surface and a second camming surface that is spaced from the first camming surface. Each of the at least one second intermediate staple drivers comprises a primary camming surface and a secondary camming surface that is spaced from the primary camming surface. The first distal camming surface, each of the first camming surfaces and each of the primary camming surfaces are axially aligned on the first camming axis. The second distal camming surface, each of the second camming surfaces and each of the secondary camming surfaces are axially aligned on a second camming axis.

Example 30—A surgical staple cartridge, comprising a cartridge body that comprises a proximal end and a distal end. A distal staple driver is movably supported in the cartridge body and is configured to support at least two distal surgical staples thereon. Each of the distal surgical staples extends in a distal direction. At least one first intermediate staple driver is movably supported in the cartridge body. Each of the first intermediate staple drivers is configured to support at least two first surgical staples that each extends in a first direction and at least two other first surgical staples that each extend in a second direction. The surgical staple cartridge further comprises at least one second intermediate staple driver that is configured to be slidably supported adjacent to at least one of the distal staple drivers and a corresponding one of the first intermediate staple drivers. Each second intermediate staple driver is configured to operably support five other surgical staples thereon wherein at least two of the other surgical staples are each oriented in a primary direction and at least a third one of the other surgical staples is oriented in a secondary direction that differs from the primary direction.

Example 31—The surgical staple cartridge of Example 30, wherein a first one of the distal surgical staples comprises a first distal crown that is aligned on a first distal base axis and wherein a second one of the distal surgical staples comprises a second distal crown that is aligned on a second distal base axis that is parallel to the first distal base axis. At least one of the first surgical staples comprises a first staple crown that is aligned on a first base axis and wherein at least one other of the first surgical staples comprises another first staple crown that is aligned on another first base axis that is parallel to the first base axis. At least one of the second surgical staples comprises a second staple crown that is aligned on a second base axis and at least one other of the second surgical staples comprises another second staple crown that is aligned on another second base axis that is parallel to the second base axis.

Example 32—The surgical staple cartridge of Examples 30 or 31, wherein the distal staple driver comprises a distal staple support member that comprises a distal support column that is configured to support a distal leg of a distal surgical staple thereon. The distal staple driver further comprises a proximal support column that is configured to support a proximal leg of the distal surgical staple thereon. The distal staple driver also comprises another distal staple support member that comprises another distal support column that is configured to support another distal leg of another distal surgical staple thereon. The another distal staple support member further comprises another proximal support column that is configured to support another proximal leg of the another distal surgical staple thereon.

Example 33—The surgical staple cartridge of Example 32, wherein one of the distal support column and another distal support column is slidably supported in one of first and second cartridge wall portions in the cartridge body and wherein one of the proximal support column and another proximal support column is slidably supported in the other one of the first and second cartridge wall portions.

Example 34—The surgical staple cartridge of Examples 32 or 33, wherein the distal staple driver further comprises a first distal camming surface on the first distal staple support member and a second distal camming surface on the second distal staple support member.

Example 35—The surgical staple cartridge of Examples 30, 31, 32, 33 or 34, wherein at least one of the first intermediate staple drivers comprises a first staple support member that comprises a first distal support column that is configured to support a first distal leg of a corresponding first surgical staple thereon. The first staple support member further comprises a first proximal support column that is configured to support a first proximal leg of the corresponding first surgical staple thereon. The at least one of the first intermediate staple drivers further comprises a second staple support member that comprises a second distal support column that is configured to support a second distal leg of a corresponding second surgical staple thereon. The second staple support member further comprises a second proximal support column that is configured to support a second proximal leg of the corresponding second surgical staple thereon. The at least one of the first intermediate staple drivers also comprises a third staple support member that comprises a third distal support column that is configured to support a third distal leg of a corresponding third surgical staple thereon. The third staple support member further comprises a third proximal support column that is configured to support a third proximal leg of the corresponding third surgical staple thereon. The at least one of the first intermediate staple drivers further comprises a fourth staple support member that comprises a fourth distal support column that is configured to support a fourth distal leg of a corresponding fourth surgical staple thereon. The fourth staple support member further comprises a fourth proximal support column that is configured to support a fourth proximal leg of the corresponding fourth surgical staple thereon. A first crown of the corresponding first surgical staple and a second crown of the corresponding second surgical staple are parallel to each other. A third crown of the corresponding third surgical staple and a fourth crown of the fourth corresponding surgical staple are parallel to each other and transverse to the first and second crowns.

Example 36—The surgical staple cartridge of Example 35, wherein one of the first distal support column and the third proximal support column is slidably supported in one of first and second cartridge wall portions in the cartridge body and wherein the other one of the first distal support column and the third proximal support column is slidably supported in the other one of the first and second cartridge wall portions.

Example 37—The surgical staple cartridge of Examples 30, 31, 32, 33, 34, 35 or 36, wherein at least one of the second intermediate staple drivers comprises another first staple support member that comprises another first distal support column that is configured to support another first distal leg of a corresponding first other surgical staple thereon. The another first staple support member further comprises another first proximal support column that is configured to support another first proximal leg of the corresponding first other surgical staple thereon. The second intermediate staple driver further comprises another second staple support member that comprises another second distal support column that is configured to support another second distal leg of a corresponding second other surgical staple thereon. The another second staple support member further comprises another second proximal support column that is configured to support another second proximal leg of the corresponding second other surgical staple thereon. The second intermediate staple driver further comprises another third staple support member that comprises another third distal support column that is configured to support another third distal leg of a corresponding third other surgical staple thereon. The another third staple support member further comprises another third proximal support column that is configured to support another third proximal leg of the corresponding third other surgical staple thereon. The second intermediate staple driver further comprises another fourth staple support member that comprises another fourth distal support column that is configured to support another fourth distal leg of a corresponding fourth other surgical staple thereon. The another fourth staple support member further comprises another fourth proximal support column that is configured to support another fourth proximal leg of the corresponding fourth other surgical staple thereon. Another first crown of the first corresponding other surgical staple and another second crown of the second corresponding other surgical staple and another third crown of the third corresponding other surgical staple and another fourth crown of the fourth corresponding other surgical staple are parallel to each other. The second intermediate staple driver further comprises a fifth staple support member that comprises a fifth distal support column that is configured to support a fifth distal leg of a corresponding fifth other surgical staple thereon. The fifth staple support member further comprises a fifth proximal support column that is configured to support a fifth proximal leg of the corresponding fifth other surgical staple thereon. A fifth crown of the fifth corresponding other surgical staple is transverse to the another first crown, the another second crown, the another third crown and the another fourth crown.

Example 38—The surgical staple cartridge of Example 37, wherein the another first proximal support column and the another third proximal support column are each slidably supported in one of first and second cartridge wall portions of the cartridge body and wherein the another second proximal support column and the another fourth proximal support column are each slidably supported in the other one of the first and second cartridge wall portions.

Example 39—The surgical staple cartridge of Examples 37 or 38, further comprising a primary camming surface that is located adjacent to the another first proximal support column and the another third proximal support column and is located inboard relative thereto. A secondary camming surface is located adjacent to the another second proximal support column and the another fourth proximal support column and is located inboard relative thereto.

Example 40—A surgical instrument, comprising an axially movable sled that comprises first and second camming members. The surgical instrument further comprises a surgical staple cartridge and at least one distal staple driver that is movably supported in the surgical staple cartridge. Each distal staple driver is configured to operably support two distal surgical staples thereon and comprises a first distal camming surface that is aligned for camming contact with the first camming member. Each distal staple driver further comprises a second distal camming surface that is aligned for camming contact with the second camming member. At least one first intermediate staple driver is movably supported in the surgical staple cartridge and supports four surgical staples thereon. Each first intermediate staple driver comprises a first camming surface that is aligned for camming contact with the first camming member and a second camming surface that is aligned for camming contact with the second camming member. The surgical instrument further comprises at least one second intermediate staple driver that is slidably supported in the surgical staple cartridge adjacent at least one of the distal staple driver and a corresponding one of the first intermediate staple drivers. Each second intermediate staple driver is configured to operably support at least five other surgical staples thereon and comprises a first proximal camming surface that is aligned for camming contact with the first camming member. Each of the second intermediate staple drivers further comprises a second proximal camming surface that is aligned for camming contact with the second camming member.

Example 41—A surgical staple driver comprising a driver body that is configured to be slidably supported in a surgical staple cartridge. In at least one form, the driver body comprises at least two staple support members wherein each staple support member is configured to operably support a corresponding surgical staple thereon. The driver body further comprises a first camming surface and a second camming surface that is spaced from the first camming surface. The driver body further comprises at least one aperture that is configured to slidably receive therein a corresponding driver guide formed in the surgical staple cartridge.

Example 42—The surgical staple driver of Example 41, wherein each of the at least one apertures is located between the first and second camming surfaces.

Example 43—The surgical staple driver of Examples 41 or 42, wherein the driver body comprises a distal end and a proximal end and wherein at least one of the proximal end and the distal end is configured to slidably engage another one of the corresponding driver guides.

Example 44—The surgical staple driver of Examples 41, 42, or 43, wherein one of the at least two staple support members supports a corresponding surgical staple along a base axis and wherein another one of the staple support members supports another surgical staple along another base axis that is parallel with the base axis.

Example 45—The surgical staple driver of Example 44, wherein the another base axis is transverse to the base axis.

Example 46—The surgical staple driver of Examples 41, 42, 43, 44, or 45, wherein one of the staple support members comprises a proximal support column that is configured to support a proximal leg of a corresponding surgical staple thereon. The staple support member further comprises a distal support column that is configured to support a distal leg of the corresponding surgical staple thereon. Another one of the staple support members comprises another proximal support column that is configured to support another proximal leg of another corresponding surgical staple thereon. The another staple support member further comprises another distal support column that is configured to support another distal leg of the another corresponding surgical staple thereon. One of the proximal support column and the distal support column is slidably supported in a corresponding slot in a wall portion of the surgical staple cartridge. One of the another proximal support column and the another distal support column is slidably supported in another corresponding slot in another cartridge wall portion of the surgical staple cartridge.

Example 47—The surgical staple driver of Example 46, wherein the surgical staple cartridge defines a cartridge axis and wherein the corresponding slot and the another corresponding slot are each transverse to the cartridge axis.

Example 48—The surgical staple driver of Example 47, wherein the corresponding driver guide is centrally disposed between the cartridge wall portion and the another cartridge wall portion.

Example 49—A surgical staple cartridge, comprising a cartridge body that defines a cartridge axis and comprises a first cartridge wall and a second cartridge wall spaced from the first cartridge wall. The cartridge body further comprises at least two upstanding driver guides that are located between the first cartridge wall and the second cartridge wall. The surgical staple cartridge further comprises at least one surgical staple driver that comprises a driver body that comprises a proximal end that is configured to slidably engage one of the driver guides and a distal end that is configured to slidably engage another one of the driver guides. The driver body further comprises at least one staple support member that is configured to operably support a surgical staple thereon.

Example 50—The surgical staple cartridge of Example 49, wherein the at least one staple support member comprises a first staple support member that is configured to support a first surgical staple thereon and a second staple support member that is configured to support a second surgical staple thereon. A portion of the first staple support member is slidably supported in a corresponding slot in the first cartridge wall and another portion of the second staple support member is slidably supported in another corresponding slot in the second cartridge wall.

Example 51—The surgical staple cartridge of Example 50, wherein the corresponding slot and the another corresponding slot are each transverse to the cartridge axis.

Example 52—The surgical staple cartridge of Examples 49, 50 or 51, wherein the first surgical staple comprises a first crown supported on a first base axis and wherein the second surgical staple comprises a second crown on a second base axis that is parallel with the first base axis.

Example 53—The surgical staple cartridge of Example 52, wherein the second base axis is transverse to the first base axis.

Example 54—The surgical staple cartridge of Examples 49, 50, 51 or 52 wherein each surgical staple driver further comprises at least one aperture therein that is configured to slidably receive a corresponding additional driver guide therein.

Example 55—A surgical instrument, comprising an axially movable sled that comprises a first camming member that is configured to move along a first cam axis and a second camming member that configured to move along a second cam axis. The surgical instrument further comprises a surgical staple cartridge that comprises a cartridge body that comprises a first cartridge wall and a second cartridge wall that is spaced from the first cartridge wall. The cartridge body further comprises at least two upstanding staple guides that are located between the first cartridge wall and the second cartridge wall. The surgical instrument further comprises at least one surgical staple driver that comprises a driver body that comprises a proximal end that is configured to slidably engage one of the driver guides and a distal end that is configured to slidably engage another one of the driver guides. The surgical staple driver further comprises at least one staple support members that is configured to operably support a surgical staple thereon.

Example 56—The surgical instrument of Examples 55, wherein the driver body further comprises a first camming surface that is oriented on one side of each of the driver guides and is in axial alignment with the first cam axis and a second camming surface that is oriented on another side of each of the driver guides and is in axial alignment with the second cam axis.

Example 57—The surgical instrument of Example 55, wherein the driver body further comprises at least one aperture therein that is located between the first and second camming surfaces and is configured to slidably receive a corresponding additional driver guide therein.

Example 58—The surgical instrument of Examples 55, 56 or 57, wherein the at least one staple support member comprises a first staple support member that is configured to support a first surgical staple thereon and a second staple support member that is configured to support a second surgical staple thereon. A portion of the first staple support member is slidably supported in the first cartridge wall and another portion of the second staple support member is slidably supported in the second cartridge wall.

Example 59—The surgical instrument of Examples 55, 56, 57 or 58, wherein the surgical staple cartridge defines a cartridge axis and wherein the corresponding slot and the another corresponding slot are each transverse to the cartridge axis.

Example 60—The surgical instrument of Example 54, 55, 56, 57, 58 or 59, wherein the at least one staple support member comprises a first staple support member that is configured to support a first surgical staple thereon and a second staple support member that is configured to support a second surgical staple thereon. A portion of the first staple support member is slidably supported in the first cartridge wall and another portion of the second staple support member is slidably supported in the second cartridge wall.

Example 61—A surgical staple driver that is configured for use with a surgical staple cartridge that operably interfaces with a surgical instrument camming member that is axially movable along a first cam axis. In at least one form, the surgical staple driver comprises a driver body that is slidably supportable within the surgical staple cartridge. A camming surface is provided on the driver body and is oriented for camming engagement with the camming member of the surgical instrument along the first cam axis when the driver body is slidably supported in the surgical staple cartridge. A staple support portion is configured to operably support at least one surgical staple thereon relative to the camming surface such that when the camming member engages the camming surface, the camming member passes transversely under a portion of a staple crown of at least one of the at least one surgical staples that is supported on the staple support portion.

Example 62—The surgical staple driver of Example 61, wherein each of the at least one surgical staples that is supported on the staple supporting portion comprises a proximal leg that protrudes from the staple crown and a distal leg that protrudes from the staple crown. The staple support portion also supports the at least one surgical staple thereon relative to the camming surface such that when the camming member engages the camming surface, the camming member is not in axial alignment with the proximal and distal legs of any of the surgical staples supported on the staple support portion.

Example 63—The surgical staple driver of Examples 61 or 62, wherein the staple support portion comprises a first staple support portion that is configured to operably support a first surgical staple thereon. The first surgical staple comprises a first staple crown. A first distal leg protrudes from an end of the first staple crown and a first proximal leg protrudes from another end of the first staple crown. The first staple support portion operably supports the first staple crown along a first base axis that is transverse to the first cam axis and comprises a first proximal support column that is configured to support the first proximal leg of the first surgical staple thereon. The first staple support portion further comprises a first distal support column that is configured to support the first distal leg of the first surgical staple thereon. The camming surface is oriented relative to the first proximal support column and the first distal support column such that when the camming member engages the camming surface, the camming member passes between the first proximal support column and the first distal support column.

Example 64—The surgical staple driver of Example 63, wherein the staple support portion further comprises a second staple support portion that is configured to operably support a second surgical staple thereon. The second surgical staple comprises a second staple crown. A second distal leg protrudes from an end of the second staple crown and a second proximal leg protrudes from another end of the second staple crown. The second staple support portion comprises a second proximal support column that is configured to support the second proximal leg thereon. The second staple support portion further comprises a second distal support column that is configured to support the second distal leg thereon.

Example 65—The surgical staple driver of Example 64, wherein the second staple support portion operably supports the second staple crown along a second base axis that is transverse to the first base axis.

Example 66—The surgical staple driver of Example 64, wherein the staple support portion operably supports the second staple crown along a second base axis that is parallel to the first base axis.

Example 67—The surgical staple driver of Examples 60, 61, 62, 63, 64, 65 or 66, wherein the surgical instrument comprises a second axially movable camming member and wherein said staple support portion further comprises a second camming surface oriented for camming engagement with the second axially moving camming member.

Example 68—The surgical staple driver of Examples 60, 61, 62, 63, 64, 65 or 66, wherein the surgical instrument comprises a second axially movable camming member and wherein the staple support portion further comprises a second camming surface that is oriented for camming engagement with the second axially moving camming member.

Example 69—The surgical staple driver of Example 68, wherein the second camming surface is oriented relative to the second staple support portion such that when the second camming member engages the second camming surface, the second camming member passes between the second proximal support column and the second distal support column.

Example 70—The surgical staple driver of Examples 63, 64, 65, 66, 67, 68 or 69, wherein the driver body is slidably supported between a first cartridge wall portion and a second cartridge wall portion and wherein one of the first proximal support column and the first distal support column is slidably received in a corresponding wall slot in one of the first and second cartridge wall portions.

Example 71—The surgical staple driver of Example 70, wherein the surgical staple cartridge further comprises at least one driver guide and wherein one of the first proximal support column and the first distal support column is slidably supported in the corresponding wall slot and the other of the first proximal support column and the first distal support column is slidably supported in a corresponding guide slot in the at least one driver guide.

Example 72—The surgical staple driver of Example 71, wherein the surgical staple cartridge has a cartridge height and wherein the wall slot extends for the cartridge height and wherein the at least one driver guide has a guide height and wherein the corresponding guide slot has a slot length that equals the guide height.

Example 73—The surgical staple driver of Example 72, wherein the cartridge height and the guide height are equal.

Example 74—The surgical staple driver of Examples 64, 65, 66, 67, 68, 69, 70, 71, 72 or 73, wherein the staple support portion further comprises a third staple support portion that is configured to operably support a third surgical staple thereon. The third surgical staple comprises a third staple crown. A third proximal leg protrudes from an end of the third staple crown. A third proximal leg protrudes from another end of the third staple crown. The third staple support portion comprises a third proximal support column that is configured to support a third proximal leg thereon. The third staple support portion further comprises a third distal support column that is configured to support the third distal leg thereon.

Example 75—The surgical staple driver of Example 74, wherein the third staple support portion further comprises a second camming surface that is oriented relative to the third proximal support column and the third distal support column such that when a corresponding portion of the camming member engages the second camming surface, the corresponding portion of the camming member passes between the third proximal support column and the third distal support column.

Example 76—The surgical staple driver of Examples 74 or 75, wherein the third staple support portion operably supports the third staple crown along a third base axis that is parallel with the first base axis.

Example 77—The surgical staple driver of Examples 74, 75 or 76, wherein the staple support portion further comprises a fourth staple support portion that is configured to operably support a fourth surgical staple thereon. The fourth surgical staple comprises a fourth staple crown. A fourth distal leg protrudes from an end of the fourth staple crown. A fourth proximal leg protrudes from another end of the fourth staple crown. The fourth staple support portion comprises a fourth proximal support column that is configured to support the fourth proximal leg thereon. The fourth staple support portion further comprises a fourth distal support column that is configured to support the fourth distal leg thereon.

Example 78—The surgical staple driver of Example 77, wherein the fourth staple support portion further comprises a second camming surface that is oriented relative to the fourth proximal support column and the fourth distal support column such that when a corresponding portion of the camming member engages the second camming surface, the corresponding portion of the camming member passes between the fourth proximal support column and the fourth distal support column.

Example 79—The surgical staple driver of Examples 77 or 78, wherein the staple support portion further comprises a fifth staple support portion that is configured to operably support a fifth surgical staple thereon. The fifth surgical staple comprises a fifth staple crown. A fifth distal leg protrudes from an end of the fifth staple crown. A fifth proximal leg protrudes from another end of the fifth staple crown. The fifth staple support portion comprises a fifth proximal support column that is configured to support the fifth proximal leg thereon. The fifth staple support portion further comprises a fifth distal support column that is configured to support the fifth distal leg thereon.

Example 80—The surgical staple driver of Example 79, wherein the fifth staple support portion further comprises a second camming surface that is oriented relative to the fifth proximal support column and the fifth distal support column such that when a corresponding portion of the camming member engages the second camming surface, the corresponding portion of the camming member passes between the fifth proximal support column and the fifth distal support column.

Example 81—A surgical staple driver comprising a driver body that is configured to be slidably supported in a surgical staple cartridge. A staple support portion is configured to operably support a surgical staple thereon. The surgical staple comprises a staple crown. A proximal leg protrudes from an end of the staple crown and a distal leg protrudes from another end of the staple crown. The staple support portion comprises a proximal support column that is configured to support the proximal leg thereon. The staple support portion further comprises a distal support column that is configured to support the distal leg thereon. The driver body further comprises at least one camming surface that extends along a cam axis that extends transversely between the proximal and distal support columns.

Example 82—A surgical staple cartridge, comprising a cartridge body that comprises a first cartridge wall portion and a second cartridge wall portion. The surgical staple cartridge further comprises at least one staple driver that is slidably supported between the first cartridge wall portion and the second cartridge wall portion. The at least one staple driver comprises a driver body that is configured to operably support at least one surgical staple thereon. The surgical staple comprises a staple crown. A proximal leg protrudes from one end of the staple crown. A distal leg protrudes from another end of the staple crown. The driver body comprises a proximal support column that is configured to support the proximal leg thereon. The driver body further comprises a distal support column that is configured to support the distal leg thereon. At least one of the proximal and distal support columns is slidably supported in one of the first and second cartridge wall portions. The driver body further comprises at least one camming surface that extends along a cam axis that extends transversely between the proximal and distal support columns.

Example 83—A surgical staple driver array for operable use in a surgical staple cartridge. In at least one form, the surgical staple driver array comprises a plurality of first staple drivers that are each configured to be slidably supported in the surgical staple cartridge. Each first staple driver is further configured to operably support at least two first surgical staples thereon that are parallel to each other. The surgical staple driver array further comprises at least one second staple driver that is configured to be slidably supported in the surgical staple cartridge. Each second staple driver support is configured to support a single, second surgical staple thereon. The second surgical staple extends in a second direction that is transverse to each of the first surgical staples supported on the at least one adjacent corresponding first staple driver. The first and second staple drivers are oriented in a line in the surgical staple cartridge such that one of the first staple drivers is located on each axial side of each second staple driver.

Example 84—The surgical staple driver array of Examples 83, wherein each of the first surgical staples comprises a first crown and wherein the first crown of one of the first surgical staples that is supported on one of the first staple drivers is aligned on a first base axis and wherein another crown of another of the first surgical staples that is supported on the first staple driver is aligned on a second base axis that is parallel to the first base axis. Each of the second staples comprises a second crown that is aligned on a third base axis that is transverse to the first and second base axes.

Example 85—The surgical staple driver array of Examples 83 or 84, wherein one of the plurality of first staple drivers comprises a distal most first staple driver in the staple driver array and another one of the first staple drivers comprises a proximal most first staple driver in the staple driver array.

Example 86—The surgical staple driver array of Examples 83, 84 or 85, wherein each of the first staple drivers comprises a first camming surface and a second camming surface that is spaced from the first camming surface.

Example 87—The surgical staple driver array of Example 86, wherein each second staple driver comprises a primary camming surface and a secondary camming surface that is spaced from the primary camming surface. The first camming surface and the primary camming surface are aligned on a first camming axis and the second camming surface and the secondary camming surface are aligned on a second camming axis.

Example 88—The surgical staple driver array of Example 87, wherein the first and second camming axes are transverse to the first and second base axes.

Example 89—The surgical staple driver array of Example 83, wherein the third base axis is transverse to the first and second camming axes.

Example 90—The surgical staple driver array of Examples 83, 84, 85, 86, 87, 88 or 89, wherein a portion of each first staple driver is configured to be slidably supported in a first wall portion of the surgical staple cartridge and wherein another portion of each first staple driver is configured to be slidably supported in a second wall portion of the surgical staple cartridge.

Example 91—A surgical staple cartridge, comprising a cartridge body that comprises a proximal and a distal end. A plurality of first staple drivers is movably supported in the cartridge body. Each first staple driver is configured to support two, first surgical staples that are oriented in corresponding first directions. At least one second staple driver is slidably supported in the surgical staple cartridge adjacent to two corresponding first staple drivers. Each second staple driver supports a single, second surgical staple thereon. The second surgical staple extends in a second direction that is transverse to each of the corresponding first directions. The first and second staple drivers are oriented in a line in the cartridge body such that one first staple driver is located on each axial side of each second staple driver.

Example 92—The surgical staple cartridge of Example 91, wherein one of the first surgical staples that is supported on one of the first staple drivers comprises a first crown that is aligned on a first base axis. Another one of the first surgical staples that is supported on the first staple driver comprises another first crown that is aligned on another first base axis. The another first base axis is parallel with the first base axis. Each second staple comprises a second crown that is aligned on a second base axis that is transverse to the first base axis and the another first base axis.

Example 93—The surgical staple cartridge of Examples 91 or 92, wherein the first staple driver comprises a first staple support member that comprises a first distal support column that is configured to support a first distal leg of a corresponding first surgical staple thereon. The first staple support member further comprises a first proximal support column that is configured to support a first proximal leg of the corresponding first surgical staple thereon. The first staple driver further comprises another first staple support member that comprises another first distal support column that is configured to support another first distal leg of another corresponding first surgical staple thereon. The another first staple support member further comprises another first proximal support column that is configured to support another first proximal leg of the another corresponding first surgical staple thereon.

Example 94—The surgical staple cartridge of Example 93, wherein each first staple support member further comprises a first camming surface that is aligned on a first cam axis that extends transversely between the first distal and first proximal support columns. Each first staple support member further comprises a second camming surface that is aligned on a second cam axis that extends transversely between the another first distal and the another first proximal support columns.

Example 95—The surgical staple cartridge of Examples 93 or 94, wherein at least one second staple driver comprises a second staple support member that comprises a second distal support column that is configured to support a second distal leg of a corresponding second surgical staple thereon. The second staple support member further comprises a second proximal support column that is configured to support a second proximal leg of the corresponding second surgical staple thereon.

Example 96—The surgical staple cartridge of Example 95, wherein each second staple support member further comprises a primary first camming surface that is adjacent to the second proximal support column and is aligned on the first cam axis. The second staple support member further comprises a secondary camming surface that is adjacent to the second distal support column and is aligned on the second cam axis.

Example 97—The surgical staple cartridge of Examples 93, 94, 95 or 96, wherein the first distal support column is slidably supported in a corresponding first slot in a first wall portion of the cartridge body and wherein the another first proximal support column is slidably supported in a corresponding second slot in a second wall portion of the cartridge body.

Example 98—The surgical staple cartridge of Examples 93, 94, 95, 96 or 97, wherein each first staple driver further comprises a first camming surface that is aligned on a first cam axis that extends transversely between the first distal and first proximal support columns. Each first staple driver further comprises a second camming surface that is aligned on a second cam axis that extends transversely between the another first distal support column and the another first proximal support column.

Example 99—The surgical staple cartridge of Example 97, wherein the cartridge body defines a cartridge axis and wherein the first slot lies along a first slot axis that is transverse to the cartridge axis and wherein the second slot lies along a second axis that is transverse to the cartridge axis.

Example 100—The surgical staple cartridge of Example 98, wherein each second staple driver further comprises a primary camming surface aligned on the first cam axis and a secondary camming surface aligned on the second cam axis.

Example 101—A surgical instrument, comprising an axially movable sled that comprises first and second camming members. The surgical instrument further comprises a surgical staple cartridge and a plurality of first staple drivers that is movably supported in the surgical staple cartridge. Each first staple driver is configured to support two, first surgical staples that are oriented in corresponding first directions. Each first staple driver comprises a first camming surface that is aligned for camming contact with the first camming member and a second camming surface that is aligned for camming contact with the second camming member. The surgical instrument further comprises a plurality of second staple drivers that is slidably supported in the surgical staple cartridge adjacent to at least one corresponding first staple driver. Each second staple driver supports a single, second surgical staple thereon. The second surgical staple extends in a second direction that is transverse to each of the corresponding first directions. Each second staple driver comprises a primary camming surface that is aligned for camming contact with the first camming member and a secondary camming surface that is aligned for camming contact with the second camming member.

The entire disclosures of:

Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.

The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.

By way of example only, aspects described herein may be processed before surgery. First, a new or used instrument may be obtained and when necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device also may be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, plasma peroxide, or steam.

While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.

Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Shelton, IV, Frederick E., Baxter, III, Chester O., Harris, Jason L., Crainich, Lawrence

Patent Priority Assignee Title
Patent Priority Assignee Title
10004497, Mar 26 2014 Cilag GmbH International Interface systems for use with surgical instruments
10004498, Jan 31 2006 Cilag GmbH International Surgical instrument comprising a plurality of articulation joints
10004501, Dec 18 2014 Cilag GmbH International Surgical instruments with improved closure arrangements
10004505, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10010322, Jan 31 2006 Cilag GmbH International Surgical instrument
10010324, Apr 16 2014 Cilag GmbH International Fastener cartridge compromising fastener cavities including fastener control features
10013049, Mar 26 2014 Cilag GmbH International Power management through sleep options of segmented circuit and wake up control
10016199, Sep 05 2014 Cilag GmbH International Polarity of hall magnet to identify cartridge type
10028742, Nov 09 2005 Cilag GmbH International Staple cartridge comprising staples with different unformed heights
10028743, Sep 30 2010 Cilag GmbH International Staple cartridge assembly comprising an implantable layer
10028744, Aug 26 2015 Cilag GmbH International Staple cartridge assembly including staple guides
10028761, Mar 26 2014 Cilag GmbH International Feedback algorithms for manual bailout systems for surgical instruments
10039529, Sep 17 2010 Cilag GmbH International Power control arrangements for surgical instruments and batteries
10045769, Mar 14 2011 Cilag GmbH International Circular surgical staplers with foldable anvil assemblies
10045776, Mar 06 2015 Cilag GmbH International Control techniques and sub-processor contained within modular shaft with select control processing from handle
10045779, Feb 27 2015 Cilag GmbH International Surgical instrument system comprising an inspection station
10045781, Jun 13 2014 Cilag GmbH International Closure lockout systems for surgical instruments
10052044, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
10052099, Jan 31 2006 Cilag GmbH International Surgical instrument system comprising a firing system including a rotatable shaft and first and second actuation ramps
10052100, Jan 31 2006 Cilag GmbH International Surgical instrument system configured to detect resistive forces experienced by a tissue cutting implement
10052102, Jun 18 2015 Cilag GmbH International Surgical end effectors with dual cam actuated jaw closing features
10052104, Oct 16 2014 Cilag GmbH International Staple cartridge comprising a tissue thickness compensator
10058317, Jul 26 2012 Smith & Nephew, Inc Knotless anchor for instability repair
10058327, Feb 15 2008 Cilag GmbH International End effector coupling arrangements for a surgical cutting and stapling instrument
10058963, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
10064618, Jan 20 2012 ZIMMER, INC Compression bone staple
10064621, Jun 15 2012 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
10064624, Sep 30 2010 Cilag GmbH International End effector with implantable layer
10064688, Mar 23 2006 Cilag GmbH International Surgical system with selectively articulatable end effector
10070861, Mar 23 2006 Cilag GmbH International Articulatable surgical device
10070863, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil
10071452, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
10076325, Oct 13 2014 Cilag GmbH International Surgical stapling apparatus comprising a tissue stop
10080552, Apr 21 2014 Covidien LP Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
10085748, Dec 18 2014 Cilag GmbH International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
10085749, Feb 26 2015 Covidien LP Surgical apparatus with conductor strain relief
10085806, May 09 2012 DEUTSCHES ZENTRUM FUR LUFT-UND RAUMFAHRT E V Minimally invasive instrument for robotic surgery
10092292, Feb 28 2013 Cilag GmbH International Staple forming features for surgical stapling instrument
10098642, Aug 26 2015 Cilag GmbH International Surgical staples comprising features for improved fastening of tissue
10105142, Sep 18 2014 Cilag GmbH International Surgical stapler with plurality of cutting elements
10111679, Sep 05 2014 Cilag GmbH International Circuitry and sensors for powered medical device
10117649, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a lockable articulation system
10117652, Mar 28 2012 Cilag GmbH International End effector comprising a tissue thickness compensator and progressively released attachment members
10123798, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising controlled release and expansion
10123799, Dec 09 2013 Covidien LP Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
10130352, Mar 14 2011 Cilag GmbH International Surgical bowel retractor devices
10130359, Sep 29 2006 Cilag GmbH International Method for forming a staple
10130363, Sep 29 2010 Cilag GmbH International Staple cartridge
10130366, May 27 2011 Cilag GmbH International Automated reloading devices for replacing used end effectors on robotic surgical systems
10135242, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
10136887, Apr 16 2013 Cilag GmbH International Drive system decoupling arrangement for a surgical instrument
10136888, Dec 26 2012 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Circular stapler and staple head assembly thereof
10136890, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a variable thickness compressible portion
10149679, Nov 09 2005 Cilag GmbH International Surgical instrument comprising drive systems
10149680, Apr 16 2013 Cilag GmbH International Surgical instrument comprising a gap setting system
10149682, Sep 30 2010 Cilag GmbH International Stapling system including an actuation system
10149683, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
10159482, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and different staple heights
10159483, Feb 27 2015 Cilag GmbH International Surgical apparatus configured to track an end-of-life parameter
10166025, Mar 26 2012 Cilag GmbH International Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
10166026, Aug 26 2015 Cilag GmbH International Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom
10172616, Sep 29 2006 Cilag GmbH International Surgical staple cartridge
10172619, Sep 02 2015 Cilag GmbH International Surgical staple driver arrays
10178992, Jun 18 2015 Cilag GmbH International Push/pull articulation drive systems for articulatable surgical instruments
10180463, Feb 27 2015 Cilag GmbH International Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
10182816, Feb 27 2015 Cilag GmbH International Charging system that enables emergency resolutions for charging a battery
10182818, Jun 18 2015 Cilag GmbH International Surgical end effectors with positive jaw opening arrangements
10182819, Sep 30 2010 Cilag GmbH International Implantable layer assemblies
10188385, Dec 18 2014 Cilag GmbH International Surgical instrument system comprising lockable systems
10188393, Sep 17 2010 Cilag GmbH International Surgical instrument battery comprising a plurality of cells
10188394, Aug 26 2015 Cilag GmbH International Staples configured to support an implantable adjunct
10194910, Sep 30 2010 Cilag GmbH International Stapling assemblies comprising a layer
10194913, Jul 30 2015 Cilag GmbH International Surgical instrument comprising systems for assuring the proper sequential operation of the surgical instrument
10201364, Mar 26 2014 Cilag GmbH International Surgical instrument comprising a rotatable shaft
10206605, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
10206677, Sep 26 2014 Cilag GmbH International Surgical staple and driver arrangements for staple cartridges
10206678, Oct 03 2006 Cilag GmbH International Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
10213198, Sep 30 2010 Cilag GmbH International Actuator for releasing a tissue thickness compensator from a fastener cartridge
10213201, Mar 31 2015 Cilag GmbH International Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
10213203, Aug 26 2015 Cilag GmbH International Staple cartridge assembly without a bottom cover
10213262, Mar 23 2006 Cilag GmbH International Manipulatable surgical systems with selectively articulatable fastening device
10215318, Jul 27 2016 Gates Corporation Breech lock coupling
10226250, Feb 27 2015 Cilag GmbH International Modular stapling assembly
10226251, Oct 15 2015 Cilag GmbH International Surgical staple actuating sled with actuation stroke having minimized distance relative to distal staple
10231733, Oct 13 2000 Covidien LP Surgical fastener applying apparatus
10238385, Feb 14 2008 Cilag GmbH International Surgical instrument system for evaluating tissue impedance
10238387, Feb 14 2008 Cilag GmbH International Surgical instrument comprising a control system
10238390, Sep 02 2015 Cilag GmbH International Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
10238391, Mar 14 2013 Cilag GmbH International Drive train control arrangements for modular surgical instruments
10245027, Dec 18 2014 Cilag GmbH International Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
10245028, Feb 27 2015 Cilag GmbH International Power adapter for a surgical instrument
10245029, Feb 09 2016 Cilag GmbH International Surgical instrument with articulating and axially translatable end effector
10245030, Feb 09 2016 Cilag GmbH International Surgical instruments with tensioning arrangements for cable driven articulation systems
10245032, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
10245033, Mar 06 2015 Cilag GmbH International Surgical instrument comprising a lockable battery housing
10245035, Aug 31 2005 Cilag GmbH International Stapling assembly configured to produce different formed staple heights
10245038, Jun 11 2014 Applied Medical Resources Corporation Surgical stapler with circumferential firing
10245058, Oct 25 2006 KARL STORZ SE & CO KG Manipulator for medical use
10251648, Sep 02 2015 Cilag GmbH International Surgical staple cartridge staple drivers with central support features
10258330, Sep 30 2010 Cilag GmbH International End effector including an implantable arrangement
10258331, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10258333, Jun 28 2012 Cilag GmbH International Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
10258336, Sep 19 2008 Cilag GmbH International Stapling system configured to produce different formed staple heights
10265065, Dec 23 2013 Cilag GmbH International Surgical staples and staple cartridges
10265067, Feb 14 2008 Cilag GmbH International Surgical instrument including a regulator and a control system
10265068, Dec 30 2015 Cilag GmbH International Surgical instruments with separable motors and motor control circuits
10265072, Sep 30 2010 Cilag GmbH International Surgical stapling system comprising an end effector including an implantable layer
10265073, Oct 15 2015 Cilag GmbH International Surgical stapler with terminal staple orientation crossing center line
10265074, Sep 30 2010 Cilag GmbH International Implantable layers for surgical stapling devices
10271845, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a cam and driver arrangement
10271846, Aug 31 2005 Cilag GmbH International Staple cartridge for use with a surgical stapler
10271851, Apr 01 2016 Cilag GmbH International Modular surgical stapling system comprising a display
10278697, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
10278722, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
10285700, Apr 20 2016 Cilag GmbH International Surgical staple cartridge with hydraulic staple deployment
10285705, Apr 01 2016 Cilag GmbH International Surgical stapling system comprising a grooved forming pocket
10292702, Nov 17 2015 Ethicon, Inc Applicator instruments for dispensing surgical fasteners having articulating shafts and articulation control elements
10292704, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
10299792, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
10299817, Jan 31 2006 Cilag GmbH International Motor-driven fastening assembly
10307159, Apr 01 2016 Cilag GmbH International Surgical instrument handle assembly with reconfigurable grip portion
10314582, Apr 01 2016 Cilag GmbH International Surgical instrument comprising a shifting mechanism
10314587, Sep 02 2015 Cilag GmbH International Surgical staple cartridge with improved staple driver configurations
10314589, Jun 27 2006 Cilag GmbH International Surgical instrument including a shifting assembly
10321907, Feb 27 2015 Cilag GmbH International System for monitoring whether a surgical instrument needs to be serviced
10321909, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple including deformable members
10327764, Sep 26 2014 Cilag GmbH International Method for creating a flexible staple line
10327765, Jun 04 2007 Cilag GmbH International Drive systems for surgical instruments
10327776, Apr 16 2014 Cilag GmbH International Surgical stapling buttresses and adjunct materials
10335144, Jan 31 2006 Cilag GmbH International Surgical instrument
10335148, Sep 30 2010 Cilag GmbH International Staple cartridge including a tissue thickness compensator for a surgical stapler
10335149, Jun 18 2015 Cilag GmbH International Articulatable surgical instruments with composite firing beam structures with center firing support member for articulation support
10335150, Sep 30 2010 Cilag GmbH International Staple cartridge comprising an implantable layer
10335151, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10342533, Jan 31 2006 Cilag GmbH International Surgical instrument
10342535, Oct 15 2015 Cilag GmbH International Method of applying staples to liver and other organs
10342541, Oct 03 2006 Cilag GmbH International Surgical instruments with E-beam driver and rotary drive arrangements
10342543, Apr 01 2016 Cilag GmbH International Surgical stapling system comprising a shiftable transmission
10349941, May 27 2015 Covidien LP Multi-fire lead screw stapling device
10357246, Apr 01 2016 Cilag GmbH International Rotary powered surgical instrument with manually actuatable bailout system
10357251, Aug 26 2015 Cilag GmbH International Surgical staples comprising hardness variations for improved fastening of tissue
10357252, Sep 02 2015 Cilag GmbH International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
10363031, Sep 30 2010 Cilag GmbH International Tissue thickness compensators for surgical staplers
10363032, Apr 20 2016 Cilag GmbH International Surgical stapler with hydraulic deck control
10368861, Jun 18 2015 Cilag GmbH International Dual articulation drive system arrangements for articulatable surgical instruments
10368865, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10376263, Apr 01 2016 Cilag GmbH International Anvil modification members for surgical staplers
10383628, Apr 20 2015 MEDI TULIP CO , LTD Surgical linear stapler
10383629, Aug 10 2009 Covidien LP System and method for preventing reprocessing of a powered surgical instrument
10383633, May 27 2011 Cilag GmbH International Robotically-driven surgical assembly
10390823, Feb 15 2008 Cilag GmbH International End effector comprising an adjunct
10390825, Mar 31 2015 Cilag GmbH International Surgical instrument with progressive rotary drive systems
10390829, Aug 26 2015 Cilag GmbH International Staples comprising a cover
10398433, Mar 28 2007 Cilag GmbH International Laparoscopic clamp load measuring devices
10398436, Sep 30 2010 Cilag GmbH International Staple cartridge comprising staples positioned within a compressible portion thereof
10405854, Mar 28 2012 Cilag GmbH International Surgical stapling cartridge with layer retention features
10405857, Apr 16 2013 Cilag GmbH International Powered linear surgical stapler
10405863, Jun 18 2015 Cilag GmbH International Movable firing beam support arrangements for articulatable surgical instruments
10413291, Feb 09 2016 Cilag GmbH International Surgical instrument articulation mechanism with slotted secondary constraint
10413293, Apr 01 2016 Cilag GmbH International Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
10413297, Apr 01 2016 Cilag GmbH International Surgical stapling system configured to apply annular rows of staples having different heights
10420552, Apr 01 2016 Cilag GmbH International Surgical stapling system configured to provide selective cutting of tissue
10420553, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
10420558, Jul 30 2015 Cilag GmbH International Surgical instrument comprising a system for bypassing an operational step of the surgical instrument
10420559, Feb 11 2016 Covidien LP Surgical stapler with small diameter endoscopic portion
10420560, Jun 27 2006 Cilag GmbH International Manually driven surgical cutting and fastening instrument
10420561, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10426463, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
10426471, Dec 21 2016 Cilag GmbH International Surgical instrument with multiple failure response modes
10426476, Sep 26 2014 Cilag GmbH International Circular fastener cartridges for applying radially expandable fastener lines
10426477, Sep 26 2014 Cilag GmbH International Staple cartridge assembly including a ramp
10426478, May 27 2011 Cilag GmbH International Surgical stapling systems
10433837, Feb 09 2016 Cilag GmbH International Surgical instruments with multiple link articulation arrangements
10433844, Mar 31 2015 Cilag GmbH International Surgical instrument with selectively disengageable threaded drive systems
10433845, Aug 26 2015 Cilag GmbH International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
10433849, Apr 01 2016 Cilag GmbH International Surgical stapling system comprising a display including a re-orientable display field
10433918, Jan 10 2007 Cilag GmbH International Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
10441279, Mar 06 2015 Cilag GmbH International Multiple level thresholds to modify operation of powered surgical instruments
10441280, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
10441285, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprising tissue ingrowth features
10441369, Jan 10 2007 Cilag GmbH International Articulatable surgical instrument configured for detachable use with a robotic system
10448948, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10448950, Dec 21 2016 Cilag GmbH International Surgical staplers with independently actuatable closing and firing systems
10456132, Jun 25 2014 Cilag GmbH International Jaw opening feature for surgical stapler
10456133, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10456140, Apr 01 2016 Cilag GmbH International Surgical stapling system comprising an unclamping lockout
10463367, Oct 25 2011 Covidien LP Multi-use loading unit
10463369, Aug 31 2005 Cilag GmbH International Disposable end effector for use with a surgical instrument
10463383, Jan 31 2006 Cilag GmbH International Stapling instrument including a sensing system
10470762, Mar 14 2013 Cilag GmbH International Multi-function motor for a surgical instrument
10470763, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument including a sensing system
10470764, Feb 09 2016 Cilag GmbH International Surgical instruments with closure stroke reduction arrangements
10470768, Apr 16 2014 Cilag GmbH International Fastener cartridge including a layer attached thereto
10470769, Aug 26 2015 Cilag GmbH International Staple cartridge assembly comprising staple alignment features on a firing member
10478190, Apr 01 2016 Cilag GmbH International Surgical stapling system comprising a spent cartridge lockout
10485536, Sep 30 2010 Cilag GmbH International Tissue stapler having an anti-microbial agent
10485541, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
10485542, Apr 01 2016 Cilag GmbH International Surgical stapling instrument comprising multiple lockouts
10485543, Dec 21 2016 Cilag GmbH International Anvil having a knife slot width
10485546, May 27 2011 Cilag GmbH International Robotically-driven surgical assembly
10492785, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a lockout
10492787, Sep 17 2010 Cilag GmbH International Orientable battery for a surgical instrument
10499890, Jan 31 2006 Cilag GmbH International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
10499908, Mar 04 2014 MAQUET CARDIOVASCULAR LLC Surgical implant and method and instrument for installing the same
10499914, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangements
10500309, Oct 05 2007 Cook Biotech Incorporated Absorbable adhesives and their formulation for use in medical applications
10517594, Oct 29 2014 Cilag GmbH International Cartridge assemblies for surgical staplers
10517595, Dec 21 2016 Cilag GmbH International Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
10517596, Dec 21 2016 Cilag GmbH International Articulatable surgical instruments with articulation stroke amplification features
10517599, Aug 26 2015 Cilag GmbH International Staple cartridge assembly comprising staple cavities for providing better staple guidance
10517682, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
10524789, Dec 21 2016 Cilag GmbH International Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
10524795, Jul 30 2015 Cilag GmbH International Surgical instrument comprising systems for permitting the optional transection of tissue
10531874, Apr 01 2016 Cilag GmbH International Surgical cutting and stapling end effector with anvil concentric drive member
10537324, Dec 21 2016 Cilag GmbH International Stepped staple cartridge with asymmetrical staples
10537325, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangement to accommodate different types of staples
10542978, May 27 2011 Covidien LP Method of internally potting or sealing a handheld medical device
10542979, Jun 24 2016 Cilag GmbH International Stamped staples and staple cartridges using the same
10542982, Dec 21 2016 Cilag GmbH International Shaft assembly comprising first and second articulation lockouts
10542988, Apr 16 2014 Cilag GmbH International End effector comprising an anvil including projections extending therefrom
10542991, Apr 01 2016 Cilag GmbH International Surgical stapling system comprising a jaw attachment lockout
10548504, Mar 06 2015 Cilag GmbH International Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
10548599, Jul 20 2015 Covidien LP Endoscopic stapler and staple
10561422, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising deployable tissue engaging members
10568624, Dec 21 2016 Cilag GmbH International Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
10568625, Dec 21 2016 Cilag GmbH International Staple cartridges and arrangements of staples and staple cavities therein
10568626, Dec 21 2016 Cilag GmbH International Surgical instruments with jaw opening features for increasing a jaw opening distance
10568632, Apr 01 2016 Cilag GmbH International Surgical stapling system comprising a jaw closure lockout
10568652, Sep 29 2006 Cilag GmbH International Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
10575868, Mar 01 2013 Cilag GmbH International Surgical instrument with coupler assembly
10582928, Dec 21 2016 Cilag GmbH International Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
10588623, Sep 30 2010 Cilag GmbH International Adhesive film laminate
10588624, Dec 23 2013 Cilag GmbH International Surgical staples, staple cartridges and surgical end effectors
10588625, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with off-axis firing beam arrangements
10588629, Nov 20 2009 Covidien LP Surgical console and hand-held surgical device
10588630, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with closure stroke reduction features
10588631, Dec 21 2016 Cilag GmbH International Surgical instruments with positive jaw opening features
10588632, Dec 21 2016 Cilag GmbH International Surgical end effectors and firing members thereof
10595835, Sep 17 2010 Cilag GmbH International Surgical instrument comprising a removable battery
10603036, Dec 21 2016 Cilag GmbH International Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
10603128, Oct 07 2014 Covidien LP Handheld electromechanical surgical system
10610219, Dec 31 2015 Cilag GmbH International Surgical stapler with curved outer surface on anvil
10610224, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors and replaceable tool assemblies
10617412, Mar 06 2015 Cilag GmbH International System for detecting the mis-insertion of a staple cartridge into a surgical stapler
10617414, Dec 21 2016 Cilag GmbH International Closure member arrangements for surgical instruments
10624634, Aug 23 2013 Cilag GmbH International Firing trigger lockout arrangements for surgical instruments
10624635, Dec 21 2016 Cilag GmbH International Firing members with non-parallel jaw engagement features for surgical end effectors
10624636, Aug 23 2017 Covidien LP Surgical stapling device with floating staple cartridge
10631857, Nov 04 2016 Covidien LP Loading unit for surgical instruments with low profile pushers
10639034, Dec 21 2016 Cilag GmbH International Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
10639035, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and replaceable tool assemblies thereof
10653413, Feb 09 2016 Cilag GmbH International Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
10653417, Jan 31 2006 Cilag GmbH International Surgical instrument
10660640, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument
10667809, Dec 21 2016 Cilag GmbH International Staple cartridge and staple cartridge channel comprising windows defined therein
10667810, Dec 21 2016 Cilag GmbH International Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
10667811, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and staple-forming anvils
10675021, Apr 01 2016 Cilag GmbH International Circular stapling system comprising rotary firing system
10675024, Jun 24 2016 Cilag GmbH International Staple cartridge comprising overdriven staples
10675025, Dec 21 2016 Cilag GmbH International Shaft assembly comprising separately actuatable and retractable systems
10675026, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
10675035, Sep 09 2010 Cilag GmbH International Surgical stapling head assembly with firing lockout for a surgical stapler
10682136, Apr 01 2016 Cilag GmbH International Circular stapling system comprising load control
10682138, Dec 21 2016 Cilag GmbH International Bilaterally asymmetric staple forming pocket pairs
10687806, Mar 06 2015 Cilag GmbH International Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
10687809, Dec 21 2016 Cilag GmbH International Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
10687810, Dec 21 2016 Cilag GmbH International Stepped staple cartridge with tissue retention and gap setting features
10695053, Sep 29 2006 Cilag GmbH International Surgical end effectors with staple cartridges
10695055, Dec 21 2016 Cilag GmbH International Firing assembly comprising a lockout
10702270, Jun 24 2016 Cilag GmbH International Stapling system for use with wire staples and stamped staples
10709446, Apr 01 2016 Cilag GmbH International Staple cartridges with atraumatic features
10729458, Mar 30 2011 Covidien LP Ultrasonic surgical instruments
10736628, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
10736629, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
10736636, Dec 10 2014 Cilag GmbH International Articulatable surgical instrument system
10743849, Jan 31 2006 Cilag GmbH International Stapling system including an articulation system
10758229, Dec 21 2016 Cilag GmbH International Surgical instrument comprising improved jaw control
10758230, Dec 21 2016 Cilag GmbH International Surgical instrument with primary and safety processors
10758233, Feb 05 2009 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
10765442, Apr 14 2017 Cilag GmbH International Surgical devices and methods for biasing an end effector to a closed configuration
10772632, Oct 28 2015 Covidien LP Surgical stapling device with triple leg staples
10779818, Oct 05 2007 Covidien LP Powered surgical stapling device
10779822, Feb 14 2008 Cilag GmbH International System including a surgical cutting and fastening instrument
10779823, Dec 21 2016 Cilag GmbH International Firing member pin angle
10779826, Dec 15 2017 Cilag GmbH International Methods of operating surgical end effectors
10786255, Dec 14 2011 Covidien LP Buttress assembly for use with surgical stapling device
10792038, Sep 15 2014 Applied Medical Resources Corporation Surgical stapler with self-adjusting staple height
10813638, Dec 21 2016 Cilag GmbH International Surgical end effectors with expandable tissue stop arrangements
10835245, Dec 21 2016 Cilag GmbH International Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
10835246, Dec 21 2016 Cilag GmbH International Staple cartridges and arrangements of staples and staple cavities therein
10835247, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors
10842488, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and different staple heights
10842489, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a cam and driver arrangement
10842490, Oct 31 2017 Cilag GmbH International Cartridge body design with force reduction based on firing completion
10856866, Feb 15 2008 Cilag GmbH International Surgical end effector having buttress retention features
10856867, Apr 01 2016 Cilag GmbH International Surgical stapling system comprising a tissue compression lockout
10856868, Dec 21 2016 Cilag GmbH International Firing member pin configurations
10874391, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
10881401, Dec 21 2016 Cilag GmbH International Staple firing member comprising a missing cartridge and/or spent cartridge lockout
10888322, Dec 21 2016 Cilag GmbH International Surgical instrument comprising a cutting member
10893853, Jan 31 2006 Cilag GmbH International Stapling assembly including motor drive systems
10893863, Jun 24 2016 Cilag GmbH International Staple cartridge comprising offset longitudinal staple rows
10893864, Dec 21 2016 Cilag GmbH International Staple cartridges and arrangements of staples and staple cavities therein
10898186, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
10905418, Oct 16 2014 Cilag GmbH International Staple cartridge comprising a tissue thickness compensator
10912575, Jan 11 2007 Cilag GmbH International Surgical stapling device having supports for a flexible drive mechanism
10918385, Dec 21 2016 Cilag GmbH International Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
10925599, Dec 23 2013 Cilag GmbH International Modular surgical instruments
10945727, Dec 21 2016 Cilag GmbH International Staple cartridge with deformable driver retention features
10952730, Oct 15 2015 Cilag GmbH International End effector for surgical stapler with varying curve and taper
10952731, Nov 04 2013 Covidien LP Surgical fastener applying apparatus
10959727, Dec 21 2016 Cilag GmbH International Articulatable surgical end effector with asymmetric shaft arrangement
10966724, Aug 26 2015 Cilag GmbH International Surgical staples comprising a guide
10973516, Dec 21 2016 Cilag GmbH International Surgical end effectors and adaptable firing members therefor
10980536, Dec 21 2016 Cilag GmbH International No-cartridge and spent cartridge lockout arrangements for surgical staplers
10980538, Aug 26 2015 Cilag GmbH International Surgical stapling configurations for curved and circular stapling instruments
10993715, Dec 21 2016 Cilag GmbH International Staple cartridge comprising staples with different clamping breadths
11000276, Dec 21 2016 Cilag GmbH International Stepped staple cartridge with asymmetrical staples
11000277, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
11000278, Jun 24 2016 Cilag GmbH International Staple cartridge comprising wire staples and stamped staples
11006951, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
11020109, Dec 23 2013 Cilag GmbH International Surgical stapling assembly for use with a powered surgical interface
11026677, Dec 23 2013 Cilag GmbH International Surgical stapling assembly
11045191, Apr 01 2016 Cilag GmbH International Method for operating a surgical stapling system
11051817, Aug 26 2015 Cilag GmbH International Method for forming a staple against an anvil of a surgical stapling instrument
11058418, Feb 15 2008 Cilag GmbH International Surgical end effector having buttress retention features
11058420, Jan 31 2006 Cilag GmbH International Surgical stapling apparatus comprising a lockout system
11058426, Aug 26 2015 Cilag GmbH International Staple cartridge assembly comprising various tissue compression gaps and staple forming gaps
11064997, Apr 01 2016 Cilag GmbH International Surgical stapling instrument
11090048, Dec 21 2016 Cilag GmbH International Method for resetting a fuse of a surgical instrument shaft
11103248, Aug 26 2015 Cilag GmbH International Surgical staples for minimizing staple roll
11123065, Dec 23 2013 Cilag GmbH International Surgical cutting and stapling instruments with independent jaw control features
11129615, Feb 05 2009 Cilag GmbH International Surgical stapling system
11134942, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and staple-forming anvils
11141153, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11154300, Jul 30 2015 Cilag GmbH International Surgical instrument comprising separate tissue securing and tissue cutting systems
11160551, Dec 21 2016 Cilag GmbH International Articulatable surgical stapling instruments
11179155, Dec 21 2016 Cilag GmbH International Anvil arrangements for surgical staplers
11185330, Apr 16 2014 Cilag GmbH International Fastener cartridge assemblies and staple retainer cover arrangements
11191539, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
11191540, Dec 21 2016 Cilag GmbH International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
11213293, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with single articulation link arrangements
11213295, Sep 02 2015 Cilag GmbH International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
11219456, Aug 26 2015 Cilag GmbH International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
11224426, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11246587, Dec 23 2013 Cilag GmbH International Surgical cutting and stapling instruments
11266405, Jun 27 2017 Cilag GmbH International Surgical anvil manufacturing methods
11272927, Feb 15 2008 Cilag GmbH International Layer arrangements for surgical staple cartridges
11284890, Apr 01 2016 Cilag GmbH International Circular stapling system comprising an incisable tissue support
11364028, Dec 23 2013 Cilag GmbH International Modular surgical system
11382624, Sep 02 2015 Cilag GmbH International Surgical staple cartridge with improved staple driver configurations
11419606, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
11510675, Aug 26 2015 Cilag GmbH International Surgical end effector assembly including a connector strip interconnecting a plurality of staples
11517315, Apr 16 2014 Cilag GmbH International Fastener cartridges including extensions having different configurations
11523821, Sep 26 2014 Cilag GmbH International Method for creating a flexible staple line
11571210, Dec 21 2016 Cilag GmbH International Firing assembly comprising a multiple failed-state fuse
11583273, Dec 23 2013 Cilag GmbH International Surgical stapling system including a firing beam extending through an articulation region
11589868, Sep 02 2015 Cilag GmbH International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
11617575, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11622766, Jun 28 2012 Cilag GmbH International Empty clip cartridge lockout
1306107,
1314601,
1677337,
1794907,
2037727,
2132295,
2161632,
2211117,
2214870,
2318379,
2441096,
2475322,
2526902,
2578686,
2674149,
2711461,
2804848,
2808482,
2853074,
2886358,
2959974,
3032769,
3060972,
3075062,
3078465,
3079606,
3166072,
3196869,
3204731,
3266494,
3269630,
3275211,
3317103,
3499591,
3551987,
3583393,
3662939,
3717294,
3799151,
3940844, Feb 22 1972 PCI GROUP INC , A CORP OF DE Method of installing an insulating sleeve on a staple
4014244, Oct 22 1975 Charles O. Larson Co. Flattened round end staple
4060089, Sep 03 1975 United States Surgical Corporation Surgical fastening method and device therefor
4106446, Feb 28 1974 Kabushiki Kaisha Toyota Chuo Kenkyusho Internal combustion engine with auxiliary combustion chamber
4108211, Apr 28 1975 Fuji Photo Optical Co., Ltd. Articulated, four-way bendable tube structure
4111206, May 04 1975 Surgical instrument for applying metal staples to organs and tissues and for simultaneous division thereof
4129059, Nov 07 1974 Staple-type fastener
4169990, Jun 14 1974 General Electric Company Electronically commutated motor
4180285, May 11 1978 GRIPPER, INC Articulated ball connector for use with pipeline
4198734, Apr 04 1972 Self-gripping devices with flexible self-gripping means and method
4198982, Mar 31 1978 Memorial Hospital for Cancer and Allied Diseases Surgical stapling instrument and method
4207898, Mar 27 1978 ETHICON, INC , A CORP OF NEW JERSEY Intralumenal anastomosis surgical stapling instrument
4213562, Apr 29 1977 Programmer
4226242, Oct 08 1976 JARVIK, ROBERT K ; JARVIK, EDYTHE K Repeating hemostatic clip applying instruments and multi-clip cartridges therefor
4241861, Dec 20 1977 BLACKMAN, ALAN R Scissor-type surgical stapler
4244372, Mar 31 1978 Surgical instrument for suturing organs
4250436, Sep 24 1979 RYOBI NORTH AMERICA, INC Motor braking arrangement and method
4261244, May 14 1979 ETHICON, INC , A CORP OF NEW JERSEY Surgical staple
4272002, Jul 23 1979 Lawrence M., Smith; G. Marts, Acker; Franklin G., Smith Internal surgical stapler
4272662, May 21 1979 C & K Components, Inc. Toggle switch with shaped wire spring contact
4274304, Mar 29 1978 R T ACQUIRING CORP , A CORP OF; ROTOR TOOL CORPORATION In-line reversing mechanism
4275813, Jun 04 1979 United States Surgical Corporation Coherent surgical staple array
4289133, Feb 28 1980 ETHICON, INC , A CORP OF NEW JERSEY Cut-through backup washer for the scalpel of an intraluminal surgical stapling instrument
4296654, Aug 20 1979 Adjustable angled socket wrench extension
4304236, May 26 1977 United States Surgical Corporation Stapling instrument having an anvil-carrying part of particular geometric shape
4305539, Mar 26 1979 Surgical suturing instrument for application of a staple suture
4312685, Sep 14 1978 Audi Aktiengesellschaft Surface hardening of cams of motor-vehicle camshafts
4317451, Feb 19 1980 Ethicon, Inc. Plastic surgical staple
4319576, Feb 26 1980 ETHICON, INC , A CORP OF NEW JERSEY Intralumenal anastomosis surgical stapling instrument
4321002, Mar 27 1978 Minnesota Mining and Manufacturing Company Medical stapling device
4328839, Sep 19 1980 Baker Hughes Incorporated Flexible drill pipe
4331277, May 23 1980 United States Surgical Corporation Self-contained gas powered surgical stapler
4340331, Mar 26 1979 Staple and anviless stapling apparatus therefor
4347450, Dec 10 1980 Portable power tool
4349028, Oct 03 1980 United States Surgical Corporation Surgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence
4353371, Sep 24 1980 RADIONICS, INC Longitudinally, side-biting, bipolar coagulating, surgical instrument
4379457, Feb 17 1981 United States Surgical Corporation; UNITED STATES SURGICAL CORPORATION, A CORP OF N Y Indicator for surgical stapler
4380312, Jul 17 1980 Minnesota Mining and Manufacturing Company Stapling tool
4382326, Jan 19 1981 Minnesota Mining & Manufacturing Company Staple supporting and staple removing strip
4383634, May 26 1981 UNITED STATES SURGICAL CORPORATION, A CORP OF N Y Surgical stapler apparatus with pivotally mounted actuator assemblies
4393728, Mar 16 1979 KOMATSU LTD , A CORP OF JAPAN Flexible arm, particularly a robot arm
4396139, Feb 15 1980 Technalytics, Inc. Surgical stapling system, apparatus and staple
4397311, Dec 20 1979 Vesesojuzny Nauchnoissledovatelsky I Ispytatelny Institut Surgical instrument for staple suturing of hollow organs
4402445, Oct 09 1981 United States Surgical Corporation Surgical fastener and means for applying same
4408692, Apr 12 1982 The Kendall Company Sterile cover for instrument
4409057, Jan 19 1981 Minnesota Mining & Manufacturing Company Staple supporting and removing strip
4415112, Oct 27 1981 United States Surgical Corporation Surgical stapling assembly having resiliently mounted anvil
4416276, Oct 26 1981 Sherwood Services AG Adaptive, return electrode monitoring system
4428376, May 02 1980 Ethicon Inc. Plastic surgical staple
4429695, Feb 05 1980 United States Surgical Corporation Surgical instruments
4434796, Apr 07 1981 VSESOJUZNY NAUCHNO-ISSLEDOVATELSKY I ISPYTATELNY INSTITUT MEDITSINSKOI TEKHNIKI Surgical staple, a method of and forceps for its removal
4438659, Jul 09 1981 TRACTEL S A Release mechanism for a traction apparatus acting on a cable which passes therethrough
4442964, Dec 07 1981 ETHICON, INC , A CORP OF NEW JERSEY Pressure sensitive and working-gap controlled surgical stapling instrument
4448194, Feb 03 1982 Ethicon, Inc. Full stroke compelling mechanism for surgical instrument with drum drive
4451743, Dec 29 1980 Citizen Watch Company Limited DC-to-DC Voltage converter
4454887, Apr 15 1981 Medical instruments for introduction into the respiratory tract of a patient
4467805, Aug 25 1982 Skin closure stapling device for surgical procedures
4473077, May 28 1982 United States Surgical Corporation Surgical stapler apparatus with flexible shaft
4475679, Aug 07 1981 Multi-staple cartridge for surgical staplers
4485816, Jun 25 1981 BETA PHASE, INC Shape-memory surgical staple apparatus and method for use in surgical suturing
4486928, Jul 09 1981 Magnavox Electronic Systems Company Apparatus for tool storage and selection
4488523, Sep 24 1982 United States Surgical Corporation Flexible, hydraulically actuated device for applying surgical fasteners
4489875, Oct 17 1980 United States Surgical Corporation Self-centering surgical staple and stapler for applying the same
4499895, Oct 15 1981 Olympus Optical Co., Ltd. Endoscope system with an electric bending mechanism
4500024, Nov 19 1980 Ethicon, Inc. Multiple clip applier
4505272, Feb 23 1982 VSESOJUZNY NAUCHNO-ISSLEDOVATELSKY I ISPYTATELNY INSTITUT MEDITSINSKOI TEKHNIKI Surgical suturing instrument for performing anastomoses between structures of the digestive tract
4505273, Feb 10 1982 B BRAUN-SSC AG Surgical staple
4505414, Oct 12 1983 Expandable anvil surgical stapler
4506671, Mar 30 1983 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
4520817, Feb 05 1980 United States Surgical Corporation Surgical instruments
4522327, May 18 1983 United States Surgical Corporation Surgical fastener applying apparatus
4526174, Mar 27 1981 Minnesota Mining and Manufacturing Company Staple and cartridge for use in a tissue stapling device and a tissue closing method
4527724, Jun 10 1983 ETHICON, INC , A CORP OF NEW JERSEY Disposable linear surgical stapling instrument
4530453, Oct 04 1983 United States Surgical Corporation Surgical fastener applying apparatus
4531522, Jun 20 1983 Ethicon, Inc. Two-piece tissue fastener with locking top and method for applying same
4532927, Jun 20 1983 Ethicon, Inc. Two-piece tissue fastener with non-reentry bent leg staple and retaining receiver
4548202, Jun 20 1983 Ethicon, Inc. Mesh tissue fasteners
4565109, Dec 27 1983 Instantaneous direction changing rotation mechanism
4565189, Oct 08 1981 MABUCHI, KEN-ICHI Beauty treatment device
4566620, Oct 19 1984 United States Surgical Corporation Articulated surgical fastener applying apparatus
4569469, Feb 15 1985 Linvatec Corporation Bone stapler cartridge
4571213, Nov 17 1983 Nikko Co., Ltd. Direction-converting device for a toy car
4573468, May 26 1977 United States Surgical Corporation Hollow body organ stapling instrument and disposable cartridge employing relief vents
4573469, Jun 20 1983 Ethicon, Inc. Two-piece tissue fastener with coinable leg staple and retaining receiver and method and instrument for applying same
4573622, Oct 19 1984 United States Surgical Corporation Surgical fastener applying apparatus with variable fastener arrays
4576167, Sep 03 1981 United States Surgical Corporation Surgical stapler apparatus with curved shaft
4580712, Oct 19 1984 United States Surgical Corporation Surgical fastener applying apparatus with progressive application of fastener
4585153, Jul 16 1984 Ethicon, Inc. Surgical instrument for applying two-piece fasteners comprising frictionally held U-shaped staples and receivers (Case III)
4589416, Oct 04 1983 United States Surgical Corporation Surgical fastener retainer member assembly
4591085, Jul 16 1984 Ethicon, Inc. Surgical instrument for applying fasteners, said instrument having an improved trigger interlocking mechanism (Case VI)
4597753, Apr 21 1983 ROUSSEL-UCLAF S A , A COMPANY OF FRANCE Implanting method and device
4600037, Mar 19 1984 Baker Hughes Incorporated Flexible drill pipe
4604786, Nov 05 1982 The Grigoleit Company Method of making a composite article including a body having a decorative metal plate attached thereto
4605001, Oct 19 1984 ETHICON, INC , A CORP OF NEW JERSEY Surgical stapling instrument with dual staple height mechanism
4605004, Jul 16 1984 Ethicon, Inc. Surgical instrument for applying fasteners said instrument including force supporting means (case IV)
4606343, Aug 18 1980 United States Surgical Corporation Self-powered surgical fastening instrument
4607638, Apr 20 1984 Design Standards Corporation Surgical staples
4608981, Oct 19 1984 ETHICON, INC , A CORP OF NEW JERSEY Surgical stapling instrument with staple height adjusting mechanism
4610250, Oct 08 1985 United States Surgical Corporation Two-part surgical fastener for fascia wound approximation
4610383, Oct 14 1983 ETHICON, INC , A CORP OF NEW JERSEY Disposable linear surgical stapler
4612933, Mar 30 1984 ETHICON, INC , A CORP OF NEW JERSEY Multiple-load cartridge assembly for a linear surgical stapling instrument
4619262, Jul 10 1984 SYNCARE, INC Surgical stapling device
4619391, Apr 18 1984 Acme United Corporation Surgical stapling instrument
4628459, Mar 08 1983 Hitachi Koki Company, Limited Computerized circuit arrangement for jig saw
4629107, Aug 19 1983 VSESOJUZNY NAUCHO-ISSLEDOVATELSKY I ISPYTATELNY INSTITUT MEDITSINSKOI TEKHNIKI, USSR, MOSCOW Ligating instrument
4632290, Aug 17 1981 United States Surgical Corporation Surgical stapler apparatus
4633874, Oct 19 1984 HEWLETT-PACKARD COMPANY, A CA CORP Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
4634419, Dec 13 1985 Sherwood Services AG Angulated ultrasonic surgical handpieces and method for their production
4641076, Jan 23 1985 Linvatec Corporation Method and apparatus for sterilizing and charging batteries
4643731, Aug 16 1985 ALZA Corporation Means for providing instant agent from agent dispensing system
4646722, Dec 10 1984 OPIELAB, INC , A CORP OF WASHINGTON Protective endoscope sheath and method of installing same
4652820, Mar 23 1983 North American Philips Corporation Combined position sensor and magnetic motor or bearing
4655222, Jul 30 1984 Ethicon, Inc. Coated surgical staple
4662555, Mar 11 1986 Pilling Weck Incorporated Surgical stapler
4663874, Feb 24 1984 C. I. Kaseo Co., Ltd. Magnetically attachable sign
4664305, May 04 1982 Surgical stapler
4665916, Aug 09 1985 United States Surgical Corporation Surgical stapler apparatus
4667674, Oct 04 1983 United States Surgical Corporation Surgical fastener exhibiting improved hemostasis
4669647, Aug 26 1983 Technalytics, Inc. Surgical stapler
4671445, Aug 09 1984 United States Surgical Corporation Flexible surgical stapler assembly
4676245, Feb 09 1983 Interlocking surgical staple assembly
4684051, Sep 05 1985 VSESOJUZNY NAUCHNO-ISSLEDOVATELSKY I IPSYTATELNY INSTITUT MEDITSINSKOI TEKHNIKI Surgical instrument
4693248, Jun 20 1983 Ethicon, Inc. Two-piece tissue fastener with deformable retaining receiver
4700703, Mar 27 1986 Semion, Resnick Cartridge assembly for a surgical stapling instrument
4708141, Apr 04 1985 Takasago Medical Industry Co., Ltd. Soluble suturing device for an intestine
4709120, Jun 06 1986 Underground utility equipment vault
4715520, Oct 10 1985 United States Surgical Corporation Surgical fastener applying apparatus with tissue edge control
4719917, Feb 17 1987 Minnesota Mining and Manufacturing Company; MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP OF DE Surgical staple
4727308, Aug 28 1986 International Business Machines Corporation FET power converter with reduced switching loss
4728020, Aug 30 1985 United States Surgical Corporation Articulated surgical fastener applying apparatus
4728876, Feb 19 1986 Linvatec Corporation Orthopedic drive assembly
4729260, Dec 06 1985 Desoutter Limited Two speed gearbox
4730726, Apr 21 1987 United States Surgical Corporation Sealed sterile package
4741336, Jul 16 1984 Ethicon, Inc. Shaped staples and slotted receivers (case VII)
4743214, Sep 03 1986 Steering control for toy electric vehicles
4747820, Apr 09 1986 Sherwood Services AG Irrigation/aspiration manifold and fittings for ultrasonic surgical aspiration system
4750902, Aug 28 1985 Covidien AG; TYCO HEALTHCARE GROUP AG Endoscopic ultrasonic aspirators
4752024, Oct 17 1986 UNITED STATES SURGICAL CORPORATION, A CORP OF CT Surgical fastener and surgical stapling apparatus
4754909, Aug 09 1984 United States Surgical Corporation Flexible stapler
4767044, Oct 19 1984 United States Surgical Corporation Surgical fastener applying apparatus
4773420, Jun 22 1987 U.S. Surgical Corporation; UNITED STATES SURGICAL CORPORATION, A CORP OF NEW YORK Purse string applicator
4777780, Apr 21 1987 United States Surgical Corporation Method for forming a sealed sterile package
4781186, May 30 1984 Advanced Cardiovascular Systems, INC Atherectomy device having a flexible housing
4787387, Nov 08 1984 Sherwood Services AG Surgical closure element
4790225, Nov 24 1982 Panduit Corp. Dispenser of discrete cable ties provided on a continuous ribbon of cable ties
4802478, Mar 04 1982 Minnesota Mining and Manufacturing Company Medical staple and removal method
4805617, Nov 05 1987 ETHICON, INC , A CORP OF NJ Surgical fastening systems made from polymeric materials
4805823, Mar 18 1988 Ethicon Endo-Surgery, Inc Pocket configuration for internal organ staplers
4809695, Aug 06 1980 GWATHMEY, OWEN M , THE MEADOW Suturing assembly and method
4815460, Sep 26 1984 DARBY & DARBY P C Gripper teeth for medical instruments
4817847, Apr 21 1986 Finanzaktiengesellschaft Globe Control Instrument and a procedure for performing an anastomosis
4819853, Dec 31 1987 United States Surgical Corporation Surgical fastener cartridge
4821939, Sep 02 1987 United States Surgical Corporation Staple cartridge and an anvilless surgical stapler
4827911, Apr 02 1986 Sherwood Services AG Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
4830855, Nov 13 1987 Landec Corporation Temperature-controlled active agent dispenser
4834720, Dec 24 1987 Becton, Dickinson and Company Implantable port septum
4844068, Jun 05 1987 ETHICON, INC , A CORP OF Bariatric surgical instrument
4848637, May 19 1986 J CRAYTON PRUITT Staple device for use on the mesenteries of the abdomen
4865030, Jan 21 1987 AMS Research Corporation Apparatus for removal of objects from body passages
4869414, Aug 30 1985 United States Surgical Corporation Articulated surgical fastener applying apparatus
4869415, Sep 26 1988 Ethicon, Inc. Energy storage means for a surgical stapler
4873977, Feb 11 1987 AVANT, OTIS LYNN Stapling method and apparatus for vesicle-urethral re-anastomosis following retropubic prostatectomy and other tubular anastomosis
4874122, Jul 14 1986 Minnesota Mining and Manufacturing Company Bent back box staple and staple closing mechanism with split actuator
4880015, Jun 03 1988 Biopsy forceps
4887601, Nov 06 1987 United States Surgical Corporation Adjustable surgical staple and method of using the same
4887756, May 07 1984 Surgical stapler providing variable degree of staple closure
4890613, Mar 18 1982 Ethicon, Inc. Two piece internal organ fastener
4892244, Nov 07 1988 Ethicon, Inc. Surgical stapler cartridge lockout device
4893622, Oct 17 1986 United States Surgical Corporation Method of stapling tubular body organs
4894051, May 14 1984 Surgical Systems & Instruments, Inc.; SURGICAL SYSTEMS & INSTRUMENTS, INC , A CORP OF IL Atherectomy system with a biasing sleeve and method of using the same
4896678, Dec 12 1986 Olympus Optical Co., Ltd. Endoscopic treating tool
4900303, Mar 10 1978 Dispensing catheter and method
4903697, Mar 27 1986 Semion, Resnick Cartridge assembly for a surgical stapling instrument
4915100, Dec 19 1988 United States Surgical Corporation Surgical stapler apparatus with tissue shield
4930503, May 19 1986 J CRAYTON PRUITT Stapling process and device for use on the mesenteries of the abdomen
4930674, Feb 24 1989 ABIOMED, INC , A CORPORATION OF DE Surgical stapler
4931047, Sep 30 1987 INTEGRA LIFESCIENCES IRELAND LTD Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
4932960, Sep 01 1989 United States Surgical Corporation Absorbable surgical fastener
4938408, Jan 15 1988 Ethicon, Inc. Surgical stapler safety and sequencing mechanisms
4941623, May 19 1986 J CRAYTON PRUITT Stapling process and device for use on the mesentery of the abdomen
4944443, Apr 22 1988 STRYKER SALES CORPORATION A MI CORPORATION Surgical suturing instrument and method
4951860, Dec 28 1987 Pilling Weck Incorporated Method and apparatus for storing, dispensing and applying surgical staples
4955898, Oct 31 1988 Matsutani Seisakusho Co., Ltd. Surgical staple
4955959, May 26 1989 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
4965709, Sep 25 1989 General Electric Company Switching converter with pseudo-resonant DC link
4973274, Jan 17 1989 Sanshin Kogyo Kabushiki Kaisha Shift assisting device
4978049, May 26 1989 United States Surgical Corporation Three staple drive member
4978333, Dec 20 1988 Sherwood Services AG Resonator for surgical handpiece
4986808, Dec 20 1988 Sherwood Services AG Magnetostrictive transducer
4988334, May 09 1988 Sherwood Services AG Ultrasonic surgical system with aspiration tubulation connector
5002543, Apr 09 1990 GEORGIA TECH RESEARCH CORPORATION, C O GEORGIA INSTITUTE OF TECHNOLOGY, A CORP OF GA Steerable intramedullary fracture reduction device
5002553, May 14 1984 Surgical Systems & Instruments, Inc.; SURGICAL SYSTEMS & INSTRUMENTS, INC Atherectomy system with a clutch
5005754, Apr 04 1990 Ethicon, Inc. Bladder and mandrel for use with surgical stapler
5009661, Apr 24 1990 MICHELSON, GARY KARLIN Protective mechanism for surgical rongeurs
5014899, Mar 30 1990 United States Surgical Corporation Surgical stapling apparatus
5015227, Sep 30 1987 INTEGRA LIFESCIENCES IRELAND LTD Apparatus for providing enhanced tissue fragmentation and/or hemostasis
5018515, Dec 14 1987 The Kendall Company See through absorbent dressing
5018657, Jan 15 1988 Ethicon, Inc. Pneumatically actuated surgical stapler head
5024671, Sep 19 1988 Edwards Lifesciences Corporation Microporous vascular graft
5027834, May 19 1986 J CRAYTON PRUITT Stapling process for use on the mesenteries of the abdomen
5031814, May 26 1989 United States Surgical Corporation Locking mechanism for surgical fastening apparatus
5035040, May 30 1989 Illinois Tool Works Inc Hog ring fastener, tool and methods
5038109, Oct 13 1988 Gyrus Medical Limited Screening and monitoring instrument
5040715, May 26 1989 United States Surgical Corporation Apparatus and method for placing staples in laparoscopic or endoscopic procedures
5042707, Oct 16 1990 Intravascular stapler, and method of operating same
5053047, May 16 1989 Suture devices particularly useful in endoscopic surgery and methods of suturing
5061269, Feb 07 1989 DETROIT NEUROSURGICAL FOUDATION Surgical rongeur power grip structure and method
5062563, Apr 10 1989 United States Surgical Corporation Fascia stapler
5065929, Apr 01 1991 Ethicon, Inc. Surgical stapler with locking means
5071052, Sep 22 1988 United States Surgical Corporation Surgical fastening apparatus with activation lockout
5071430, Nov 11 1988 United States Surgical Corporation Surgical instrument
5074454, Jun 04 1990 Surgical stapler
5079006, Jul 15 1987 Aprex Corporation Pharmaceutical compositions containing a magnetically detectable material
5080556, Sep 28 1990 General Electric Company Thermal seal for a gas turbine spacer disc
5083695, Dec 18 1990 United States Surgical Corporation Stapler and firing device
5084057, Jul 18 1989 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
5088979, Oct 11 1990 WILSON-COOK MEDICAL INC , 4900 BETHANIA STATION RD , WINSTON-SALEM, NC 27105 A CORP OF NC Method for esophageal invagination and devices useful therein
5088997, Mar 15 1990 Covidien AG; TYCO HEALTHCARE GROUP AG Gas coagulation device
5089009, Jun 27 1989 United States Surgical Corporation Inwardly biased skin fastener
5094247, Aug 31 1990 Cordis Corporation Biopsy forceps with handle having a flexible coupling
5100420, Jul 18 1989 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
5104025, Sep 28 1990 Ethicon, Inc. Intraluminal anastomotic surgical stapler with detached anvil
5104397, Apr 14 1989 Johnson & Johnson Professional, Inc Multi-position latching mechanism for forceps
5106008, May 26 1989 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
5108368, Jan 09 1989 SCOPE MEDICAL, INC Steerable medical device
5111987, Jan 23 1989 Semi-disposable surgical stapler
5116349, May 23 1990 United States Surgical Corporation Surgical fastener apparatus
5122156, Dec 14 1990 UNITED STATES SURGICAL CORPORATION, Apparatus for securement and attachment of body organs
5125876, Dec 26 1988 Tochigifujisangyo Kabushiki Kaisha Differential gear with limited slip and lockup clutches
5129570, Nov 30 1990 Ethicon, Inc. Surgical stapler
5137198, Feb 16 1991 Ethicon, Inc Fast closure device for linear surgical stapling instrument
5139513, Oct 17 1989 Bieffe Medital S.A. Apparatus and method for suturing
5141144, Dec 18 1990 United States Surgical Corporation Stapler and firing device
5142932, Sep 04 1991 The United States of America as represented by the Administrator of the Flexible robotic arm
5155941, Sep 18 1989 Olympus Optical Co., Ltd. Industrial endoscope system having a rotary treatment member
5156315, Apr 26 1991 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
5156609, Dec 26 1989 Granit Medical Innovations LLC Endoscopic stapling device and method
5156614, Sep 17 1990 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
5158567, Sep 02 1987 United States Surgical Corporation One-piece surgical staple
5163598, Jul 23 1990 Sternum stapling apparatus
5170925, Mar 18 1991 Ethicon, Inc. Laparoscopic stapler with knife means
5171247, Apr 04 1991 Ethicon, Inc. Endoscopic multiple ligating clip applier with rotating shaft
5171249, Apr 04 1991 Ethicon Endo-Surgery, Inc Endoscopic multiple ligating clip applier
5171253, Mar 22 1991 Velcro-like closure system with absorbable suture materials for absorbable hemostatic clips and surgical strips
5188111, Jan 18 1991 Catheter Research, Inc.; CATHETER RESEARCH, INC Device for seeking an area of interest within a body
5190517, Jun 06 1991 INTEGRA LIFESCIENCES IRELAND LTD Electrosurgical and ultrasonic surgical system
5190544, Jun 23 1986 HOWMEDICA OSTEONICS CORP Modular femoral fixation system
5190560, Jun 20 1991 STRESS MANAGEMENT, INC Instrument for ligation and castration
5192288, May 26 1992 TYCO HEALTHCARE GROUP AG; Covidien AG Surgical clip applier
5195968, Feb 02 1990 Catheter steering mechanism
5197648, Nov 29 1988 Surgical stapling apparatus
5197649, Oct 29 1991 The Trustees of Columbia University in the City of New York Gastrointestinal endoscoptic stapler
5197966, May 22 1992 Radiodorsal buttress blade plate implant for repairing distal radius fractures
5200280, Sep 05 1991 Black & Decker Inc. Terminal cover for a battery pack
5201746, Oct 16 1991 United States Surgical Corporation Surgical hemostatic clip
5205459, Aug 23 1991 Ethicon, Inc. Surgical anastomosis stapling instrument
5207697, Jun 27 1991 Stryker Corporation Battery powered surgical handpiece
5209747, Dec 13 1990 NUSURG MEDICAL, INC Adjustable angle medical forceps
5211649, Feb 10 1987 VASO PRODUCTS, INC Venous cuff applicator, cartridge and cuff
5211655, May 08 1992 Multiple use forceps for endoscopy
5217457, Mar 15 1990 Covidien AG; TYCO HEALTHCARE GROUP AG Enhanced electrosurgical apparatus
5217478, Feb 18 1987 Linvatec Corporation Arthroscopic surgical instrument drive system
5219111, Mar 11 1991 Ethicon, Inc. Pneumatically actuated linear stapling device
5221036, Jun 11 1991 Surgical stapler
5221281, Jun 30 1992 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical tubular trocar
5222963, Jan 17 1991 Ethicon, Inc. Pull-through circular anastomosic intraluminal stapler with absorbable fastener means
5222975, Jul 13 1992 Surgical staples
5222976, May 16 1989 Suture devices particularly useful in endoscopic surgery
5223675, Apr 02 1992 Cable fastener
5234447, Aug 28 1990 ACCESS MEDICAL SYSTEMS, INC Side-to-end vascular anastomotic staple apparatus
5236440, Apr 14 1992 Sherwood Services AG Surgical fastener
5239981, Nov 16 1989 Effner Biomet GmbH Film covering to protect a surgical instrument and an endoscope to be used with the film covering
5240163, Oct 30 1991 Sherwood Services AG Linear surgical stapling instrument
5242457, May 08 1992 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
5244462, Mar 15 1990 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical apparatus
5246156, Sep 12 1991 Ethicon, Inc Multiple fire endoscopic stapling mechanism
5246443, Apr 28 1992 Clip and osteosynthesis plate with dynamic compression and self-retention
5253793, Sep 19 1990 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
5258009, Jun 30 1992 Sherwood Services AG Malleable, bioabsorbable,plastic staple having a knotted configuration; and method and apparatus for deforming such staple
5258012, Jun 30 1992 ETHICON, INC , A CORP OF OHIO Surgical fasteners
5259366, Nov 03 1992 LOCALMED, INC Method of using a catheter-sleeve assembly for an endoscope
5260637, Sep 18 1991 Magneti Marelli S.p.A. Electrical system for a motor vehicle, including at least one supercapacitor
5263629, Jun 29 1992 Ethicon, Inc. Method and apparatus for achieving hemostasis along a staple line
5263973, Aug 30 1991 Surgical stapling method
5264218, Oct 25 1989 C R BARD, INC Modifiable, semi-permeable, wound dressing
5268622, Jun 27 1991 Stryker Corporation DC powered surgical handpiece having a motor control circuit
5271543, Feb 07 1992 ETHICON, INC , A CORP OF OH Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
5271544, Aug 23 1991 Ethicon, Inc. Surgical anastomosis stapling instrument
5275323, Nov 30 1990 Ethicon, Inc. Surgical stapler
5275608, Oct 16 1991 BRIDGE BLOOD TECHNOLOGIES LLC, NEW YORK LIMITED LIABILITY COMPANY Generic endoscopic instrument
5279416, Jun 05 1992 Technology Holding Company II Ligating device cartridge with separable retainer
5281216, Mar 31 1992 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical bipolar treating apparatus
5282806, Aug 21 1992 Habley Medical Technology Corporation Endoscopic surgical instrument having a removable, rotatable, end effector assembly
5282829, Aug 15 1991 United States Surgical Corporation Hollow body implants
5284128, Jan 24 1992 Applied Medical Resources Corporation Surgical manipulator
5285945, Aug 23 1991 Ethicon, Inc. Surgical anastomosis stapling instrument
5289963, Oct 18 1991 Tyco Healthcare Group LP Apparatus and method for applying surgical staples to attach an object to body tissue
5290271, May 14 1990 DERMAGENESIS, LLC Surgical implant and method for controlled release of chemotherapeutic agents
5292053, Aug 23 1991 Ethicon, Inc. Surgical anastomosis stapling instrument
5297714, Apr 17 1991 Ethicon, Inc. Surgical staple with modified "B" shaped configuration
5303539, Jan 29 1993 The Gillette Company Staple forming
5304204, Feb 09 1993 Ethicon, Inc. Receiverless surgical fasteners
5307976, Oct 18 1991 Ethicon, Inc Linear stapling mechanism with cutting means
5308576, Oct 18 1991 United States Surgical Corporation Injection molded anvils
5309927, Oct 22 1992 Ethicon, Inc. Circular stapler tissue retention spring method
5312023, Oct 18 1991 United States Surgical Corporation Self contained gas powered surgical apparatus
5312024, Feb 07 1992 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
5312329, Apr 07 1993 INTEGRA LIFESCIENCES IRELAND LTD Piezo ultrasonic and electrosurgical handpiece
5314424, Apr 06 1992 United States Surgical Corporation Surgical instrument locking mechanism
5314445, Feb 15 1991 Surgical instrument
5314466, Apr 13 1992 EP Technologies, Inc Articulated unidirectional microwave antenna systems for cardiac ablation
5318221, May 26 1989 United States Surgical Corporation Apparatus and method for placing staples in laparoscopic or endoscopic procedures
5329923, Feb 15 1991 BIOCARDIA, INC Torquable catheter
5330487, Dec 17 1992 Technology Holding Company II Drive mechanism for surgical instruments
5330502, Oct 09 1992 Ethicon, Inc Rotational endoscopic mechanism with jointed drive mechanism
5332142, Jul 20 1992 Ethicon, Inc. Linear stapling mechanism with cutting means
5333422, Dec 02 1992 The United States of America as represented by the United States Lightweight extendable and retractable pole
5333772, Sep 12 1991 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
5333773, Aug 23 1991 Ethicon, Inc Sealing means for endoscopic surgical anastomosis stapling instrument
5334183, Aug 23 1985 Covidien AG; TYCO HEALTHCARE GROUP AG Endoscopic electrosurgical apparatus
5336229, Feb 09 1993 IMAGYN MEDICAL TECHNOLOGIES, INC Dual ligating and dividing apparatus
5336232, Mar 14 1991 United States Surgical Corporation Approximating apparatus for surgical jaw structure and method of using the same
5339799, Apr 23 1991 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
5341724, Jun 28 1993 GENNADY VATEL Pneumatic telescoping cylinder and method
5341810, Oct 29 1991 Sulzer Medizinaltechnik AG Sterile puncturing device for blood vessels with a non-sterile ultrasound probe, and apparatus for preparing the device
5342381, Feb 11 1993 GYRUS MEDICAL, INC Combination bipolar scissors and forceps instrument
5342395, Nov 27 1991 Sherwood Services AG Absorbable surgical repair devices
5342396, Mar 02 1993 HOLOBEAM, INC Staples
5344060, Mar 05 1990 United States Surgical Corporation Surgical fastener apparatus
5344454, Jul 24 1991 Baxter International Inc Closed porous chambers for implanting tissue in a host
5346504, Nov 19 1992 Ethicon, Inc Intraluminal manipulator with a head having articulating links
5348259, Feb 10 1992 Massachusetts Institute of Technology Flexible, articulable column
5350388, Mar 07 1989 Albert Einstein College of Medicine of Yeshiva University Hemostasis apparatus and method
5350391, Oct 19 1992 Laparoscopic instruments
5350400, Oct 30 1991 Sherwood Services AG Malleable, bioabsorbable, plastic staple; and method and apparatus for deforming such staple
5352229, May 12 1993 ZIMMER TECHNOLOGY, INC Arbor press staple and washer and method for its use
5352235, Mar 16 1992 Laparoscopic grasper and cutter
5352238, Nov 14 1991 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
5354303, Jan 09 1991 SPECTRUM MEDSYSTEMS CORP Devices for enclosing, manipulating, debulking and removing tissue through minimal incisions
5356006, Dec 16 1992 Ethicon, Inc. Sterile package for surgical devices
5358506, Mar 14 1991 United States Surgical Corporation Approximating apparatus for surgical jaw structure
5358510, Jan 26 1993 Ethicon, Inc. Two part surgical fastener
5359231, Jun 21 1991 Lutron Technology Company LLC Wallbox-mountable switch and dimmer
5360305, Mar 19 1993 Illinois Tool Works Inc Clinch staples and method of manufacturing and applying clinch staples
5360428, Jul 22 1992 Laparoscopic instrument with electrical cutting wires
5364001, Oct 18 1991 Seagate Technology, INC Self contained gas powered surgical apparatus
5364003, May 05 1993 Ethicon Endo-Surgery Staple cartridge for a surgical stapler
5366133, Oct 18 1991 United States Surgical Corporation Surgical fastening apparatus with shipping interlock
5366134, Oct 18 1991 United States Surgical Corporation Surgical fastening apparatus
5366479, Oct 18 1991 Tyco Healthcare Group LP Surgical staple for attaching an object to body tissue
5368015, Mar 18 1991 Wilk Patent Development Corporation Automated surgical system and apparatus
5368592, Apr 13 1992 EP Technologies, Inc. Articulated systems for cardiac ablation
5370645, Apr 19 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical processor and method of use
5372124, Apr 10 1991 Olympus Optical Co., Ltd. Treating instrument
5372596, Jul 27 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Apparatus for leakage control and method for its use
5372602, Nov 30 1992 Advanced Cardiovascular Systems, INC Method of removing plaque using catheter cutter with torque control
5374277, Oct 09 1992 Ethicon, Inc Surgical instrument
5376095, Nov 04 1993 Ethicon Endo-Surgery Endoscopic multi-fire flat stapler with low profile
5379933, Sep 17 1990 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
5381649, Jun 04 1993 Medical staple forming die and punch
5381782, Jan 09 1992 Spectrum Medsystems Corporation Bi-directional and multi-directional miniscopes
5381943, Oct 09 1992 Ethicon, Inc Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge
5382247, Jan 21 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Technique for electrosurgical tips and method of manufacture and use
5383880, Jan 17 1992 Ethicon, Inc. Endoscopic surgical system with sensing means
5383881, Jul 18 1989 United States Surgical Corporation Safety device for use with endoscopic instrumentation
5383882, Aug 28 1992 Ethicon, Inc Ligature and ligature applying endoscopic instrument
5383888, Feb 12 1992 United States Surgical Corporation Articulating endoscopic surgical apparatus
5383895, Feb 10 1993 Design Standards Corporation Endoscopic surgical grasper and method
5389098, May 19 1992 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
5389104, Nov 18 1992 Symbiosis Corporation Arthroscopic surgical instruments
5391180, Aug 05 1991 United States Surgical Corporation Articulating endoscopic surgical apparatus
5392978, Feb 08 1991 United States Surgical Corporation Surgical staple and endoscopic stapler
5392979, May 26 1987 United States Surgical Corporation Surgical stapler apparatus
5395030, Jun 04 1992 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
5395033, May 24 1993 Ethicon, Inc. Endoscopic surgical instrument with electromagnetic sensor
5395034, Nov 07 1991 Sherwood Services AG Linear surgical stapling instrument
5395312, Mar 02 1993 Allegiance Healthcare Corporation Surgical tool
5395384, Dec 30 1992 Instrument for the extraction of patho-logical vein sections such as varices
5397046, Oct 18 1991 United States Surgical Corporation Lockout mechanism for surgical apparatus
5397324, Mar 10 1993 Surgical stapler instrument and method for vascular hemostasis
5403043, Dec 18 1991 QUICK COUPLING AMERICA, L C Quick connect pipe coupling
5403312, Jul 22 1993 Ethicon, Inc Electrosurgical hemostatic device
5405072, Oct 17 1991 United States Surgical Corporation Anvil for surgical staplers
5405073, Dec 06 1993 Ethicon, Inc. Flexible support shaft assembly
5405344, Sep 30 1993 Ethicon, Inc. Articulable socket joint assembly for an endoscopic instrument for surgical fastner track therefor
5405360, Feb 24 1992 United States Surgical Corporation Resilient arm mesh deployer
5407293, Apr 29 1993 Coupling apparatus for medical instrument
5409498, Nov 05 1992 Ethicon, Inc. Rotatable articulating endoscopic fastening instrument
5411481, Apr 08 1992 Sherwood Services AG Surgical purse string suturing instrument and method
5411508, Oct 29 1991 TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE Gastrointestinal approximating and tissue attaching device
5413107, Feb 16 1994 W L GORE & ASSOCIATES, INC Ultrasonic probe having articulated structure and rotatable transducer head
5413267, May 14 1991 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
5413268, May 26 1989 United States Surgical Corporation Apparatus and method for placing stables in laparoscopic or endoscopic procedures
5413272, May 07 1991 United States Surgical Corporation Surgical fastening device
5413573, May 24 1991 Onesys Oy Device for surgical procedures
5415334, May 05 1993 Ethicon Endo-Surgery Surgical stapler and staple cartridge
5415335, Apr 07 1994 Ethicon Endo-Surgery Surgical stapler cartridge containing lockout mechanism
5417203, Apr 23 1992 United States Surgical Corporation Articulating endoscopic surgical apparatus
5417361, May 05 1993 Ethicon Endo-Surgery, Inc. Staple cartridge for a surgical stapler
5421829, Nov 30 1992 INTEGRA LIFESCIENCES IRELAND LTD Ultrasonic surgical handpiece and an energy initiator
5422567, Dec 27 1993 Covidien AG; TYCO HEALTHCARE GROUP AG High frequency power measurement
5423471, Oct 02 1992 United States Surgical Corporation Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures
5423809, Jan 21 1992 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical control for a trocar
5425745, May 26 1989 United States Surgical Corporation Apparatus and method for placing staples in laparoscopic or endoscopic procedures
5431322, Oct 18 1991 United States Surgical Corporation Self contained gas powered surgical apparatus
5431654, Sep 30 1991 Stryker Corporation Bone cement injector
5431668, Apr 29 1993 Ethicon, Inc Ligating clip applier
5433721, Jan 17 1992 Ethicon, Inc Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
5437681, Jan 13 1994 Intuitive Surgical Operations, Inc Suturing instrument with thread management
5438302, Jul 12 1993 GYRUS MEDICAL LIMITED CHARTERHOUSE Electrosurgical radiofrequency generator having regulated voltage across switching device
5439155, Oct 07 1993 United States Surgical Corporation Cartridge for surgical fastener applying apparatus
5439156, Feb 07 1992 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
5439479, Dec 20 1990 United States Surigcal Corporation Surgical clip
5441191, Dec 30 1993 Indicating "staples low" in a paper stapler
5441193, Sep 23 1993 United States Surgical Corporation Surgical fastener applying apparatus with resilient film
5441483, Nov 16 1992 Catheter deflection control
5441494, Jul 29 1993 Ethicon, Inc Manipulable hand for laparoscopy
5444113, Aug 08 1988 NatureWorks LLC End use applications of biodegradable polymers
5445155, Mar 13 1991 Scimed Life Systems Incorporated Intravascular imaging apparatus and methods for use and manufacture
5445304, Dec 18 1990 United States Surgical Corporation Safety device for a surgical stapler cartridge
5445644, Apr 16 1992 Ethicon, Inc. Pyloroplasty/pylorectomy shield
5447265, Apr 30 1993 United States Surgical Corporation Laparoscopic surgical instrument with a mechanism for preventing its entry into the abdominal cavity once it is depleted and removed from the abdominal cavity
5447417, Aug 31 1993 INTEGRA LIFESCIENCES IRELAND LTD Self-adjusting pump head and safety manifold cartridge for a peristaltic pump
5447513, May 06 1992 Ethicon, Inc. Endoscopic ligation and division instrument
5449355, Nov 24 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Retrograde tissue splitter and method
5449365, Sep 02 1992 United States Surgical Corporation Surgical clamp apparatus
5449370, May 12 1993 ETHICON ENDOSURGERY, INC Blunt tipped ultrasonic trocar
5452836, Feb 07 1994 Ethicon Endo-Surgery Surgical stapling instrument with improved jaw closure and staple firing actuator mechanism
5452837, Jan 21 1994 Ethicon Endo-Surgery, Inc. Surgical stapler with tissue gripping ridge
5454378, Feb 11 1993 Symbiosis Corporation Biopsy forceps having a detachable proximal handle and distal jaws
5454822, Dec 31 1992 K. Widmann AG Apparatus for clamping and cutting viscera
5454827, May 24 1994 ZIMMER SPINE, INC Surgical instrument
5456401, Oct 18 1991 United States Surgical Corporation Surgical apparatus having articulation mechanism
5458579, Dec 31 1991 Technalytics, Inc. Mechanical trocar insertion apparatus
5462215, Oct 18 1991 United States Surgical Corporation Locking device for an apparatus for applying surgical fasteners
5464013, May 25 1984 Medical scanning and treatment system and method
5464144, Aug 19 1993 United States Surgical Corporation Surgical apparatus with indicator
5464300, Apr 29 1993 Medical instrument and coupling apparatus for same
5465819, Sep 29 1992 Borg-Warner Automotive, Inc Power transmitting assembly
5465894, Dec 06 1993 Ethicon, Inc. Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft
5465895, Feb 03 1994 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
5465896, Nov 07 1991 United States Surgical Corporation Linear surgical stapling instrument
5466020, Dec 30 1994 INTEGRA LIFESCIENCES IRELAND LTD Bayonet connector for surgical handpiece
5467911, Apr 27 1993 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
5468253, Jan 21 1993 Ethicon, Inc. Elastomeric medical device
5470006, Dec 06 1990 United States Surgical Corporation Surgical fastening apparatus with locking mechanism
5470007, May 02 1994 United States Surgical Corporation Laparoscopic stapler with overload sensor and interlock
5470009, Dec 06 1990 United States Surgical Corporation Surgical fastening apparatus with locking mechanism
5470010, Apr 04 1991 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
5472132, Oct 18 1991 United States Surgical Corporation Lockout mechanism for surgical apparatus
5472442, Mar 23 1994 Sherwood Services AG Moveable switchable electrosurgical handpiece
5473204, Jun 16 1994 Time delay switch
5474057, Feb 22 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Laparoscopic dissection tension retractor device and method
5474223, Oct 18 1991 United States Surgical Corporation Surgical fastener applying apparatus
5474566, May 05 1994 United States Surgical Corporation Self-contained powered surgical apparatus
5476206, May 26 1989 United States Surgical Corporation Apparatus and method for placing staples in laparoscopic or endoscopic procedures
5476479, Sep 26 1991 United States Surgical Corporation Handle for endoscopic surgical instruments and jaw structure
5478003, Oct 18 1991 United States Surgical Corporation Surgical apparatus
5478354, Jul 14 1993 United States Surgical Corporation Wound closing apparatus and method
5480089, Aug 19 1994 United States Surgical Corporation Surgical stapler apparatus with improved staple pockets
5480409, May 10 1994 Laparoscopic surgical instrument
5482197, Oct 18 1991 United States Surgical Corporation Articulating surgical cartridge assembly
5484095, Mar 31 1992 United States Surgical Corporation Apparatus for endoscopically applying staples individually to body tissue
5484398, Mar 17 1994 Sherwood Services AG Methods of making and using ultrasonic handpiece
5484451, May 08 1992 EHTICON, INC Endoscopic surgical instrument and staples for applying purse string sutures
5485947, Jul 20 1992 Ethicon, Inc. Linear stapling mechanism with cutting means
5485952, Sep 23 1992 United States Surgical Corporation Apparatus for applying surgical fasteners
5487499, Oct 08 1993 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
5487500, Feb 03 1994 Ethicon Endo-Surgery Surgical stapler instrument
5489058, May 02 1994 United States Surgical Corporation Surgical stapler with mechanisms for reducing the firing force
5489256, Sep 01 1992 MICRO-MEDICAL DEVICES, INC Sterilizable endoscope with separable disposable tube assembly
5496312, Oct 07 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Impedance and temperature generator control
5496317, May 04 1993 Gyrus Medical Limited Laparoscopic surgical instrument
5497933, Oct 18 1991 Tyco Healthcare Group LP Apparatus and method for applying surgical staples to attach an object to body tissue
5501654, Jul 15 1993 Ethicon, Inc. Endoscopic instrument having articulating element
5503320, Aug 19 1993 United States Surgical Corporation Surgical apparatus with indicator
5503635, Nov 12 1993 LSI Solutions, Inc Apparatus and method for performing compressional anastomoses
5503638, Feb 10 1994 SYNOVIS LIFE TECHNOLOGIES, INC Soft tissue stapling buttress
5505363, May 26 1989 United States Surgical Corporation Surgical staples with plated anvils
5507425, Nov 19 1990 BANK OF AMERICA, N A , AS NEW ADMINISTRATIVE AGENT, SWING LINE LENDER AND L C ISSUER Stapling machine
5507426, Aug 05 1994 Tyco Healthcare Group LP Apparatus for applying surgical fasteners
5509596, Oct 18 1991 United States Surgical Corporation Apparatus for applying surgical fasteners
5509916, Aug 12 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Laser-assisted electrosurgery system
5511564, Jul 29 1992 Sherwood Services AG Laparoscopic stretching instrument and associated method
5514129, Dec 03 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Automatic bipolar control for an electrosurgical generator
5514157, Feb 12 1992 United States Surgical Corporation Articulating endoscopic surgical apparatus
5518163, Jan 17 1992 Ethicon, Inc. Endoscopic surgical system with sensing means
5518164, Jan 17 1992 Ethicon, Inc. Endoscopic surgical system with sensing means
5520678, Nov 30 1993 Richard Wolf GmbH Manipulator arm with proximal and distal control balls
5520700, Nov 13 1992 AMS Research Corporation Stapler device particularly useful in medical suturing
5522817, Mar 31 1989 United States Surgical Corporation Absorbable surgical fastener with bone penetrating elements
5522831, Jun 13 1994 Dennis R., Sleister Incising trocar and cannula assembly
5527320, Feb 10 1994 Applied Medical Resources Corporation Surgical clip applying instrument
5529235, Apr 28 1994 Ethicon Endo-Surgery Identification device for surgical instrument
5531305, Nov 05 1993 Borg-Warner Automotive, Inc Synchronizer clutch assembly for multiple ratio gearing
5531744, Nov 01 1991 Medical Scientific, Inc.; Ethicon Endo-Surgery Alternative current pathways for bipolar surgical cutting tool
5533521, Jul 15 1994 United States Surgical Corporation Interchangeable tissue measuring device
5533581, May 18 1991 Robert Bosch GmbH Electric hand tool, in particular drill
5533661, Aug 23 1991 Ethicon, Inc. Sealing means for endoscopic surgical anastomosis stapling instrument
5535934, Apr 28 1994 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
5535935, May 02 1994 United States Surgical Corporation Surgical stapler with mechanisms for reducing the firing force
5535937, Apr 28 1994 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
5540375, Apr 20 1993 United States Surgical Corporation Endoscopic stapler
5541376, Mar 28 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Switch and connector
5542594, Oct 06 1993 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric
5542949, May 14 1987 Multifunctional clip applier instrument
5543119, Jul 15 1993 SIRONA DENTAL SYSTEMS GMBH & CO KG Cassette for treating medical instruments
5547117, Mar 30 1994 Ethicon Endo-Surgery Handle actuator for surgical instrument having clamp lock and emergency release
5549621, May 14 1993 HAVA MATTEA MINTZ Apparatus and method for performing vertical banded gastroplasty
5549627, Oct 21 1994 ARCHIMEDES SURGICAL, INC Surgical instruments and method for applying progressive intracorporeal traction
5549628, Feb 10 1994 SYNOVIS LIFE TECHNOLOGIES, INC Soft tissue stapling buttress
5549637, Nov 10 1994 Design Standards Corporation Articulated medical instrument
5551622, Jul 13 1994 Surgical stapler
5553675, Jun 10 1994 Linvatec Corporation Orthopedic surgical device
5553765, Apr 28 1995 Ethicon Endo-Surgery, Inc. Surgical stapler with improved operating lever mounting arrangement
5554148, Nov 17 1987 NEUROTECH S A Renewable neural implant device and method
5554169, May 26 1989 United States Surgical Corporation Method for placing staples in laparoscopic or endoscopic procedures
5556416, Oct 12 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Endoscopic instrument
5558665, Jun 24 1994 ARCHIMEDES SURGICAL, INC Surgical instrument and method for intraluminal retraction of an anatomic structure
5558671, Jul 22 1993 Ethicon Endo-Surgery, Inc Impedance feedback monitor for electrosurgical instrument
5560530, Apr 07 1994 United States Surgical Corporation Graduated anvil for surgical stapling instruments
5560532, Oct 08 1993 United States Surgical Corporation; NEIL D GERSHON, ESQ Apparatus and method for applying surgical staples to body tissue
5562239, Apr 28 1994 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
5562241, Feb 03 1994 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
5562682, Oct 08 1993 Conmed Corporation Surgical Instrument with adjustable arms
5562690, Nov 12 1993 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
5562701, Feb 18 1994 Ethicon Endo-Surgery, Inc. Cable-actuated jaw assembly for surgical instruments
5562702, Feb 18 1994 Ethicon Endo-Surgery, Inc. Cable-actuated jaw assembly for surgical instruments
5564615, Jun 10 1994 Ethicon, Inc. Surgical instrument
5569161, Oct 08 1992 Wendell V., Ebling Endoscope with sterile sleeve
5569270, Dec 13 1994 Laparoscopic surgical instrument
5569284, Sep 23 1994 United States Surgical Corporation Morcellator
5571090, Oct 07 1994 United States Surgical Corporation Vascular suturing apparatus
5571100, Nov 01 1993 Gyrus Medical Limited Electrosurgical apparatus
5571116, Oct 02 1994 United States Surgical Corporation Non-invasive treatment of gastroesophageal reflux disease
5571285, Feb 19 1991 ETHICON, INC , A CORPORATION OF OHIO Surgical staple for insertion into tissue
5573541, Sep 13 1990 United States Surgical Corporation Apparatus and method for subcuticular stapling of body tissue
5573543, May 08 1992 Ethicon, Inc. Endoscopic surgical instrument and staples for applying purse string sutures
5574431, Aug 29 1995 CHECKPOINT SYSTEMS, INC Deactivateable security tag
5575054, Oct 06 1994 Linvatec Corporation Bone stapler cartridge
5575789, Oct 27 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Energizable surgical tool safety device and method
5575799, Mar 30 1995 United States Surgical Corporation Articulating surgical apparatus
5575803, Feb 10 1994 SYNOVIS LIFE TECHNOLOGIES, INC Soft tissue stapling buttress
5575805, Oct 07 1994 LI MEDICAL TECHNOLOGIES, INC Variable tip-pressure surgical grasper
5577654, Jun 10 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5579978, Oct 18 1991 United States Surgical Corporation Apparatus for applying surgical fasteners
5580067, Mar 30 1994 Ethicon Endo Surgery Handle actuator for surgical instrument having flexible cable
5582611, May 19 1992 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
5582617, Aug 24 1994 Charles H., Klieman Surgical instrument for endoscopic and general surgery
5584425, Oct 18 1991 United States Surgical Corporation Lockout mechanism for surgical apparatus
5586711, May 02 1994 United States Surgical Corporation Surgical stapler with mechanisms for reducing the firing force
5588579, Aug 25 1994 United States Surgical Corporation Anvil for circular stapler
5588580, Jun 10 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5588581, Jun 10 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5591170, Oct 14 1994 Genesis Orthopedics Intramedullary bone cutting saw
5591187, Jul 14 1995 Laparoscopic tissue retrieval device and method
5597107, Feb 03 1994 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
5599151, Mar 04 1993 Invivo Germany GmbH Surgical manipulator
5599279, Mar 16 1994 Gus J., Slotman; Sherman, Stein; United States Surgical Corporation Surgical instruments and method useful for endoscopic spinal procedures
5599344, Jun 06 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Control apparatus for electrosurgical generator power output
5599350, Apr 03 1995 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
5599852, Oct 18 1994 Ethicon, Inc. Injectable microdispersions for soft tissue repair and augmentation
5601224, Oct 09 1992 Ethicon, Inc Surgical instrument
5603443, Dec 06 1993 Ethicon, Inc. Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft
5605272, Mar 12 1996 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Trigger mechanism for surgical instruments
5605273, Mar 30 1994 Ethicon Endo-Surgery Surgical instrument having staple head adapted for rib insertion
5607094, Dec 06 1993 Ethicon, Inc. Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft
5607095, Oct 09 1992 Ethicon, Inc. Endoscopic surgical instrument with pivotable and rotatable staple cartridge
5607433, Jul 15 1994 Micro Medical Devices Foldable lens delivery system
5607450, Feb 12 1992 United States Surgical Corporation Articulating endoscopic surgical apparatus
5609285, Feb 07 1992 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
5609601, Sep 23 1994 United States Surgical Corporation Endoscopic surgical apparatus with rotation lock
5611709, Aug 10 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Method and assembly of member and terminal
5613966, Dec 21 1994 Covidien AG; TYCO HEALTHCARE GROUP AG System and method for accessory rate control
5615820, Oct 07 1993 United States Surgical Corporation Cartridge surgical fastener applying apparatus
5618294, May 24 1994 ZIMMER SPINE, INC Surgical instrument
5618303, Jul 02 1992 THE COOPER COMPANIES, INC Endoscopic instrument system and method
5618307, Apr 03 1995 Edwards Lifesciences, LLC Clamp assembly and method of use
5619992, Apr 06 1995 Methods and apparatus for inhibiting contamination of reusable pulse oximetry sensors
5620289, Feb 09 1996 Colored staples
5620452, Dec 22 1994 Surgical clip with ductile tissue penetrating members
5624398, Feb 08 1996 Symbiosis Corporation Endoscopic robotic surgical tools and methods
5624452, Apr 07 1995 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
5626587, Oct 09 1992 Ethicon Endo-Surgery, Inc Method for operating a surgical instrument
5626595, Jul 05 1994 AUTOMATED MEDICAL INSTRUMENTS, INC Automated surgical instrument
5628446, May 05 1994 United States Surgical Corporation Self-contained powered surgical apparatus
5628743, Dec 21 1994 Sherwood Services AG Dual mode ultrasonic surgical apparatus
5628745, Jun 06 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Exit spark control for an electrosurgical generator
5630539, May 02 1994 United States Surgical Corporation Laparoscopic stapler with overload sensor and interlock
5630540, May 24 1995 United States Surgical Corporation Surgical staple and staple drive member
5630541, May 05 1993 Ethicon Endo-Surgery, Inc. Surgical stapler and staple cartridge
5630782, Sep 01 1992 MICRO-MEDICAL DEVICES, INC Sterilizable endoscope with separable auxiliary assembly
5632432, Dec 19 1994 Ethicon Endo-Surgery Surgical instrument
5632433, Feb 07 1992 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
5634584, Oct 09 1992 Ethicon Endo-Surgery, Inc. Surgical instrument
5636779, Dec 13 1994 United States Surgical Corporation Apparatus for applying surgical fasteners
5636780, Oct 18 1991 United States Surgical Corporation Self contained gas powered surgical apparatus
5639008, Aug 25 1994 The United States Surgical Corporation Anvil for circular stapler
5643291, Sep 29 1994 United States Surgical Corporation Surgical clip applicator
5645209, Oct 18 1991 United States Surgical Corporation Self contained gas powered surgical apparatus
5647526, Oct 18 1991 United States Surgical Corporation Self contained gas powered surgical apparatus
5647869, Jun 29 1994 Gyrus Medical Limited Electrosurgical apparatus
5649937, Jun 04 1992 Olympus Optical Co., Ltd. Tissue-fixing surgical device, and method of fixing tissues
5649956, Jun 07 1995 SRI International System and method for releasably holding a surgical instrument
5651491, Oct 27 1995 United States Surgical Corporation Surgical stapler having interchangeable loading units
5653373, Sep 17 1990 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
5653374, Aug 05 1994 United States Surgical Corporation Self-contained powered surgical apparatus
5653677, Apr 12 1994 Fujinon Corporation Electronic endoscope apparatus with imaging unit separable therefrom
5653721, Oct 19 1995 Ethicon Endo-Surgery, Inc. Override mechanism for an actuator on a surgical instrument
5655698, Jul 13 1994 Surgical stapler with curved jaws
5657921, Aug 05 1994 Tyco Healthcare Group LP Apparatus for applying surgical fasteners
5658238, Feb 25 1992 Olympus Optical Co., Ltd. Endoscope apparatus capable of being switched to a mode in which a curvature operating lever is returned and to a mode in which the curvature operating lever is not returned
5658281, Dec 04 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Bipolar electrosurgical scissors and method of manufacture
5658300, Jun 04 1992 Olympus Optical Co., Ltd. Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues
5658307, Nov 07 1990 Method of using a surgical dissector instrument
5662258, Feb 03 1994 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
5662260, Jul 13 1994 Surgical staple cartridge
5662662, Oct 09 1992 Ethicon Endo-Surgery, Inc. Surgical instrument and method
5665085, Nov 01 1991 Medical Scientific, Inc. Electrosurgical cutting tool
5665100, Dec 05 1989 Multifunctional instrument with interchangeable operating units for performing endoscopic procedures
5667517, Jan 17 1992 Ethicon, Inc. Endoscopic surgical system with sensing means
5667526, Sep 07 1995 Tissue retaining clamp
5667527, Mar 02 1993 HOLOBEAM, INC Staples
5669544, Dec 19 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5669904, Mar 07 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Surgical gas plasma ignition apparatus and method
5669907, Feb 10 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Plasma enhanced bipolar electrosurgical system
5669918, Mar 16 1995 Deutsche Forschungsanstalt fur Luft-und Raumfahrt e.V. Surgical instrument for preparing an anastomosis in minimally invasive surgery
5673840, Dec 19 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5673841, Dec 19 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5673842, Mar 05 1996 Ethicon Endo-Surgery Surgical stapler with locking mechanism
5674286, Feb 12 1991 United States Surgical Corporation Bioabsorbable medical implants
5678748, May 24 1995 VIR Engineering Surgical stapler with improved safety mechanism
5680981, May 05 1994 United States Surgical Corporation Self-contained powered surgical apparatus
5680982, Dec 19 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5680983, Dec 18 1990 United States Surgical Corporation Safety device for a surgical stapler cartridge
5683349, Feb 22 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Laparoscopic dissection tension retractor device and method
5685474, Oct 04 1994 United States Surgical Corporation Tactile indicator for surgical instrument
5686090, Jan 28 1993 Ethicon, Inc. Multi-layered implant
5688270, Jul 22 1993 Ethicon Endo-Surgery,Inc. Electrosurgical hemostatic device with recessed and/or offset electrodes
5690269, Apr 20 1993 United States Surgical Corporation Endoscopic stapler
5692668, Dec 19 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5693020, Jul 28 1994 Loctite Deutschland GmbH Hose pump for the exact dosing of small quantities of liquids
5693042, Apr 28 1994 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
5693051, Jul 22 1993 Ethicon Endo-Surgery, Inc Electrosurgical hemostatic device with adaptive electrodes
5695494, Dec 22 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Rem output stage topology
5695502, Sep 29 1994 United States Surgical Corporation Surgical clip applicator
5695504, Feb 24 1995 Heartport, Inc Devices and methods for performing a vascular anastomosis
5695524, Apr 05 1994 Tracor Aerospace, Inc. Constant width, adjustable grip, staple apparatus and method
5697542, Oct 19 1995 Ethicon Endo-Surgery, Inc. Endoscopic surgical stapler with compact profile
5697543, Mar 12 1996 Ethicon Endo-Surgery, Inc. Linear stapler with improved firing stroke
5697909, May 10 1994 Arthrocare Corporation Methods and apparatus for surgical cutting
5697943, Nov 12 1993 LSI Solutions, Inc Apparatus and method for performing compressional anastomoses
5700270, Oct 20 1995 United States Surgical Corporation Surgical clip applier
5702387, Sep 27 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Coated electrosurgical electrode
5702408, Jul 17 1996 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Articulating surgical instrument
5702409, Jul 21 1995 W L GORE & ASSOCIATES, INC Device and method for reinforcing surgical staples
5704087, Sep 19 1995 Dental care apparatus and technique
5704534, Dec 19 1994 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
5706997, Oct 18 1991 United States Surgical Corporation Apparatus for applying surgical fasteners
5706998, Jul 17 1995 United States Surgical Corporation Surgical stapler with alignment pin locking mechanism
5707392, Sep 29 1995 Symbiosis Corporation Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same
5709334, Oct 08 1993 United States Surgical Corporation Surgical apparatus for applying surgical fasteners
5709335, Jun 17 1994 Heartport, Inc. Surgical stapling instrument and method thereof
5709680, Jul 22 1993 Ethicon Endo-Surgery Electrosurgical hemostatic device
5709706, Jun 28 1994 Aesculap AG Surgical instrument
5711472, Jul 17 1992 United States Surgical Corporation Self contained gas powered surgical apparatus
5713128, Feb 16 1996 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical pad apparatus and method of manufacture
5713505, May 13 1996 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
5713895, Dec 30 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Partially coated electrodes
5713896, Nov 01 1991 Medical Scientific, Inc. Impedance feedback electrosurgical system
5713920, Jan 21 1993 Ethicon, Inc. Elastomeric medical device
5715604, Jun 15 1995 EIS Instruments Force-developing device for cutting forceps
5715987, Apr 05 1994 Tracor Incorporated Constant width, adjustable grip, staple apparatus and method
5715988, Aug 14 1995 United States Surgical Corporation Surgical stapler with lockout mechanism
5716366, Apr 07 1995 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
5718359, Aug 14 1995 United States of America Surgical Corporation Surgical stapler with lockout mechanism
5718360, Sep 08 1992 United States Surgical Corporation Surgical apparatus and detachable anvil rod therefor
5718548, Oct 20 1992 Clipmaster Corporation PTY Ltd Staple assembly
5718706, Jun 04 1993 SMITH & NEPHEW INC Surgical screw and washer
5720744, Jun 06 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Control system for neurosurgery
5725536, Feb 20 1996 Covidien LP Articulated surgical instrument with improved articulation control mechanism
5725554, Oct 08 1993 IMAGYN MEDICAL TECHNOLOGIES CALIFORNIA, INC Surgical staple and stapler
5728110, Apr 30 1993 United States Surgical Corporation Procedure for use of laparoscopic surgical instruments
5728121, Apr 17 1996 TFX Medical Incorporated Surgical grasper devices
5730758, Sep 12 1996 DEAN ALLGEYER, M D , INC ; ALLGEYER, DEAN Staple and staple applicator for use in skin fixation of catheters
5732821, Sep 28 1995 Biomet Microfixation, LLC System for sterilizing medical devices
5732871, Dec 06 1993 Ethicon, Inc. Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft
5732872, Oct 31 1995 Heartport, Inc Surgical stapling instrument
5733308, Apr 21 1995 W L GORE & ASSOCIATES, INC Surgical pledget dispensing system
5735445, Mar 07 1995 United States Surgical Corporation Surgical stapler
5735848, Jul 22 1993 Ethicon, Inc. Electrosurgical stapling device
5735874, Jun 21 1996 Ethicon Endo-Surgery, Inc. Variable position handle locking mechanism
5738474, May 24 1995 Surgical staple and staple drive member
5738648, Jan 23 1996 Covidien AG; TYCO HEALTHCARE GROUP AG Method and apparatus for a valve and irrigator
5743456, Dec 16 1993 Stryker Corporation Hand actuable surgical handpiece
5747953, Mar 29 1996 Stryker Corporation Cordless, battery operated surical tool
5749889, Feb 13 1996 Conmed Corporation Method and apparatus for performing biopsy
5749893, Apr 30 1993 Tyco Healthcare Group LP Surgical instrument having an articulated jaw structure and a detachable knife
5752644, Jul 11 1995 United States Surgical Corporation Disposable loading unit for surgical stapler
5752965, Oct 21 1996 SYNOVIS LIFE TECHNOLOGIES, INC Apparatus and method for producing a reinforced surgical fastener suture line
5755717, Jan 16 1996 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Electrosurgical clamping device with improved coagulation feedback
5758814, Aug 25 1994 United States Surgical Corporation Anvil for circular stapler
5762255, Feb 20 1996 Conmed Corporation Surgical instrument with improvement safety lockout mechanisms
5762256, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
5766188, May 08 1995 Kabushikikaisha Igaki Iryo Sekkei Medical suturing material
5766205, Feb 12 1992 United States Surgical Corporation Articulating endoscopic surgical apparatus
5769892, Oct 22 1996 PM DEVICES, INC Surgical stapler sleeve for reinforcing staple lines
5772379, May 24 1996 Self-filling staple fastener
5772578, Sep 14 1995 Richard Wolf GmbH Endoscopic instrument
5772659, Sep 26 1995 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical generator power control circuit and method
5776130, Sep 19 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Vascular tissue sealing pressure control
5778939, Feb 08 1996 DUAL VOLTAGE CO LTD Flexible plastics vacuum cleaner core
5779130, Aug 05 1994 United States Surgical Corporation Self-contained powered surgical apparatus
5779131, Oct 19 1995 Ethicon Endo-Surgery, Inc. Endoscopic surgical stapler with compact profile
5779132, Oct 19 1995 Ethicon Endo-Surgery, Inc. Endoscopic surgical stapler with compact profile
5782396, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
5782397, Jan 04 1994 Alpha Surgical Technologies, Inc. Stapling device
5782748, Jul 10 1996 Symbiosis Corporation Endoscopic surgical instruments having detachable proximal and distal portions
5782749, May 10 1994 Laparoscopic surgical instrument with adjustable grip
5782859, Sep 04 1992 United States Surgical Corporation Articulating endoscopic surgical apparatus
5784934, Jan 30 1997 Shinano Pneumatic Industries, Inc. Ratchet wrench with pivotable head
5785232, Apr 17 1996 VIR Engineering Surgical stapler
5785647, Jul 31 1996 United States Surgical Corporation Surgical instruments useful for spinal surgery
5787897, Jun 24 1994 ARCHIMEDES SURGICAL, INC Surgical method for intraluminally plicating a fundus of a patient
5792135, May 16 1997 Intuitive Surgical Operations, Inc Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
5792165, Jul 21 1993 Charles H., Klieman Endoscopic instrument with detachable end effector
5794834, Mar 30 1994 Ethicon Endo-Surgery Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft
5796188, Oct 05 1995 XOMED SURGICAL PRODUCTS, INC Battery-powered medical instrument with power booster
5797536, Oct 09 1992 Ethicon, Inc. Endoscopic surgical instrument with pivotable and rotatable staple cartridge
5797537, Feb 20 1996 Covidien LP Articulated surgical instrument with improved firing mechanism
5797538, Oct 05 1994 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
5797906, Nov 24 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Retrograde tissue splitter and method
5797958, Dec 05 1989 Endoscopic grasping instrument with scissors
5797959, Sep 21 1995 United States Surgical Corporation Surgical apparatus with articulating jaw structure
5799857, Oct 07 1993 United States Surgical Corporation Circular anastomosis device
5800379, Feb 23 1996 SOMNUS MEDICAL TECHNOLOGIES, INC Method for ablating interior sections of the tongue
5800423, May 14 1993 SRI International Remote center positioner with channel shaped linkage element
5806676, Mar 16 1994 Chr. Renz GmbH & Co. Device for packaging binding elements
5807376, Jun 24 1994 United States Surgical Corporation Apparatus and method for performing surgical tasks during laparoscopic procedures
5807378, Jun 07 1995 SRI International Surgical manipulator for a telerobotic system
5807393, Dec 22 1992 Ethicon Endo-Surgery, Inc Surgical tissue treating device with locking mechanism
5809441, Oct 19 1995 CNH America LLC; BLUE LEAF I P , INC Apparatus and method of neutral start control of a power transmission
5810721, Mar 04 1996 Edwards Lifesciences, LLC Soft tissue retractor and method for providing surgical access
5810811, Jul 22 1993 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
5810846, Aug 03 1995 United States Surgical Corporation Vascular hole closure
5810855, Jul 21 1995 W L GORE & ASSOCIATES, INC Endoscopic device and method for reinforcing surgical staples
5813813, Mar 04 1993 MRI Devices Daum GmbH Surgical manipulator
5814055, Sep 19 1995 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Surgical clamping mechanism
5814057, Jun 03 1994 Gunze Limited Supporting element for staple region
5816471, May 02 1994 United States Surgical Corporation Surgical stapler with mechanisms for reducing the firing force
5817084, May 14 1993 SRI International Remote center positioning device with flexible drive
5817091, May 20 1997 Medical Scientific, Inc.; Ethicon Endo-Surgery, Inc. Electrosurgical device having a visible indicator
5817093, Jul 22 1993 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
5817109, Oct 18 1991 Tyco Healthcare Group LP Apparatus and method for applying surgical staples to attach an object to body tissue
5817119, Jul 21 1993 Charles H., Klieman Surgical instrument for endoscopic and general surgery
5820009, Feb 20 1996 Covidien LP Articulated surgical instrument with improved jaw closure mechanism
5823066, May 13 1996 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
5826776, Dec 19 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5827271, Sep 19 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Energy delivery system for vessel sealing
5827298, Nov 17 1995 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Surgical fastening system and method for using the same
5829662, Nov 14 1994 Ethicon, Inc. Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge
5830598, Aug 15 1996 Ericsson Inc. Battery pack incorporating battery pack contact assembly and method
5833690, Jul 22 1993 Ethicon, Inc. Electrosurgical device and method
5833695, Jul 13 1994 Surgical stapling system and method of applying staples from multiple staple cartridges
5833696, Oct 03 1996 United States Surgical Corporation Apparatus for applying surgical clips
5836503, Apr 22 1996 United States Surgical Corporation Insertion device for surgical apparatus
5836960, Sep 23 1994 United States Surgical Corporation Endoscopic surgical apparatus with rotation lock
5839639, Aug 17 1995 LSI Solutions, Inc Collapsible anvil assembly and applicator instrument
5843021, May 09 1994 GYRUS ACMI, INC Cell necrosis apparatus
5843096, May 08 1995 Kabushikikaisha Igaki Iryo Sekkei Medical suturing material
5843097, Feb 03 1996 Aesculap AG Surgical applicator
5843122, May 10 1994 Surgical tool with pair of pivotable jaws
5843132, Oct 07 1996 Self-contained, self-powered temporary intravenous pacing catheter assembly
5843169, Apr 08 1997 TAHERI ENTERPRISES, LLC Apparatus and method for stapling graft material to a blood vessel wall while preserving the patency of orifices
5846254, Jun 25 1997 Ethicon Endo-Surgery, Inc Surgical instrument for forming a knot
5849011, Jun 19 1995 VIDAMED, INC Medical device with trigger actuation assembly
5849023, Dec 27 1996 Disposable remote flexible drive cutting apparatus
5855311, Mar 30 1994 Ethicon Endo-Surgery Reloadable surgical instrument
5855583, Feb 20 1996 Intuitive Surgical Operations, Inc Method and apparatus for performing minimally invasive cardiac procedures
5860581, Mar 24 1994 United States Surgical Corporation Anvil for circular stapler
5860975, Dec 21 1994 Gyrus Medical Limited Electrosurgical instrument
5865361, Sep 23 1997 Covidien LP Surgical stapling apparatus
5868760, Dec 07 1994 Method and apparatus for endolumenally resectioning tissue
5868790, May 06 1996 PHYSIO-CONTROL, INC Keyed self-latching battery pack for a portable defibrillator
5871135, Dec 21 1994 Ethicon Endo-Surgery Surgical stapler and staple cartridge
5873885, Aug 28 1997 Bausch & Lomb Incorporated Surgical handpiece
5876401, Jul 22 1993 Ethicon Endo Surgery, Inc. Electrosurgical hemostatic device with adaptive electrodes
5878193, Aug 10 1992 Intuitive Surgical Operations, Inc Automated endoscope system for optimal positioning
5878937, Oct 18 1991 United States Surgical Corporation Apparatus for applying surgical fasteners
5878938, Aug 11 1997 Ethicon Endo-Surgery, Inc. Surgical stapler with improved locking mechanism
5891160, Feb 21 1997 CardioVascular Technologies, LLC Fastener delivery and deployment mechanism and method for placing the fastener in minimally invasive surgery
5893506, Mar 01 1994 United States Surgical Corporation Surgical stapler with anvil sensor and lockout
5893835, Oct 10 1997 Ethicon Endo-Surgery, Inc Ultrasonic clamp coagulator apparatus having dual rotational positioning
5893863, Dec 05 1989 Surgical instrument with jaws and movable internal hook member for use thereof
5893878, Apr 24 1997 Micro traumatic tissue manipulator apparatus
5894979, Mar 01 1994 United States Surgical Corporation Surgical stapler with anvil sensor and lockout
5897552, Nov 08 1991 EP Technologies, Inc. Electrode and associated systems using thermally insulated temperature sensing elements
5897562, Nov 02 1994 United States Surgical Corporation Non-invasive apparatus for treatment of gastroesophageal reflux disease
5899914, Jun 11 1997 ZIMMER SPINE, INC Surgical instrument
5901895, Oct 05 1994 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
5902312, Jul 03 1995 System for mounting bolster material on tissue staplers
5904647, Oct 08 1996 Asahi Kogyo Kabushiki Kaisha Treatment accessories for an endoscope
5904693, Apr 27 1993 Sherwood Services AG Automatic laparoscopic ligation clip applicator
5904702, Aug 14 1997 MASSACHUSETTS, UNIVERSITY OF Instrument for thoracic surgical procedures
5906625, Jun 04 1992 OLYMPUS OPTICAL CO , LTD Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue
5908402, Feb 03 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Method and apparatus for detecting tube occlusion in argon electrosurgery system
5908427, Jun 17 1996 United States Surgical Corporation Surgical stapling apparatus and method
5911353, Jul 11 1995 United States Surgical Corporation Disposable loading unit for surgical stapler
5915616, Oct 18 1991 United States Surgical Corporation Surgical fastener applying apparatus
5916225, Sep 29 1994 BARD ASDI INC Hernia mesh patch
5918791, Oct 08 1993 United States Surgical Corporation Surgical apparatus for applying surgical fasteners
5919198, Apr 17 1997 Ethicon Endo-Surgery, Inc. Disposable cartridge with drivers
5919202, Dec 05 1989 Surgical instrument with jaws and movable internal needle and method for use thereof
5921956, Sep 24 1997 Smith & Nephew, Inc. Surgical instrument
5928256, May 10 1994 Motor controlled surgical instrument
5931847, Jan 09 1997 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Surgical cutting instrument with improved cutting edge
5931853, Aug 25 1995 ZIMMER ORTHOPAEDIC SURGICAL PRODUCTS, INC Physiologic tourniquet with safety circuit
5937951, Jul 18 1997 Ethicon Endo-Surgery, Inc. Skin stapler with rack and pinion staple feed mechanism
5938667, Oct 20 1995 United States Surgical Corporation Surgical clip applier
5941442, Oct 27 1995 United States Surgical Corporation Surgical stapler
5941890, Jun 26 1998 DEVICOR MEDICAL PRODUCTS, INC Implantable surgical marker
5944172, Oct 06 1997 Allen-Bradley Company, LLC Biasing assembly for a switching device
5944715, Jun 29 1996 Gyrus Medical Limited Electrosurgical instrument
5947984, Oct 10 1997 Ethicon Endo-Surger, Inc. Ultrasonic clamp coagulator apparatus having force limiting clamping mechanism
5947996, Jun 23 1997 Medicor Corporation Yoke for surgical instrument
5948030, Jul 25 1997 PACIFIC CENTURY MOTORS, INC ; GM Global Technology Operations, Inc Steering angle determaination method and apparatus
5951516, Sep 01 1997 N J PHILLIPS P T Y LIMITED Applicator
5951552, Jun 30 1997 Ethicon Endo-Surgery, Inc. Capacitively coupled cordless electrosurgical instrument
5951574, Oct 23 1998 Ethicon Endo-Surgery, Inc Multiple clip applier having a split feeding mechanism
5951581, Dec 02 1996 Advanced Cardiovascular Systems, INC Cutting apparatus having disposable handpiece
5954259, Aug 05 1994 United States Surgical Corporation Self-contained powered surgical apparatus for applying surgical fasteners
5964394, Mar 15 1996 United States Surgical Corporation Surgical fastener applying device
5964774, Jun 17 1996 United States Surgical Corporation Surgical stapling apparatus and method with surgical fabric
5971916, Dec 27 1995 Video camera cover
5973221, Jun 08 1994 Seton Healthcare Group PLC. Wound dressing
5984949, Oct 06 1997 Tissue hooks and tools for applying same
5988479, Dec 13 1994 United States Surgical Corporation Apparatus for applying surgical fasteners
5997528, Aug 29 1996 Bausch & Lomb Incorporated Surgical system providing automatic reconfiguration
5997552, Oct 20 1995 United States Surgical Corporation Meniscal fastener applying device
6003517, Apr 30 1998 Ethicon Endo-Surgery, Inc. Method for using an electrosurgical device on lung tissue
6004319, Jun 23 1995 Gyrus Medical Limited Electrosurgical instrument
6004335, Aug 02 1994 Ethicon Endo-Surgery, Inc. Ultrasonic hemostatic and cutting instrument
6010054, Feb 20 1996 Conmed Corporation Linear stapling instrument with improved staple cartridge
6010513, Nov 26 1997 Bionx Implants Oy Device for installing a tissue fastener
6012494, Mar 16 1995 Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. Flexible structure
6013076, Jan 09 1996 Gyrus Medical Limited Electrosurgical instrument
6015406, Jan 09 1996 Gyrus Medical Limited Electrosurgical instrument
6015417, Jan 25 1996 Surgical fastener
6017322, Nov 21 1995 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
6017354, Aug 15 1996 Stryker Corporation Integrated system for powered surgical tools
6017356, Sep 19 1997 Ethicon Endo-Surgery, Inc Method for using a trocar for penetration and skin incision
6022352, Mar 28 1997 Biomet Manufacturing, LLC Bone fixation screw system
6024741, Jul 22 1993 Ethicon Endo-Surgery, Inc. Surgical tissue treating device with locking mechanism
6024748, Jul 23 1996 United States Surgical Corporation Singleshot anastomosis instrument with detachable loading unit and method
6027501, Jun 23 1995 Gyrus Medical Limited Electrosurgical instrument
6032849, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
6033378, Feb 02 1990 EP Technologies, Inc. Catheter steering mechanism
6033399, Apr 09 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical generator with adaptive power control
6033427, Jan 07 1998 Method and device for percutaneous sealing of internal puncture sites
6037724, May 01 1997 OsteoMed LLC Electronic controlled surgical power tool
6039733, Sep 19 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Method of vascular tissue sealing pressure control
6039734, Oct 24 1995 Gyrus Medical Limited Electrosurgical hand-held battery-operated instrument
6042601, Mar 18 1998 United States Surgical Corporation Apparatus for vascular hole closure
6045560, Oct 06 1993 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric
6047861, Apr 15 1998 Baxter International Inc Two component fluid dispenser
6050172, Apr 04 1997 EMHART GLASS S A Pneumatically operated mechanism
6050472, Apr 26 1996 Olympus Optical Co., Ltd. Surgical anastomosis stapler
6050990, Dec 05 1996 ThermoLase Corporation Methods and devices for inhibiting hair growth and related skin treatments
6050996, Nov 12 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar electrosurgical instrument with replaceable electrodes
6053390, May 19 1992 United States Surgical Anvil for surgical stapler
6053922, Jul 18 1995 FLEX TECHNOLOGY, INC Flexible shaft
6056735, Apr 04 1996 Olympus Optical Co., Ltd. Ultrasound treatment system
6056746, Jun 23 1995 Gyrus Medical Limited Electrosurgical instrument
6062360, May 13 1998 Brunswick Corporation Synchronizer for a gear shift mechanism for a marine propulsion system
6063097, Jun 03 1994 Gunze Limited Supporting element for staple region
6063098, Dec 23 1996 Ethicon Endo-Surgery, Inc Articulable ultrasonic surgical apparatus
6065919, Feb 18 1999 Plyco Corporation Self-tapping screw with an improved thread design
6066132, Jun 30 1998 Ethicon, Inc Articulating endometrial ablation device
6068627, Dec 10 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Smart recognition apparatus and method
6071233, Oct 31 1997 Olympus Corporation Endoscope
6074386, Dec 29 1995 Gyrus Medical Limited Electrosurgical instrument and an electrosurgical electrode assembly
6074401, Jan 09 1997 Medtronic, Inc Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
6077286, May 07 1996 KARL STORZ GMBH & CO KG Instrument with a bendable handle
6079606, Sep 23 1997 Covidien LP Surgical stapling apparatus
6080181, Jun 07 1995 SRI International System and method for releasably holding a surgical instrument
6082577, Jul 29 1997 Thomas & Betts International LLC Cable tie dispensing apparatus
6083191, Feb 07 1992 INTEGRA LIFESCIENCES IRELAND LTD Ultrasonic surgical apparatus
6083234, Jun 17 1997 United States Surgical Corporation Anastomosis instrument and method
6083242, Feb 17 1999 HOLOBEAM, INC Surgical staples with deformation zones of non-uniform cross section
6086544, Mar 31 1999 DEVICOR MEDICAL PRODUCTS, INC Control apparatus for an automated surgical biopsy device
6086600, Nov 03 1997 Symbiosis Corporation Flexible endoscopic surgical instrument for invagination and fundoplication
6090106, Jan 09 1996 Gyrus Medical Limited Electrosurgical instrument
6093186, Dec 20 1996 Gyrus Medical Limited Electrosurgical generator and system
6099537, Feb 26 1996 Olympus Optical Co., Ltd. Medical treatment instrument
6099551, Mar 12 1998 GABBAY, SHLOMO Pericardial strip and stapler assembly for dividing and sealing visceral tissues and method of use thereof
6102271, Nov 23 1998 Ethicon Endo-Surgery, Inc. Circular stapler for hemorrhoidal surgery
6109500, Oct 10 1996 United States Surgical Corporation Lockout mechanism for a surgical stapler
6117148, Oct 17 1997 Intraluminal anastomotic device
6117158, Jul 07 1999 Ethicon Endo-Surgery, Inc. Ratchet release mechanism for hand held instruments
6119913, Jun 14 1996 BOSTON SCIENTIFIC LTD ; Boston Scientific Corporation Endoscopic stapler
6120433, Sep 01 1994 Olympus Optical Co., Ltd. Surgical manipulator system
6123241, May 23 1995 Illinois Tool Works Inc Internal combustion powered tool
6126058, Jun 19 1998 BOSTON SCIENTIFIC LTD Method and device for full thickness resectioning of an organ
6126359, Feb 25 1997 KARL STORZ SE & CO KG Bayonet coupling for detachable joining of two tubular shaft instruments or instrument parts
6126670, Jul 08 1999 Medtronic, Inc Cordless surgical handpiece with disposable battery; and method
6131789, Nov 30 1990 Ethicon, Inc. Surgical stapler
6131790, Sep 02 1998 Surgical stapler and cartridge
6132368, Dec 12 1996 Intuitive Surgical Operations, Inc Multi-component telepresence system and method
6139546, Oct 06 1997 SOMNUS MEDICAL TECHNOLOGIES, INC Linear power control with digital phase lock
6149660, Apr 22 1996 Covidien LP Method and apparatus for delivery of an appliance in a vessel
6152935, Dec 11 1996 Ethicon, Inc. Meniscal repair device having integral spring member
6153292, Nov 22 1994 TEI BIOSCIENCES, INC Biopolymer foams for use in tissue repair and reconstruction
6155473, May 26 1989 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
6156056, Jul 10 1998 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Suture buttress
6159146, Mar 12 1999 Method and apparatus for minimally-invasive fundoplication
6159200, Oct 07 1997 SMITH & NEPHEW; University of Massachusetts Systems, methods, and instruments for minimally invasive surgery
6159224, Nov 27 1996 Multiple needle suturing instrument and method
6162208, Sep 11 1997 Technology Holding Company II Articulating endoscopic implant rotator surgical apparatus and method for using same
6165175, Feb 02 1999 Ethicon Endo-Surgery, Inc. RF bipolar mesentery takedown device including improved bipolar end effector
6165184, Nov 18 1996 Smith & Nephew, Inc Systems methods and instruments for minimally invasive surgery
6165188, Dec 02 1996 Advanced Cardiovascular Systems, INC Apparatus for percutaneously performing myocardial revascularization having controlled cutting depth and methods of use
6168605, Jul 08 1999 Ethicon Endo-Surgery, Inc. Curved laparoscopic scissor having arcs of curvature
6171305, May 05 1998 Cardiac Pacemakers, Inc RF ablation apparatus and method having high output impedance drivers
6171316, Oct 10 1997 MAQUET CARDIOVASCULAR LLC Endoscopic surgical instrument for rotational manipulation
6171330, Dec 15 1997 Sofradim Production Pneumatic surgical instrument for the distribution and placement of connecting or fastening means
6174308, Jun 23 1995 Gyrus Medical Limited Electrosurgical instrument
6174309, Feb 11 1999 ERBE ELEKTROMEDIZIN GMBH Seal & cut electrosurgical instrument
6179194, Oct 22 1999 Cartridge fed stapler
6179195, Jun 19 1998 SciMed Life Systems, Inc. Method and device for full thickness resectioning of an organ
6179776, Mar 12 1999 Boston Scientific Scimed, Inc Controllable endoscopic sheath apparatus and related method of use
6179849, Jun 10 1999 Aesculap AG Sutureless closure for connecting a bypass graft to a target vessel
6181105, Apr 26 1999 Exonix Corporation Self contained transportable power source maintenance and charge
6182673, Apr 12 1999 MIKE KINDERMANN MARKETING VERTRIEBS GMBH Dump facility for cassette sewage tanks
6187003, Nov 12 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar electrosurgical instrument for sealing vessels
6190386, Mar 09 1999 GYRUS MEDICAL, INC Electrosurgical forceps with needle electrodes
6193129, Jan 24 2000 Ethicon Endo-Surgery, Inc. Cutting blade for a surgical anastomosis stapling instrument
6197042, Jan 05 2000 INTEGRATED VASCULAR SYSTEMS, INC Vascular sheath with puncture site closure apparatus and methods of use
6200330, Nov 23 1998 Springboard Medical Ventures, LLC Systems for securing sutures, grafts and soft tissue to bone and periosteum
6202914, Oct 27 1995 United States Surgical Corporation Surgical stapler
6206897, Dec 02 1994 Ethicon, Inc.; ETHCION, INC Enhanced visualization of the latching mechanism of latching surgical devices
6206904, Jun 12 1998 Ashai Kogaku Kogyo Kabushiki Kaisha Foreign body-recovering instrument for endoscope
6210403, Oct 07 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Automatic control for energy from an electrosurgical generator
6213999, Mar 07 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Surgical gas plasma ignition apparatus and method
6214028, May 01 1997 InBae, Yoon Surgical instrument with multiple rotatably mounted offset end effectors and method of using the same
6220368, Jun 29 1999 MicroAire Surgical Instruments LLC Powered surgical instrument having locking systems and a clutch mechanism
6223100, Jan 21 1992 SRI, International Apparatus and method for performing computer enhanced surgery with articulated instrument
6223835, Jan 29 1999 Black & Decker Inc Battery-powered hand-guided power tool
6224617, Oct 17 1997 ANGIOTRAX, INC Methods and apparatus for defibrillating a heart refractory to electrical stimuli
6228081, May 21 1999 Gyrus Medical Limited Electrosurgery system and method
6228083, Nov 14 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Laparoscopic bipolar electrosurgical instrument
6228084, Apr 06 1999 Kirwan Surgical Products LLC Electro-surgical forceps having recessed irrigation channel
6231565, Jun 18 1997 Covidien LP Robotic arm DLUs for performing surgical tasks
6234178, Jan 09 1996 Gyrus Medical Limited Electrosurgical instrument
6241139, Sep 23 1997 Surgical stapling apparatus
6241140, Jun 19 1998 SciMed Life Systems, Inc. Method and device for full-thickness resectioning of an organ
6241723, Oct 15 1997 Microline Surgical, Inc Electrosurgical system
6245084, Oct 20 1998 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated System for controlling a motor driven surgical cutting instrument
6248117, Apr 16 1999 DF Vital Holdings, LLC Anastomosis apparatus for use in intraluminally directed vascular anastomosis
6249076, Apr 14 1998 Massachusetts Institute of Technology Conducting polymer actuator
6250532, Oct 18 1991 United States Surgical Corporation Surgical stapling apparatus
6258107, Aug 17 1998 Deutsches Zentrum fur Luft-und Raumfahrt e.V. Apparatus for connecting a variety of surgical instruments to an operating control device
6261286, Jun 23 1995 Gyrus Medical Limited Electrosurgical generator and system
6264086, Dec 07 1994 Surgical apparatus and method
6264087, Jul 12 1999 Covidien LP Expanding parallel jaw device for use with an electromechanical driver device
6270508, Oct 26 1998 DAVID NEEDLEMAN End effector and instrument for endoscopic and general surgery needle control
6273876, Dec 05 1997 EV3 PERIPHERAL, INC Catheter segments having circumferential supports with axial projection
6273897, Feb 29 2000 Ethicon, Inc Surgical bettress and surgical stapling apparatus
6277114, Apr 03 1998 Gyrus Medical Limited Electrode assembly for an electrosurical instrument
6293942, Jun 23 1995 Gyrus Medical Limited Electrosurgical generator method
6296640, Feb 02 1999 Ethicon Endo-Surgery, Inc. RF bipolar end effector for use in electrosurgical instruments
6302311, Jun 14 1996 Boston Scientific Corporation Endoscopic stapler
6305891, May 15 2000 Fastening device and a spacer, and a method of using the same
6306134, Jun 23 1995 Gyrus Medical Limited Electrosurgical generator and system
6306149, Feb 15 2000 Microline Surgical, Inc Medical clip device with cyclical pusher mechanism
6309403, Jun 01 1998 Board of Trustees Operating Michigan State University Dexterous articulated linkage for surgical applications
6315184, Jun 02 1999 Covidien LP Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
6320123, Oct 20 1999 System and method for shielding electrical components from electromagnetic waves
6322284, Jul 20 1998 Valeo Arrangement for fixing a tubular element on a structural element of a motor vehicle body
6322494, Apr 03 1998 Gyrus Medical Limited Endoscope
6324339, Nov 29 1999 Energizer Brands, LLC Battery pack including input and output waveform modification capability
6325799, Apr 24 1997 Gyrus Medical Limited Electrosurgical instrument
6325810, Jun 30 1999 Ethicon, Inc Foam buttress for stapling apparatus
6330965, Sep 23 1997 United States Surgical Corporation Surgical stapling apparatus
6331181, Dec 08 1998 Intuitive Surgical Operations, Inc Surgical robotic tools, data architecture, and use
6331761, Jun 22 1998 Stryker Corporation Battery charger capable of evaluating battery charge state based on the charging history of the battery
6333029, Jun 30 1999 ENDO-SURGERY, INC Porous tissue scaffoldings for the repair of regeneration of tissue
6334860, Dec 18 1998 Karl Storz GmbH & Co. KG Bipolar medical instrument
6334861, Sep 10 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Biopolar instrument for vessel sealing
6336926, Jan 15 1999 Gyrus Medical Limited Electrosurgical system
6338737, Jul 17 1997 Flexible annular stapler for closed surgery of hollow organs
6343731, Oct 25 2000 SciMed Life Systems, Inc. Method and device for full thickness resectioning of an organ
6346077, Feb 20 1996 Maquet Cardiovascular, LLC Surgical instrument for stabilizing the beating heart during coronary artery bypass graft surgery
6348061, Feb 22 2000 Covidien LP Vessel and lumen expander attachment for use with an electromechanical driver device
6352503, Jul 17 1998 Olympus Corporation Endoscopic surgery apparatus
6352532, Dec 14 1999 Ethicon Endo-Surgery, Inc Active load control of ultrasonic surgical instruments
6355699, Jun 30 1999 ENDO-SURGERY, INC Process for manufacturing biomedical foams
6356072, Sep 24 1999 Hall effect sensor of displacement of magnetic core
6358224, Sep 24 1999 Covidien LP Irrigation system for endoscopic surgery
6364877, Jun 23 1995 Gyrus Medical Limited Electrosurgical generator and system
6364888, Sep 09 1996 Intuitive Surgical Operations, Inc Alignment of master and slave in a minimally invasive surgical apparatus
6370981, Feb 16 1999 Shimano Inc. Gear indicator for a bicycle
6373152, Feb 09 2000 Synergy Scientech Corp. Electrical energy storage device
6383201, May 14 1999 Surgical prosthesis for repairing a hernia
6383958, Jun 18 1999 3M Innovative Properties Company Nonwoven sheets, adhesive articles, and methods for making the same
6387113, Feb 02 1999 Biomet Manufacturing Corp Method and apparatus for repairing a torn meniscus
6387114, Apr 28 2000 SciMed Life Systems, Inc. Gastrointestinal compression clips
6391038, Jul 28 1999 Aesculap AG Anastomosis system and method for controlling a tissue site
6398781, Mar 05 1999 Gyrus Medical Limited Electrosurgery system
6398797, Jul 28 1999 Aesculap AG Tissue bonding system and method for controlling a tissue site during anastomosis
6402766, Jul 23 1999 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Graft fixation device combination
6406440, Dec 21 2000 Ethicon Endo-Surgery, Inc. Specimen retrieval bag
6406472, May 14 1993 SRI International, Inc. Remote center positioner
6409724, May 28 1999 Gyrus Medical Limited Electrosurgical instrument
6413274, Jan 27 1998 United States Surgical Corporation Stapling apparatus and method for heart valve replacement
6416486, Mar 31 1999 Ethicon Endo-Surgery, Inc. Ultrasonic surgical device having an embedding surface and a coagulating surface
6416509, Jun 23 1995 Gyrus Medical Limited Electrosurgical generator and system
6419695, May 22 2000 Cardiac prosthesis for helping improve operation of a heart valve
6423079, Mar 07 2000 Repeating multi-clip applier
6428070, Oct 11 2000 SMC Corporation Chuck with position detecting function
6429611, Jan 28 2000 Rotary and linear motor
6436097, Nov 01 1991 Medical Scientific, Inc. Electrosurgical cutting tool
6436107, Feb 20 1996 Intuitive Surgical Operations, Inc Method and apparatus for performing minimally invasive surgical procedures
6436110, Jul 23 1999 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Method of securing a graft using a graft fixation device
6436122, Mar 17 1999 KARL STORZ SE & CO KG Handle for a medical instrument
6439439, Jan 12 2001 Telios Orthopedic Systems, Inc Bone cement delivery apparatus and hand-held fluent material dispensing apparatus
6439446, Dec 01 2000 Boston Scientific Scimed, Inc Safety lockout for actuator shaft
6440146, Jul 23 1996 United States Surgical Corporation Anastomosis instrument and method
6443973, Jun 02 1999 Covidien LP Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
6447518, Jul 18 1995 FLEX TECHNOLOGY, INC Flexible shaft components
6447864, Feb 02 1998 GPCP IP HOLDINGS LLC Sheet material having weakness zones and a system for dispensing the material
6450391, Jul 10 1998 United States Surgical Corporation Apparatus and method for surgical fastening
6450989, Apr 27 1998 Ethicon Endo-Surgery, Inc Dilating and support apparatus with disease inhibitors and methods for use
6454781, May 26 1999 Ethicon Endo-Surgery, Inc Feedback control in an ultrasonic surgical instrument for improved tissue effects
6468275, Feb 06 1998 Ethicon Endo-Surgery, Inc. RF bipolar mesentery takedown device including improved bipolar end effector
6471106, Nov 15 2001 Intellectual Property LLC Apparatus and method for restricting the discharge of fasteners from a tool
6478210, Oct 25 2000 Boston Scientific Scimed, Inc Method and device for full thickness resectioning of an organ
6482200, Jan 03 2001 SUMMIT MEDICAL, INC ; SANTA BARBARA MEDCO, INC ; Shippert Enterprises, LLC Cautery apparatus and method
6485490, Feb 06 1998 Ethicon Endo-Surgery, Inc. RF bipolar end effector for use in electrosurgical instruments
6485503, May 19 2000 MicroAire Surgical Instruments LLC Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device
6485667, Jan 17 1997 EAM CORPORATION Process for making a soft, strong, absorbent material for use in absorbent articles
6488196, Jun 30 1999 AXYA MEDICAL, INC Surgical stapler and method of applying plastic staples to body tissue
6488197, Feb 22 2000 Covidien LP Fluid delivery device for use with anastomosing resecting and stapling instruments
6491201, Feb 22 2000 Covidien LP Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments
6491690, Jul 18 1997 Cinetic Landis Grinding Limited Electrosurgical instrument
6491701, Dec 08 1998 Intuitive Surgical Operations, Inc Mechanical actuator interface system for robotic surgical tools
6492785, Jun 27 2000 Deere & Company Variable current limit control for vehicle electric drive system
6494896, Nov 30 1999 Ethicon, Inc Applicator for laparoscopic or endoscopic surgery
6500176, Oct 23 2000 Ethicon Endo-Surgery, Inc Electrosurgical systems and techniques for sealing tissue
6500194, Dec 03 1991 Boston Scientific Scimed, Inc Surgical treatment of stress urinary incontinence
6503257, May 07 2001 Ethicon Endo-Surgery, Inc. Method for releasing buttress material attached to a surgical fastening device
6503259, Dec 27 2000 Ethicon, Inc Expandable anastomotic device
6505768, Jul 12 1999 Covidien LP Expanding parallel jaw device for use with an electromechanical driver device
6510854, Mar 16 2000 Gyrus Medical Limited Method of treatment of prostatic adenoma
6511468, Oct 17 1997 Covidien LP Device and method for controlling injection of liquid embolic composition
6512360, Mar 15 1999 Caterpillar Japan Ltd Self-induction-type stroke sensor
6517528, Apr 13 2000 Boston Scientific Corporation Magnetic catheter drive shaft clutch
6517535, Jun 24 1994 GYRUS ACMI, INC Apparatus for ablating turbinates
6517565, Jun 02 1999 Covidien LP Carriage assembly for controlling a steering wire steering mechanism within a flexible shaft
6517566, May 11 1998 SURGICAL CONNECTIONS, INC Devices and methods for treating e.g. urinary stress incontinence
6522101, Dec 10 1999 Stryker Corporation Rechargeable battery with memory that contains charging sequence data
6527782, Jun 07 2000 STEREOTAXIS, INC Guide for medical devices
6527785, Aug 03 1999 DVL ACQUISITION SUB, INC Surgical suturing instrument and method of use
6533157, Feb 22 2000 Covidien LP Tissue stapling attachment for use with an electromechanical driver device
6533784, Feb 24 2001 Ethicon Endo-Surgery, Inc Electrosurgical working end for transecting and sealing tissue
6535764, May 01 2001 INTRAPACE, INC Gastric treatment and diagnosis device and method
6543456, May 31 2002 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Method for minimally invasive surgery in the digestive system
6545384, Feb 07 1997 SRI International Electroactive polymer devices
6547786, May 21 1999 Gyrus Medical Electrosurgery system and instrument
6550546, Jun 03 1999 One World Technologies Limited Spindle lock and chipping mechanism for hammer drill
6551333, Oct 19 2000 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Method for attaching hernia mesh
6554861, Jan 19 1999 GYRUS ACMI, INC Otologic prosthesis
6555770, Jul 06 2000 ALPS Electric Co., Ltd. Composite operation switch
6558378, May 05 1998 Cardiac Pacemakers, Inc. RF ablation system and method having automatic temperature control
6558379, Nov 18 1999 Gyrus Medical Limited Electrosurgical system
6565560, Jul 18 1997 Gyrus Medical Limited Electrosurgical instrument
6569085, Aug 16 2001 IS, LLC Methods and apparatus for delivering a medical instrument over an endoscope while the endoscope is in a body lumen
6569171, Feb 28 2001 Microline Surgical, Inc Safety locking mechanism for a medical clip device
6578751, Sep 26 2001 Boston Scientific Scimed, Inc Method of sequentially firing staples using springs and a rotary or linear shutter
6582427, Mar 05 1999 Gyrus Medical Limited Electrosurgery system
6582441, Feb 24 2000 Boston Scientific Neuromodulation Corporation Surgical insertion tool
6583533, Feb 07 1997 SRI International Electroactive polymer electrodes
6585144, Jun 19 1998 Boston Scientific Scimed, Inc Integrated surgical staple retainer for a full thickness resectioning device
6588643, Jun 17 1994 Hearport, Inc. Surgical stapling instrument and method thereof
6589118, Jun 04 1999 ALPS ALPINE CO , LTD Analog input device to input multi directional signals
6589164, Feb 15 2000 Medtronic Vascular, Inc Sterility barriers for insertion of non-sterile apparatus into catheters or other medical devices
6592538, Mar 20 1998 New York Society for the Ruptured and Crippled Maintaining the Hospital for Special Surgery Dynamic orthopedic braces
6592597, May 07 2001 Ethicon Endo-Surgery, Inc. Adhesive for attaching buttress material to a surgical fastening device
6596296, Aug 06 1999 Board of Regents, The University of Texas System Drug releasing biodegradable fiber implant
6596304, Sep 18 1998 Imedex Biomateriaux Method for preparing two-layer bicomposite collagen material for preventing post-operative adhesions
6596432, May 30 1994 Canon Kabushiki Kaisha Rechargeable batteries
6601749, Oct 25 2000 SciMed Life Systems, Inc. Multi fire full thickness resectioning device
6602252, Jan 03 2002 Microline Surgical, Inc Combined dissecting, cauterizing, and stapling device
6602262, Jun 02 2000 Boston Scientific Scimed, Inc Medical device having linear to rotation control
6605078, Nov 26 2001 Boston Scientific Scimed, Inc Full thickness resection device
66052,
6605669, Apr 03 2001 AXALTA COATING SYSTEMS IP CO , LLC Radiation-curable coating compounds
6607475, Jul 20 2000 CARDINAL HEALTH CMP 200, INC; Carefusion 2200, Inc Hand-actuated articulating surgical tool
6613069, Feb 22 1993 Heartport, Inc. Tunneling instrument for port access multivessel coronary artery bypass surgery
6616686, Sep 08 2000 Abbott Vascular Inc Surgical staples and methods for stapling
6619529, Oct 18 1991 United States Surgical Corporation Surgical stapling apparatus
6620166, Jan 09 1998 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Suture buttress system
662587,
6626834, Jan 25 2001 OPTOS PLC Spiral scanner with electronic control
6629630, Jun 19 1998 Boston Scientific Scimed, Inc Non-circular resection device and endoscope
6629974, Feb 22 2000 ENERGIST LIMITED Tissue treatment method
6629988, Aug 28 2001 Ethicon, Inc Composite staple for completing an anastomosis
6636412, Sep 17 1999 AXON ENTERPRISE, INC Hand-held stun gun for incapacitating a human target
6638108, Nov 30 2000 Sumitomo Wiring Systems, Ltd. Connector with plural housings accommodated in a casing
6638285, Apr 16 2001 Biological tissue strip and system and method to seal tissue
6638297, May 30 2002 Ethicon Endo-Surgery, Inc Surgical staple
6641528, Sep 08 2000 Fuji Photo Optical Co., Ltd. Bending part of endoscope
6644532, Oct 18 1991 United States Surtical Corporation Surgical stapling apparatus
6645201, Feb 19 1998 Mederi RF, LLC; HORIZON CREDIT II LLC Systems and methods for treating dysfunctions in the intestines and rectum
6646307, Feb 21 2002 Advanced Micro Devices, Inc. MOSFET having a double gate
6648816, Feb 01 2000 Karl Storz GmbH & Co. KG Device for intracorporal, minimal-invasive treatment of a patient
6652595, Mar 25 1996 Davol Inc. Method of repairing inguinal hernias
6656177, Oct 23 2000 Ethicon Endo-Surgery, Inc Electrosurgical systems and techniques for sealing tissue
6656193, May 07 2001 Ethicon Endo-Surgery, Inc. Device for attachment of buttress material to a surgical fastening device
6663623, Mar 13 2000 Olympus Corporation Electric surgical operation apparatus
6663641, Oct 10 1997 MAQUET CARDIOVASCULAR LLC Endoscopic surgical instrument for rotational manipulation
6666854, Jun 25 1999 La Precision Endoscopic surgical instrument
6666875, Mar 05 1999 Olympus Optical Co., Ltd. Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state
6667825, Jan 03 2001 SANTA FE SCIENCE AND TECHNOLOGY, INC Stable conjugated polymer electrochromic devices incorporating ionic liquids
6669073, Sep 23 1997 Covidien LP Surgical stapling apparatus
6670806, Feb 23 2001 NXP B V Magnetic position sensor for measuring linear displacement
6671185, Nov 28 2001 Intelligent fasteners
6676660, Jan 23 2002 EHTICON ENDO-SURGERY, INC Feedback light apparatus and method for use with an electrosurgical instrument
6679269, Jul 28 1995 Boston Scientific Scimed, Inc Systems and methods for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
6679410, Jul 19 2001 Hilti Aktiengesellschaft Setting tool with a setting depth control
6681978, Oct 27 1995 United States Surgical Corporation Surgical stapler
6681979, Feb 22 2000 Covidien LP Fluid delivery device for use with anastomosing stapling, and resecting instruments
6682527, Mar 13 2001 PERFECT SURGICAL TECHNIQUES, INC Method and system for heating tissue with a bipolar instrument
6682528, Oct 23 1998 TYCO HEALTHCARE GROUP AG; Covidien AG Endoscopic bipolar electrosurgical forceps
6685727, Dec 07 2001 Med-Genesis, LLC Bioabsorbable sealant
6689153, Apr 16 1999 Orthopaedic Biosystems Ltd, Inc. Methods and apparatus for a coated anchoring device and/or suture
6692507, Aug 23 2001 Boston Scientific Scimed, Inc Impermanent biocompatible fastener
6695198, Jun 19 1998 Boston Scientific Scimed, Inc Integrated surgical staple retainer for a full thickness resectioning device
6695199, Feb 22 2000 Covidien LP Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments
6698643, Jul 12 1999 Covidien LP Expanding parallel jaw device for use with an electromechanical driver device
6699235, Jun 29 2001 Intuitive Surgical Operations, Inc Platform link wrist mechanism
6704210, May 20 1994 Medtronic, Inc. Bioprothesis film strip for surgical stapler and method of attaching the same
6705503, Aug 20 2001 TRICORD SOLUTIONS, INC Electrical motor driven nail gun
670748,
6709445, Feb 21 2000 Richard Wolf GmbH Forceps for dissecting free tissue in body cavities
6712773, Sep 11 2000 Tyco Healthcare Group LP Biopsy system
6716223, Nov 09 2001 DEPUY SYNTHES PRODUCTS, INC Reloadable sheath for catheter system for deploying vasoocclusive devices
6716232, Apr 30 1993 Tyco Healthcare Group LP Surgical instrument having an articulated jaw structure and a detachable knife
6716233, Jun 02 1999 Covidien LP Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
6722552, Jun 30 1999 AXYA HOLDINGS, INC ; TORNIER, INC Surgical stapler and method of applying plastic staples to body tissue
6723087, Dec 14 2001 MEDTRONICS, INC Apparatus and method for performing surgery on a patient
6723091, Feb 22 2000 ENERGIST LIMITED Tissue resurfacing
6723109, Feb 07 2001 Karl Storz Endoscopy-America, Inc. Deployable surgical clamp with delivery/retrieval device and actuator
6726697, Jul 23 1996 United States Surgical Corporation Anastomosis instrument and method
6729119, Dec 28 2001 SCHNIPKE ENGRAVING CO INCORPORATED, D B A SCHNIPKE PRECISION MOLDING Robotic loader for surgical stapling cartridge
6736825, Dec 14 1999 DF Vital Holdings, LLC Paired expandable anastomosis devices and related methods
6736854, May 10 2002 C R BARD, INC Prosthetic repair fabric with erosion resistant edge
6740030, Jan 04 2002 COGENTIX MEDICAL, INC Endoscope assemblies having working channels with reduced bending and stretching resistance
6747121, Sep 05 2001 Synthes USA, LLC Poly(L-lactide-co-glycolide) copolymers, methods for making and using same, and devices containing same
6749560, Oct 26 1999 GYRUS ACMI, INC Endoscope shaft with slotted tube
6752768, Dec 17 1999 DEVICOR MEDICAL PRODUCTS, INC Surgical biopsy system with remote control for selecting an operational mode
6752816, Aug 15 1996 Stryker Corporation Powered surgical handpiece with removable control switch
6755195, Nov 11 1999 NORBERT LEMKE; LEMKE, ROSEMARIE Device for controlling an electric appliance used in the sterile area during medical operations
6755338, Aug 29 2001 RICHARD A HILLSTEAD, INC Medical instrument
6758846, Feb 08 2000 Gyrus Medical Limited Electrosurgical instrument and an electrosurgery system including such an instrument
6761685, Mar 12 1999 SciMed Life Systems, Inc. Controllable endoscopic sheath apparatus and related method of use
6762339, May 21 1999 3M Innovative Properties Company Hydrophilic polypropylene fibers having antimicrobial activity
6767352, Aug 03 1999 DVL ACQUISITION SUB, INC Surgical suturing instrument and method of use
6767356, Sep 01 2000 MEDTRONIC ANGIOLINK, INC Advanced wound site management systems and methods
6769590, Apr 02 2001 Luminal anastomotic device and method
6769594, May 31 2002 Tyco Healthcare Group LP End-to-end anastomosis instrument and method for performing same
6770027, Oct 05 2001 Boston Scientific Scimed, Inc Robotic endoscope with wireless interface
6770072, Oct 22 2001 Ethicon Endo-Surgery, Inc Electrosurgical jaw structure for controlled energy delivery
6773409, Sep 19 2001 Ethicon Endo-Surgery, Inc Surgical system for applying ultrasonic energy to tissue
6773437, Apr 23 1999 SDGI Holdings, Inc. Shape memory alloy staple
6773438, Oct 19 2000 Ethicon Endo-Surgery, Inc Surgical instrument having a rotary lockout mechanism
6777838, Dec 16 1997 MAGNETIC MOTORS, INC Methods and apparatus for increasing power of permanent magnet motors
6780151, Oct 26 1999 GYRUS ACMI, INC Flexible ureteropyeloscope
6780180, Jun 23 1995 Gyrus Medical Limited Electrosurgical instrument
6783524, Apr 19 2001 KRANOS IP II CORPORATION Robotic surgical tool with ultrasound cauterizing and cutting instrument
6786382, Jul 09 2003 Cilag GmbH International Surgical stapling instrument incorporating an articulation joint for a firing bar track
6786864, Feb 06 2001 Olympus Corporation Endoscopic system and method for positioning an indwelling tube
6786896, Sep 18 1998 Massachusetts Institute of Technology Robotic apparatus
6790173, Jun 13 2002 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
6793652, Jun 02 1999 Covidien LP Electro-mechanical surgical device
6793661, Oct 30 2000 COGENTIX MEDICAL, INC Endoscopic sheath assemblies having longitudinal expansion inhibiting mechanisms
6793663, Jul 30 1999 Forschungszentrum Karlsruhe GmbH Surgical applicator tip for delivering clips of clamps
6802843, Sep 13 2001 Ethicon Endo-Surgery, Inc Electrosurgical working end with resistive gradient electrodes
6805273, Nov 04 2002 Ethicon Endo-Surgery, Inc Surgical stapling instrument
6806808, Feb 26 1999 Yasumi Capital, LLC Wireless event-recording device with identification codes
6808525, Aug 27 2001 GYRUS ACMI, INC Bipolar electrosurgical hook probe for cutting and coagulating tissue
6814741, Jan 09 1998 DePuy Mitek, LLC Suture buttress
6817508, Oct 13 2000 Covidien LP Surgical stapling device
6817509, Oct 27 1995 United States Surgical Corporation Surgical stapler
6817974, Jun 29 2001 Intuitive Surgical Operations, Inc Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
6818018, Aug 14 1998 Incept LLC In situ polymerizable hydrogels
6820791, Jun 19 1998 Boston Scientific Scimed, Inc Non-circular resection device and endoscope
6821273, Jan 03 2002 Microline Surgical, Inc Combined dissecting, cauterizing, and stapling device
6821282, Nov 27 2000 Boston Scientific Scimed, Inc Full thickness resection device control handle
6821284, Jan 22 2003 VITALITEC INTERNATIONAL, INC Surgical clamp inserts with micro-tractive surfaces
6827246, Jun 19 1998 Boston Scientific Scimed, Inc Multi fire full thickness resectioning device
6827712, Jun 18 1997 Covidien LP Robotic arm DLUs for performing surgical tasks
6827725, May 10 2001 Gyrus Medical Limited Surgical instrument
6828902, Dec 14 1998 SOUNDCRAFT, INC Wireless data input to RFID reader
6830174, Aug 30 2000 RICHARD A HILLSTEAD, INC Medical instrument
6831629, Jan 19 2001 Fujitsu Component Limited Pointing device
6832998, Dec 27 2001 Gyrus Medical Limited Surgical instrument
6834001, Sep 26 2001 DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT Multi-stage switched capacitor DC-DC converter
6835173, Oct 05 2001 Boston Scientific Scimed, Inc Robotic endoscope
6835199, Jan 31 2001 REX MEDICAL, L P Apparatus and method for resectioning gastro-esophageal tissue
6835336, Oct 03 1997 Ethicon, Inc Methods for making biopolymer sponge tubes
6837846, Apr 03 2000 Intuitive Surgical Operations, Inc Endoscope having a guide tube
6838493, Mar 25 1999 TEPHA, INC Medical devices and applications of polyhydroxyalkanoate polymers
6840423, Jun 19 1998 Boston Scientific Scimed, Inc Integrated surgical staple retainer for a full thickness resectioning device
6843403, Jun 02 1999 Covidien LP Surgical clamping, cutting and stapling device
6843789, Oct 31 2000 Gyrus Medical Limited Electrosurgical system
6843793, Feb 24 1998 AURIS HEALTH, INC Surgical instrument
6846307, Jun 02 1999 Covidien LP Electro-mechanical surgical device
6846308, Jun 02 1999 Covidien LP Electro-mechanical surgical device
6846309, Jun 02 1999 Covidien LP Electro-mechanical surgical device
6849071, Jun 02 1999 Covidien LP Electro-mechanical surgical device
6850817, Jan 21 1992 SRI International Surgical system
6858005, Apr 03 2000 Intuitive Surgical Operations, Inc Tendon-driven endoscope and methods of insertion
6861142, Jun 06 2002 HILLS, INC Controlling the dissolution of dissolvable polymer components in plural component fibers
6863668, Aug 16 2002 Edwards Lifesciences Corporation Articulation mechanism for medical devices
6863694, Jul 03 2000 Warsaw Orthopedic, Inc Osteogenic implants derived from bone
6866178, Jun 19 1998 Boston Scientific Scimed, Inc Integrated surgical staple retainer for a full thickness resectioning device
6866671, Dec 12 1996 Intuitive Surgical Operations, Inc Surgical robotic tools, data architecture, and use
6867248, May 12 1997 TEPHA, INC Polyhydroxyalkanoate compositions having controlled degradation rates
6869435, Jan 17 2002 Repeating multi-clip applier
6872214, Nov 20 2000 GERD IP, INC Stapler for endoscopes
6874669, Jun 19 1998 Boston Scientific Scimed, Inc Integrated surgical staple retainer for a full thickness resectioning device
6877647, Oct 18 1991 United States Surgical Corporation Surgical stapling apparatus
6878106, Feb 15 1999 Deformable fiberscope with a displaceable supplementary device
6889116, Sep 29 2000 KARL STORZ SE & CO KG Manipulator
6893435, Oct 31 2000 Gyrus Medical Limited Electrosurgical system
6899538, Jul 19 2001 J MORITA MANUFACTURING CORPORATION Identification type instrument assembly, identification type adapter, identification type tube, and medical apparatus using them
6905057, Sep 29 2003 Cilag GmbH International Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission
6905497, Oct 22 2001 Ethicon Endo-Surgery, Inc Jaw structure for electrosurgical instrument
6908472, Oct 20 2000 Ethicon Endo-Surgery, Inc. Apparatus and method for altering generator functions in an ultrasonic surgical system
6911033, Aug 21 2001 Microline Surgical, Inc Medical clip applying device
6913579, May 01 2001 Ethicon Endo-Surgery, Inc Electrosurgical working end and method for obtaining tissue samples for biopsy
6913608, Oct 23 2000 ANCORA HEART, INC Automated annular plication for mitral valve repair
6913613, Sep 09 1999 TRANSENTERIX EUROPE SARL Surgical instrument for minimally invasive surgical interventions
6921397, May 27 2003 ATRIAL SOLUTIONS, INC Flexible delivery device
6921412, May 18 1999 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT Self-supporting, shaped, three-dimensional biopolymeric materials and methods
6923093, Oct 29 2002 Tool drive system
6923803, Jan 15 1999 Gyrus Medical Limited Electrosurgical system and method
6926716, Nov 09 2001 Ethicon Endo-Surgery, Inc Electrosurgical instrument
6929641, Aug 27 2001 Gyrus Medical Limited Electrosurgical system
6929644, Oct 22 2001 Ethicon Endo-Surgery, Inc Electrosurgical jaw structure for controlled energy delivery
6931830, Dec 23 2002 Method of forming a wire package
6932218, Jul 03 2002 Monica Rich Kosann Photography, LLC Folding photo case
6932810, Sep 09 1997 Sherwood Services AG Apparatus and method for sealing and cutting tissue
6936042, Jan 22 1999 Intuitive Surgical Operations, Inc Surgical tools for use in minimally invasive telesurgical applications
6939358, Dec 20 2001 W L GORE & ASSOCIATES, INC Apparatus and method for applying reinforcement material to a surgical stapler
6942662, Dec 27 2001 Gyrus Medical Limited Surgical Instrument
6942674, Jan 05 2000 INTEGRATED VASCULAR SYSTEMS, INC Apparatus and methods for delivering a closure device
6945444, Apr 03 2001 Covidien LP Surgical stapling device for performing circular anastomoses
6945981, Oct 20 2000 Ethicon-Endo Surgery, Inc. Finger operated switch for controlling a surgical handpiece
6953138, Feb 18 2004 Frank W., Dworak Surgical stapler anvil with nested staple forming pockets
6953139, Sep 23 1997 United States Surgical Corporation Surgical stapling apparatus
6958035, Oct 15 2002 DUSA PHARMACEUITCALS, INC , A CORP OF NEW JERSEY Medical device sheath apparatus and method of making and using same
6959851, Jul 16 2003 Covidien LP Surgical stapling device with tissue tensioner
6959852, Sep 29 2003 Cilag GmbH International Surgical stapling instrument with multistroke firing incorporating an anti-backup mechanism
6960107, Apr 16 2004 Brunswick Corporation Marine transmission with a cone clutch used for direct transfer of torque
6960163, Jun 13 2002 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
6960220, Jan 22 2003 Cardia, Inc. Hoop design for occlusion device
6964363, Jul 09 2003 Cilag GmbH International Surgical stapling instrument having articulation joint support plates for supporting a firing bar
6966907, Aug 27 2001 Gyrus Medical Limited Electrosurgical generator and system
6966909, Mar 15 2002 GYRUS ACMI, INC Surgical instrument
6971988, Mar 17 2003 Covidien LP Endoscopic tissue removal apparatus and method
6972199, Jul 25 2000 Verimetra, Inc. Method of making a cutting instrument having integrated sensors
6974462, Dec 19 2001 Boston Scientific Scimed, Inc Surgical anchor implantation device
6978921, May 20 2003 Cilag GmbH International Surgical stapling instrument incorporating an E-beam firing mechanism
6978922, Nov 04 2002 Ethicon Endo-Surgery (Europe) G.m.b.H. Surgical stapling instrument
6981628, Jul 09 2003 Cilag GmbH International Surgical instrument with a lateral-moving articulation control
6981941, Jun 02 1999 Covidien LP Electro-mechanical surgical device
6981978, Aug 30 2002 Ethicon Endo-Surgery, Inc Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
6981983, Mar 31 1999 Rosenblatt Associates, LLC System and methods for soft tissue reconstruction
6984203, Apr 03 2000 Intuitive Surgical Operations, Inc Endoscope with adjacently positioned guiding apparatus
6984231, Aug 27 2001 Gyrus Medical Limited Electrosurgical system
6986451, Aug 28 1995 Covidien LP Surgical stapler
6988649, May 20 2003 Cilag GmbH International Surgical stapling instrument having a spent cartridge lockout
6988650, Dec 30 2003 Ethicon Endo-Surgery, Inc Retaining pin lever advancement mechanism for a curved cutter stapler
6990731, Jul 15 2002 TUTHILL, KAREN M Method and apparatus for fastening together structural components
6990796, Dec 28 2001 SCHNIPKE ENGRAVING CO INCORPORATED, D B A SCHNIPKE PRECISION MOLDING Robotic loader for surgical stapling cartridge
6994708, Apr 19 2001 Intuitive Surgical Operations, Inc Robotic tool with monopolar electro-surgical scissors
6995729, Jan 09 2004 Biosense Webster, Inc Transponder with overlapping coil antennas on a common core
6997931, Feb 02 2001 LSI Solutions, Inc System for endoscopic suturing
7000818, May 20 2003 Cilag GmbH International Surgical stapling instrument having separate distinct closing and firing systems
7000819, Sep 29 2003 Cilag GmbH International Surgical stapling instrument having multistroke firing incorporating a traction-biased ratcheting mechanism
7001380, Jan 15 1999 Gyrus Medical Limited Electrosurgical system and method
7001408, Sep 20 2002 Ethicon Endo-Surgery, Inc Surgical device with expandable member
7008435, Aug 09 2001 Abbott Vascular Inc Surgical stapling device and method
7009039, Jul 19 2001 PROCHON BIOTECH LTD Plasma protein matrices and methods for their preparation
7011657, Oct 22 2001 Ethicon Endo-Surgery, Inc Jaw structure for electrosurgical instrument and method of use
7018357, Feb 27 2001 Tyco Healthcare Group LP External mixer assembly
7018390, Nov 12 1999 Edwards Lifesciences Corporation Medical device introducer and obturator
7023159, Oct 18 2002 Black & Decker Inc. Method and device for braking a motor
7025743, Aug 18 1998 Medtronic MiniMed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
7029435, Oct 16 2003 Granit Medical Innovation, LLC Endoscope having multiple working segments
7032798, Jun 02 1999 Covidien LP Electro-mechanical surgical device
7032799, Oct 05 2001 Covidien LP Surgical stapling apparatus and method
7033356, Jul 02 2002 GYRUS ACMI, INC Bipolar electrosurgical instrument for cutting desiccating and sealing tissue
7036680, Apr 07 2004 Avery Dennison Corporation Device for dispensing plastic fasteners
7037344, Nov 01 2002 VALENTX, INC Apparatus and methods for treatment of morbid obesity
7041102, Oct 22 2001 Ethicon Endo-Surgery, Inc Electrosurgical working end with replaceable cartridges
7041868, Dec 29 2000 CITIBANK, N A Bioabsorbable wound dressing
7043852, Jun 09 2003 Mitutoyo Corporation Measuring instrument
7044352, May 20 2003 Cilag GmbH International Surgical stapling instrument having a single lockout mechanism for prevention of firing
7044353, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7048687, Apr 14 1999 Masimo Corporation Limited use medical probe
7048745, Dec 08 1998 Intuitive Surgical Operations, Inc Surgical robotic tools, data architecture, and use
7052494, Sep 21 2001 Gyrus Medical Limited Surgical system and method
7052499, Oct 29 2001 Zimmer Biomet CMF and Thoracic, LLC Method and apparatus for bone fracture fixation
7055730, Oct 13 2000 Covidien LP Surgical fastener applying apparatus
7055731, Jul 09 2003 Cilag GmbH International Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint
7056284, Jan 04 2002 COGENTIX MEDICAL, INC Endoscope assemblies having working channels with reduced bending and stretching resistance
7056330, May 31 2002 Ethicon Endo-Surgery, Inc Method for applying tissue fastener
7059331, Oct 25 2000 Boston Scientific Scimed, Inc Method and device for full thickness resectioning of an organ
7059508, Jun 30 2004 Cilag GmbH International Surgical stapling instrument incorporating an uneven multistroke firing mechanism having a rotary transmission
7063671, Jun 21 2002 Boston Scientific Scimed, Inc Electronically activated capture device
7063712, Apr 27 2001 Aesculap AG Anastomosis method
7066879, Jul 15 2003 TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE Insertable device and system for minimal access procedure
7066944, Mar 11 2004 Surgical fastening system
7067038, Feb 06 2003 The Procter & Gamble Company; Procter & Gamble Company, The Process for making unitary fibrous structure comprising randomly distributed cellulosic fibers and non-randomly distributed synthetic fibers
7070083, Apr 11 2002 Covidien LP Surgical stapling apparatus including an anvil and cartridge each having cooperating mating surfaces
7070559, Mar 12 1999 SciMed Life Systems, Inc. Controllable endoscopic sheath apparatus and related method of use
7070597, Oct 18 2001 Ethicon Endo-Surgery, Inc Electrosurgical working end for controlled energy delivery
7071287, Jul 22 2002 ASPEN AEROGELS, INC Aerogel metallic compositions
7075770, Sep 17 1999 AXON ENTERPRISE, INC Less lethal weapons and methods for halting locomotion
7077856, Jun 02 1999 Covidien LP Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
7080769, Apr 02 2001 Luminal anastomotic device
7081114, Nov 29 2000 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Electrophysiology/ablation catheter having lariat configuration of variable radius
7083073, Nov 29 2001 MAX CO , LTD Electric stapler
7083075, Sep 29 2003 Cilag GmbH International Multi-stroke mechanism with automatic end of stroke retraction
7083571, Feb 20 1996 Intuitive Surgical Operations, Inc Medical robotic arm that is attached to an operating table
7083615, Feb 24 2003 Intuitive Surgical Operations, Inc Surgical tool having electrocautery energy supply conductor with inhibited current leakage
7083619, Oct 22 2001 Ethicon Endo-Surgery, Inc Electrosurgical instrument and method of use
7083620, Oct 30 2002 Medtronic, Inc Electrosurgical hemostat
7087049, Nov 20 1998 Intuitive Surgical Operations, Inc Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
7087054, Oct 01 2002 Ethicon Endo-Surgery, Inc Electrosurgical instrument and method of use
7087071, Feb 12 1992 United States Surgical Corporation Articulating endoscopic surgical apparatus
7090637, May 23 2003 Intuitive Surgical Operations, Inc Articulating mechanism for remote manipulation of a surgical or diagnostic tool
7090673, Apr 06 2001 Covidien AG; TYCO HEALTHCARE GROUP AG Vessel sealer and divider
7090683, Feb 24 1998 HANSEN MEDICAL, INC Flexible instrument
7090684, May 27 2004 Rex Medical, LP Apparatus and method for resectioning gastro-esophageal tissue
7094202, Sep 29 2003 Ethicon Endo-Surgery, Inc. Method of operating an endoscopic device with one hand
7094247, Jul 22 2002 NITI SURGICAL SOLUTIONS LTD Intussusception and anastomosis apparatus
7097089, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
7097644, Mar 30 2001 Ethicon Endo-Surgery, Inc Medical device with improved wall construction
7097650, Oct 14 2003 Ethicon Endo-Surgery, Inc System for tissue approximation and fixation
7098794, Apr 30 2004 BUFFALO PATENTS, LLC Deactivating a data tag for user privacy or tamper-evident packaging
7100949, Apr 15 1997 Swagelok Company Ferrule with relief to reduce galling
7104741, Jan 29 2002 Joh. Friedrich Behrens AG Fastening means and process for its manufacture
7108695, May 26 1999 Ethicon Endo-Surgery, Inc. Feedback control in an ultrasonic surgical instrument for improved tissue effects
7108701, Sep 28 2001 Wyeth Drug releasing anastomosis devices and methods for treating anastomotic sites
7108709, Jun 07 2001 Abbott Vascular Inc Surgical staple
7111768, Jul 03 2002 Abbott Vascular Inc Surgical stapling device
7111769, Jul 09 2003 Cilag GmbH International Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis
7112214, Jun 25 2002 COOPERSURGICAL, INC Dynamic bioabsorbable fastener for use in wound closure
7114642, Jul 12 1999 Covidien LP Expanding parallel jaw device for use with an electromechanical driver device
7118582, Feb 20 1996 Intuitive Surgical Operations, Inc Method and apparatus for performing minimally invasive cardiac procedures
7119534, Dec 18 2002 NXP B V Magnetic position sensor
7121446, Dec 13 2004 NITI SURGICAL SOLUTIONS LTD Palm-size surgical stapler for single hand operation
7122028, Dec 19 2001 CARDINAL HEALTH CMP 200, INC; Carefusion 2200, Inc Reconfiguration surgical apparatus
7125409, Aug 19 2003 Ethicon Endo-Surgery, Inc Electrosurgical working end for controlled energy delivery
7126303, Jul 08 2003 Virtual Incision Corporation Robot for surgical applications
7128253, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7128254, Sep 07 2004 Cilag GmbH International Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary slip-clutch transmission
7128748, Mar 26 2002 SYNOVIS LIFE TECHNOLOGIES, INC Circular stapler buttress combination
7131445, Dec 23 2002 GYRUS ENT, L L C Electrosurgical method and apparatus
7133601, Feb 18 2003 Black & Decker Inc Amperage control for protection of battery over current in power tools
7134587, Dec 30 2003 Ethicon Endo-Surgery, Inc Knife retraction arm for a curved cutter stapler
7137981, Mar 25 2002 Ethicon Endo-Surgery, Inc Endoscopic ablation system with a distally mounted image sensor
7140527, Oct 13 2000 Covidien LP Surgical fastener applying apparatus
7140528, May 20 2003 Cilag GmbH International Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
7143923, May 20 2003 Cilag GmbH International Surgical stapling instrument having a firing lockout for an unclosed anvil
7143924, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
7143925, Jul 28 2004 Cilag GmbH International Surgical instrument incorporating EAP blocking lockout mechanism
7143926, Feb 07 2005 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with return spring rotary manual retraction system
7147138, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
7147139, Dec 30 2003 Ethicon Endo-Surgery, Inc Closure plate lockout for a curved cutter stapler
7147140, Dec 30 2003 Ethicon Endo-Surgery, Inc Cartridge retainer for a curved cutter stapler
7147637, Dec 09 2003 GYRUS ACMI, INC Surgical instrument
7147650, Apr 12 2004 ENDOBOTICS, LLC Surgical instrument
7150748, Jun 18 2004 Gyrus Medical Limited Bipolar coagulating instrument
7153300, Aug 27 2001 Gyrus Medical Limited Electrosurgical system
7156824, Aug 05 1999 BioCardia, Inc. System and method for delivering thermally sensitive and reverse-thermal gelation materials
7156863, Mar 16 2000 Medigus Ltd. Fundoplication apparatus and method
7159750, Jun 17 2003 Covidien LP Surgical stapling device
7160299, May 01 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Method of fusing biomaterials with radiofrequency energy
7161036, Dec 22 2003 Sumitomo Chemical Company, Limited Process for producing oxime
7168604, Jun 20 2003 Covidien LP Surgical stapling device
7172104, Feb 17 2004 Covidien LP Surgical stapling apparatus
7172593, Oct 25 2000 Warsaw Orthopedic, Inc Non-metallic implant devices and intra-operative methods for assembly and fixation
7179223, Aug 06 2002 OLYMPUS OPTICAL CO , LTD Endoscope apparatus having an internal channel
7179267, Mar 06 2000 Covidien LP Apparatus and method for performing a bypass procedure in a digestive system
7182239, Aug 27 2004 Segmented introducer device for a circular surgical stapler
7182763, Nov 23 2004 InstraSurgical, LLC Wound closure device
7183737, Jul 17 2003 ASMO CO , LTD Motor control device and motor control method
7188758, Oct 05 2001 Covidien LP Surgical stapling apparatus and method
7189207, Sep 11 2000 Tyco Healthcare Group LP Biopsy system having a single use loading unit operable with a trocar driver, a knife driver and firing module
7195627, Feb 27 2003 Gyrus Medical Limited Electrosurgical generator
7199537, Jan 14 2003 Toyota Jidosha Kabushiki Kaisha Voltage converter control apparatus, and method
7202653, Mar 25 2004 Richtek Technology Corp.; Richtek Technology Corp High efficiency power converter
7204404, Dec 30 2003 Ethicon Endo-Surgery, Inc Slotted pins guiding knife in a curved cutter stapler
7204835, Feb 02 2004 GYRUS ACMI, INC Surgical instrument
7207233, Dec 13 2001 Black & Decker, Inc Mechanism for use in a power tool and a power tool including such a mechanism
7207471, May 10 2002 Covidien LP Electrosurgical stapling apparatus
7207472, Dec 30 2003 Ethicon Endo-Surgery, Inc Cartridge with locking knife for a curved cutter stapler
7207556, Mar 25 2002 Ricoh Company, LTD Sheet finisher having an angularly movable stapler and image forming system including the same
7208005, Aug 06 2001 PENN STATE RESEARCH FOUNDATION, THE Multifunctional tool and method for minimally invasive surgery
7210609, Jul 30 2004 Tools For Surgery, LLC Stapling apparatus having a curved anvil and driver
7211081, Jan 09 2003 Gyrus Medical Limited Electrosurgical generator
7211084, Dec 27 2001 Gyrus Medical Limited Surgical system
7211092, Nov 19 2002 TELEFLEX MEDICAL INCORPORATED Automated-feed surgical clip applier and related methods
7213736, Jul 09 2003 Cilag GmbH International Surgical stapling instrument incorporating an electroactive polymer actuated firing bar track through an articulation joint
7214224, Sep 18 2002 Gyrus Medical Limited Electrosurgical system
7214232, Jul 23 1999 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Graft fixation device
7217285, Jul 28 1999 Aesculap AG Apparatus for performing anastomosis
7220260, Jun 27 2002 Gyrus Medical Limited Electrosurgical system
7220272, Aug 28 2001 Ethicon, Inc. Composite staple and method for using same
7225963, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
7225964, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7234624, Apr 03 2001 Covidien LP Surgical stapling device for performing circular anastomoses
7235089, Dec 07 1994 Boston Scientific Corporation Surgical apparatus and method
7235302, May 21 2001 3M Innovative Properties Company Fluoropolymer bonding composition and method
7237708, Aug 19 1993 United States Surgical Corp. Surgical apparatus with indicator
7238195, May 10 2002 Covidien LP Wound closure material applicator and stapler
7241288, Apr 01 2003 TUEBINGEN SCIENTIFIC SURGICAL PRODUCTS GMBH Surgical instrument
7241289, Apr 01 2003 ASENSUS SURGICAL EUROPE S À R L Surgical instrument
7246734, Dec 05 2005 Ethicon Endo-Surgery, Inc. Rotary hydraulic pump actuated multi-stroke surgical instrument
7247161, Mar 22 2002 GYRUS ACMI, INC Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
7252660, Sep 25 2001 KARL STORZ SE & CO KG Multifunctional instrument for use in microinvasive surgery
7255696, Nov 24 2004 Gyrus Medical Limited Electrosurgical instrument
7256695, Sep 23 2002 HOTTINGER BRUEL & KJAER INC Remotely powered and remotely interrogated wireless digital sensor telemetry system
7258262, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7258546, Jun 07 2001 KALTENBACH & VOIGT GMBH & CO , KG Medical or dental instrument and/or supply unit and/or care unit and/or system for the medical or dental instrument
7260431, May 20 2004 Cardiac Pacemakers, Inc Combined remodeling control therapy and anti-remodeling therapy by implantable cardiac device
7265374, Jun 10 2005 Arima Computer Corporation Light emitting semiconductor device
7267679, Sep 13 1999 REX MEDICAL, L P Vascular hole closure device
7267682, Dec 04 2002 Aesculap AG Anastomosis staple
7273483, Oct 20 2000 Ethicon Endo-Surgery, Inc. Apparatus and method for alerting generator functions in an ultrasonic surgical system
7278562, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7278563, Apr 25 2006 Surgical instrument for progressively stapling and incising tissue
7278949, Jun 13 2003 ZF Friedrichshafen AG Planetary transmission
7278994, Jul 18 1997 Gyrus Medical Limited Electrosurgical instrument
7282048, Aug 27 2001 Gyrus Medical Limited Electrosurgical generator and system
7286850, May 20 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Wireless communication module system and method for performing a wireless communication
7287682, Jan 20 2003 Surgical device and method
7289139, Mar 12 2002 KARL STORZ Imaging, Inc. Endoscope reader
7293685, Oct 13 2000 Covidien LP Surgical fastener applying apparatus
7295907, Jun 14 2005 TRW Automotive U.S. LLC; TRW AUTOMOTIVE U S LLC Recovery of calibrated center steering position after loss of battery power
7296722, Oct 04 2004 Covidien LP Surgical fastener applying apparatus with controlled beam deflection
7296724, Oct 18 1991 United States Surgical Corporation Surgical stapling apparatus
7297149, Apr 14 2005 Cilag GmbH International Surgical clip applier methods
7300373, Mar 31 2003 Terumo Kabushiki Kaisha Power transmission mechanism and manipulator
7300450, Sep 03 2001 VLEUGELS HOLDING B V Surgical instrument
7303106, Oct 04 2002 Covidien LP Surgical stapling device with visual indicator
7303107, Sep 23 1997 United States Surgical Corporation Surgical stapling apparatus
7303108, Sep 29 2003 Cilag GmbH International Surgical stapling instrument incorporating a multi-stroke firing mechanism with a flexible rack
7303502, Dec 02 2003 Qinetiq Limited Gear change mechanism
7303556, Oct 04 2000 Synthes USA, LLC Device for supplying an electro-pen with electrical energy
7306597, Apr 19 2001 Intuitive Surgical Operations, Inc Robotic tool with monopolar electro-surgical scissors
7308998, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7322975, Nov 24 2004 SIMPSON STRONG-TIE COMPANY INC Electrosurgical instrument
7322994, Jul 23 1996 United States Surgical Corporation Anastomosis instrument and method
7324572, Jan 14 2004 Asia Optical Co., Inc. Laser driver circuit for burst mode transmission and fabrication method thereof
7326203, Sep 30 2002 Depuy Acromed, Inc.; Depuy Acromed Device for advancing a functional element through tissue
7326213, Nov 23 1998 Springboard Medical Ventures, LLC Systems for securing sutures, grafts and soft tissue to bone and periosteum
7328828, Nov 04 2005 Ethicon Endo-Surgery, Inc,; Ethicon Endo-Surgery, Inc Lockout mechanisms and surgical instruments including same
7328829, Dec 13 2004 NITI SURGICAL SOLUTIONS LTD Palm size surgical stapler for single hand operation
7330004, Jun 06 2005 Lutron Technology Company LLC Method and apparatus for quiet variable motor speed control
7331340, Mar 04 2003 IVAX Corporation Medicament dispensing device with a display indicative of the state of an internal medicament reservoir
7331969, Jun 18 2000 CREGANNA SOLUTIONS Micro tools
7334717, Oct 05 2001 Covidien LP Surgical fastener applying apparatus
7334718, Nov 30 2000 Boston Scientific Scimed, Inc Stapling and cutting in resectioning for full thickness resection devices
7335199, Feb 22 2000 ENERGIST LIMITED Tissue resurfacing
7336048, May 02 2005 Robert Bosch GmbH Method for operating a power tool
7336184, Sep 24 2004 Intel Corporation Inertially controlled switch and RFID tag
7338513, Oct 30 2003 ENDOBOTICS, LLC Surgical instrument
7341591, Jan 30 2003 DEPUY ACROMED, INC Anterior buttress staple
7343920, Dec 20 2002 Acumed LLC Connective tissue repair system
7344532, Aug 27 2001 Gyrus Medical Limited Electrosurgical generator and system
7348763, Dec 20 2002 Linvatec Corporation Method for utilizing temperature to determine a battery state
7351258, Apr 18 2002 The Research Foundation of State University of New York at Stony Brook Apparatus and method for fixation of vascular grafts
7354447, Nov 10 2005 Cilag GmbH International Disposable loading unit and surgical instruments including same
7354502, Feb 06 2003 The Procter & Gamble Company; Procter & Gamble Company, The Method for making a fibrous structure comprising cellulosic and synthetic fibers
7357287, Sep 29 2005 Cilag GmbH International Surgical stapling instrument having preloaded firing assistance mechanism
7357806, Dec 06 2001 Ethicon Endo-Surgery, Inc Clip ejector for endoscopic clip applier
7361195, Jul 16 2001 Depuy Synthes Products, LLC Cartilage repair apparatus and method
7364060, Oct 17 2003 Covidien LP Surgical stapling device with tiltable anvil head
7364061, Sep 29 2003 Cilag GmbH International Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism
7367973, Jun 30 2003 Intuitive Surgical Operations, Inc Electro-surgical instrument with replaceable end-effectors and inhibited surface conduction
7377918, Apr 28 2004 GYRUS ENT, L L C Electrosurgical method and apparatus
7377928, Apr 15 2002 Cook Biotech Incorporated Apparatus and method for producing a reinforced surgical staple line
7380695, May 20 2003 Cilag GmbH International Surgical stapling instrument having a single lockout mechanism for prevention of firing
7380696, May 20 2003 Cilag GmbH International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
7384417, Dec 14 1990 Air-powered tissue-aspiration instrument system employing curved bipolar-type electro-cauterizing dual cannula assembly
7386730, Sep 05 2001 Olympus Corporation Remote medical supporting system
7388217, Mar 15 2004 IMS Nanofabrication GmbH Particle-optical projection system
7391173, Jun 30 2006 Intuitive Surgical Operations, Inc Mechanically decoupled capstan drive
7396356, Jan 03 2002 Microline Surgical, Inc Combined dissecting, cauterizing, and stapling device
7397364, Nov 11 2003 BIOSENSE WEBSTER INC Digital wireless position sensor
7398907, Oct 20 2000 Covidien LP Directionally biased staple and anvil assembly for forming the staple
7398908, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7400752, Feb 21 2002 Alcon Inc Video overlay system for surgical apparatus
7401721, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7404508, Jul 26 2005 Cilag GmbH International Surgical stapling and cutting device
7404509, Jul 28 2004 Cilag GmbH International Electroactive polymer-based articulation mechanism for linear stapler
7404822, Oct 30 2001 Choice Spine, LP Surgical instrument
7407074, Jul 28 2004 Cilag GmbH International Electroactive polymer-based actuation mechanism for multi-fire surgical fastening instrument
7407075, Aug 15 2005 Covidien LP Staple cartridge having multiple staple sizes for a surgical stapling instrument
7407076, Oct 13 2000 Covidien LP Surgical stapling device
7407077, Jul 28 2004 Cilag GmbH International Electroactive polymer-based actuation mechanism for linear surgical stapler
7407078, Sep 21 2005 Ethicon Endo-Surgery, Inc Surgical stapling instrument having force controlled spacing end effector
7410086, Jul 28 2004 Cilag GmbH International Electroactive polymer-based actuation mechanism for circular stapler
7413563, May 27 2003 Cardia, Inc. Flexible medical device
7416101, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting and fastening instrument with loading force feedback
7418078, May 06 2005 Siemens Medical Solutions USA, Inc. Spot-size effect reduction
7419080, Jul 26 2005 Cilag GmbH International Surgical stapling and cutting device with dual actuating control knob
7419081, Oct 13 2000 Covidien LP Surgical fastener applying apparatus
7419321, Jan 05 2005 Hand applicator of encapsulated liquids
7419495, Aug 25 2005 Microline Surgical, Inc Trigger lockout device for clip applying instrument
7422136, Mar 15 2007 Covidien LP Powered surgical stapling device
7422138, Feb 01 2006 Ethicon Endo-Surgery, Inc Elliptical intraluminal surgical stapler for anastomosis
7422139, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting fastening instrument with tactile position feedback
7424965, Jun 17 2003 Covidien LP Surgical stapling device
7427607, Feb 20 2002 NEXT21 K K Drug administration method
7431188, Mar 15 2007 Covidien LP Surgical stapling apparatus with powered articulation
7431189, Aug 02 2006 Ethicon Endo-Surgery, Inc Pneumatically powered surgical cutting and fastening instrument with mechanical linkage coupling end effector and trigger motion
7431694, May 16 2003 EHTICON ENDO-SURGERY, INC Method of guiding medical devices
7431730, May 10 2002 Covidien LP Surgical stapling apparatus having a wound closure material applicator assembly
7434715, Sep 29 2003 Cilag GmbH International Surgical stapling instrument having multistroke firing with opening lockout
7434717, Jan 11 2007 Cilag GmbH International Apparatus for closing a curved anvil of a surgical stapling device
7438209, Jun 29 2007 Cilag GmbH International Surgical stapling instruments having a releasable staple-forming pocket
7438718, Jan 24 2001 TYCO Healthcare Group IP Anastomosis instrument and method for performing same
7439354, Dec 11 2003 E.I. du Pont de Nemours and Company Process for preparing amide acetals
7441684, Aug 02 2006 Ethicon Endo-Surgery, Inc Pneumatically powered surgical cutting and fastening instrument with audible and visual feedback features
7441685, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with a return mechanism
7442201, Aug 23 2001 Boston Scientific Scimed, Inc Impermanent biocompatible fastener
7448525, Aug 02 2006 Ethicon Endo-Surgery, Inc Pneumatically powered surgical cutting and fastening instrument with manually operated retraction apparatus
7451904, Sep 26 2005 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having end effector gripping surfaces
7455208, Feb 18 2005 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with rigid firing bar supports
7455676, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7455682, Oct 18 2004 Covidien LP Structure containing wound treatment material
7461767, Jun 03 2005 Covidien LP Battery powered surgical instrument
7462187, Mar 22 2002 GYRUS ACMI, INC Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
7464846, Jan 31 2006 Ethicon Endo-Surgery, Inc Surgical instrument having a removable battery
7464847, Jun 03 2005 Covidien LP Surgical stapler with timer and feedback display
7464849, Jan 31 2006 Ethicon Endo-Surgery, Inc Electro-mechanical surgical instrument with closure system and anvil alignment components
7467740, Sep 21 2005 Ethicon Endo-Surgery, Inc Surgical stapling instruments having flexible channel and anvil features for adjustable staple heights
7467849, Jan 21 2004 Memjet Technology Limited Printhead incorporating a static pagewidth printhead
7472814, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7472815, Sep 21 2005 Ethicon Endo-Surgery, Inc Surgical stapling instruments with collapsible features for controlling staple height
7472816, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7473253, Apr 06 2001 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider with non-conductive stop members
7473263, Mar 22 2002 GYRUS ACMI, INC Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
7476237, Feb 27 2003 Olympus Corporation Surgical instrument
7479608, May 19 2006 Syntheon, LLC; Ethicon Endo-Surgery, Inc Force switch
7481347, Oct 04 2002 Covidien LP Pneumatic powered surgical stapling device
7481348, Oct 06 2006 Covidien LP Surgical instrument with articulating tool assembly
7481349, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7481824, Dec 30 2005 Ethicon Endo-Surgery, Inc. Surgical instrument with bending articulation controlled articulation pivot joint
7485133, Jul 14 2004 Warsaw Orthopedic, Inc Force diffusion spinal hook
7485142, Dec 21 2001 QUICKRING MEDICAL TECHNOLOGIES LTD Implantation system for annuloplasty rings
7487899, Jul 28 2004 Cilag GmbH International Surgical instrument incorporating EAP complete firing system lockout mechanism
7490749, Mar 28 2007 Cilag GmbH International Surgical stapling and cutting instrument with manually retractable firing member
7494039, Jun 17 2003 Covidien LP Surgical stapling device
7494499, Feb 15 2002 Olympus Corporation Surgical therapeutic instrument
7494501, Nov 12 2003 Applied Medical Resources Corporation Overmolded grasper jaw
7500979, Aug 31 2005 Cilag GmbH International Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers
7501198, Feb 07 2002 Linvatec Corporation Sterile transfer battery container
7503474, Aug 30 2000 RICHARD A HILLSTEAD, INC Medical instrument
7506790, Jul 28 2004 Cilag GmbH International Surgical instrument incorporating an electrically actuated articulation mechanism
7506791, Sep 29 2006 Ethicon Endo-Surgery, Inc Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
7507202, May 28 2003 KARL STORZ SE & CO KG Retractor for performing heart and thorax surgeries
7510107, Jun 18 2007 Cilag GmbH International Cable driven surgical stapling and cutting instrument with apparatus for preventing inadvertent cable disengagement
7510566, May 19 2000 MicroAire Surgical Instruments LLC Multi-point tissue tension distribution device and method, a chin lift variation
7513408, Jul 28 2004 Cilag GmbH International Multiple firing stroke surgical instrument incorporating electroactive polymer anti-backup mechanism
7517356, Apr 16 2002 Covidien LP Surgical stapler and method
7524320, Dec 08 1998 Intuitive Surgical Operations, Inc Mechanical actuator interface system for robotic surgical tools
7530984, Jun 05 2006 MEDIGUS LTD Transgastric method for carrying out a partial fundoplication
7530985, Jan 30 2002 Boston Scientific Scimed, Inc; APOLLO ENDOSURGERY, INC Endoscopic suturing system
7533906, Oct 14 2003 WATER PIK, INC Rotatable and pivotable connector
7534259, May 05 2004 DIRECT FLOW ASSIGNMENT FOR THE BENEFIT OF CREDITORS , LLC Nonstented heart valves with formed in situ support
7543730, Jun 24 2008 Covidien LP Segmented drive member for surgical instruments
7546939, Oct 25 2000 Boston Scientific Scimed, Inc. Method and device for full thickness resectioning of an organ
7546940, Mar 23 2005 Covidien LP Pivoting anvil assembly for surgical stapling device
7547312, Sep 17 2003 W L GORE & ASSOCIATES, INC Circular stapler buttress
7549563, Dec 30 2003 Ethicon Endo-Surgery, Inc Rotating curved cutter stapler
7549564, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulating end effector
7549998, Jun 02 2003 ASENSUS SURGICAL EUROPE S À R L Surgical instrument comprising an instrument handle and zero point adjustment
7552854, May 19 2006 Applied Medical Resources Corporation Surgical stapler with firing lock mechanism
7556185, Aug 15 2007 Covidien LP Surgical instrument with flexible drive mechanism
7556186, Oct 17 2003 Covidien LP Surgical stapling device having trigger lock and associated lockout mechanism
7556647, Oct 08 2003 Medtronic, Inc Attachment device and methods of using the same
7559449, Mar 26 2003 Covidien LP Energy stored in spring with controlled release
7559450, Feb 18 2005 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating a fluid transfer controlled articulation mechanism
7559452, Feb 18 2005 Ethicon Endo-Surgery, Inc. Surgical instrument having fluid actuated opposing jaws
7559937, Aug 09 2005 Towertech Research Group Surgical fastener apparatus and reinforcing material
7563862, Aug 24 2001 CURONZ HOLDINGS COMPANY LIMITED Neural regeneration peptides and methods for their use in treatment of brain damage
7565993, Sep 23 1997 United States Surgical Corporation Surgical stapling apparatus
7566300, Apr 15 2004 Cook Medical Technologies LLC Endoscopic surgical access devices and methods of articulating an external accessory channel
7567045, Jun 26 2003 Kongsberg Automotive AB Method and arrangement for control of direct current motor
7568603, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting and fastening instrument with articulatable end effector
7568604, Oct 13 2000 Covidien LP Surgical fastener applying apparatus
7568619, Dec 15 2004 Alcon Inc System and method for identifying and controlling ophthalmic surgical devices and components
7575144, Jan 31 2006 Ethicon Endo-Surgery, Inc Surgical fastener and cutter with single cable actuator
7588174, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staples sizes
7588175, Jun 18 2007 Cilag GmbH International Surgical stapling and cutting instrument with improved firing system
7588176, Jun 18 2007 Cilag GmbH International Surgical cutting instrument with improved closure system
7588177, Oct 04 2002 Covidien LP Tool assembly for surgical stapling device
7591783, Apr 01 2003 SciMed Life Systems, INC Articulation joint for video endoscope
7597229, Jun 22 2007 Cilag GmbH International End effector closure system for a surgical stapling instrument
7597230, Jun 17 2003 Covidien LP Surgical stapling device
7600663, Jul 05 2007 Apparatus for stapling and incising tissue
7604150, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an anti-back up mechanism
7604151, Jun 29 2007 Cilag GmbH International Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
7607557, Nov 04 2005 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for pump-assisted delivery of medical agents
7611038, Oct 20 2000 Covidien LP Directionally biased staple and anvil assembly for forming the staple
7611474, Dec 29 2004 DEVICOR MEDICAL PRODUCTS, INC Core sampling biopsy device with short coupled MRI-compatible driver
7615003, May 13 2005 Ethicon Endo-Surgery, Inc Track for medical devices
7615067, Jun 05 2006 ENDOBOTICS, LLC Surgical instrument
7617961, Oct 04 2002 Covidien LP Tool assembly for surgical stapling device
7624902, Aug 31 2007 Covidien LP Surgical stapling apparatus
7624903, Oct 18 1991 Tyco Healthcare Group LP Apparatus for applying surgical fastners to body tissue
7625370, Jan 16 2003 Applied Medical Resources Corporation Tissue fusion/welder apparatus and method
7631793, Mar 19 2002 Covidien LP Surgical fastener applying apparatus
7631794, Oct 05 2001 Covidien LP Surgical fastener applying apparatus
7635074, Oct 04 2005 Covidien LP Staple drive assembly
7637409, Mar 15 2007 Covidien LP Powered surgical stapling device
7637410, Oct 06 2006 Covidien LP Surgical instrument including a locking assembly
7638958, Jun 28 2005 Stryker Corporation Powered surgical tool with control module that contains a sensor for remotely monitoring the tool power generating unit
7641091, Oct 04 2005 Covidien LP Staple drive assembly
7641092, Aug 05 2005 Ethicon Endo-Surgery, Inc Swing gate for device lockout in a curved cutter stapler
7641093, May 20 2003 Cilag GmbH International Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
7641095, Dec 21 2006 Covidien LP Staple driver for articulating surgical stapler
7644783, Feb 09 2005 Black & Decker Inc Power tool gear-train and torque overload clutch therefor
7644848, Jan 31 2006 Ethicon Endo-Surgery, Inc Electronic lockouts and surgical instrument including same
7645230, Feb 11 2003 Olympus Corporation Over-tube, method of manufacturing over-tube, method of disposing over-tube, and method of treatment in abdominal cavity
7648457, May 13 2005 Ethicon Endo-Surgery, Inc Method of positioning a device on an endoscope
7648519, Sep 13 2006 ENDOBOTICS, LLC Surgical instrument
7651017, Nov 23 2005 Ethicon Endo-Surgery, Inc. Surgical stapler with a bendable end effector
7651498, Mar 09 2003 SHIFRIN, EDWARD G Sternal closure system, method and apparatus therefor
7654431, Feb 18 2005 Ethicon Endo-Surgery, Inc. Surgical instrument with guided laterally moving articulation member
7655288, Jul 29 2005 W L GORE & ASSOCIATES, INC Composite self-cohered web materials
7656131, Oct 31 2005 Black & Decker Inc Methods of charging battery packs for cordless power tool systems
7658311, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with a geared return mechanism
7658312, Apr 30 1993 Covidien LP Surgical instrument having an articulated jaw structure and a detachable knife
7659219, Jul 29 2005 W L GORE & ASSOCIATES, INC Highly porous self-cohered web materials having haemostatic properties
7662161, Sep 13 1999 REX MEDICAL, L P Vascular hole closure device
7665646, Jun 18 2007 Covidien LP Interlocking buttress material retention system
7665647, Sep 29 2006 Ethicon Endo-Surgery, Inc Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
7669746, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
7669747, Jun 29 2007 Cilag GmbH International Washer for use with a surgical stapling instrument
7670334, Jan 10 2006 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
7673780, Nov 09 2005 Ethicon Endo-Surgery, Inc Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
7673781, Aug 31 2005 Cilag GmbH International Surgical stapling device with staple driver that supports multiple wire diameter staples
7673782, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
7673783, Nov 04 2005 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for delivery of medical agents
7674253, Aug 18 2006 Kensey Nash Corporation Catheter for conducting a procedure within a lumen, duct or organ of a living being
7674255, Apr 01 2003 ASENSUS SURGICAL EUROPE S À R L Surgical instrument
7674263, Mar 04 2005 Gyrus Ent, L.L.C. Surgical instrument and method
7674270, May 02 2002 Laparocision, Inc Apparatus for positioning a medical instrument
7682307, May 23 2003 Intuitive Surgical Operations, Inc Articulating mechanism for remote manipulation of a surgical or diagnostic tool
7682367, Feb 28 2007 Covidien LP Surgical stapling apparatus
7686201, Sep 01 2003 Covidien LP Circular stapler for hemorrhoid operations
7686826, Oct 30 2003 ENDOBOTICS, LLC Surgical instrument
7688028, Oct 18 2004 Black & Decker Inc Cordless power system
7691098, Jun 29 2001 Intuitive Surgical Operations, Inc Platform link wrist mechanism
7691106, Sep 23 2005 Synvasive Technology, Inc. Transverse acting surgical saw blade
7694865, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
7695485, Nov 30 2001 Covidien LP Surgical device
7699204, Oct 18 2004 Covidien LP Structure containing wound treatment material
7699835, Feb 15 2001 AURIS HEALTH, INC Robotically controlled surgical instruments
7699844, Jul 14 1999 Mederi RF, LLC; HORIZON CREDIT II LLC Method for treating fecal incontinence
7699846, Mar 04 2005 Gyrus ENT L.L.C. Surgical instrument and method
7699856, Jun 27 2002 Apyx Medical Corporation Method, apparatus, and kit for thermal suture cutting
7699859, Jul 28 1999 Aesculap AG Method of performing anastomosis
7699860, Apr 14 2005 Ethicon Endo-Surgery, Inc. Surgical clip
7703653, Sep 28 2007 Covidien LP Articulation mechanism for surgical instrument
7708180, Nov 09 2006 Ethicon Endo-Surgery, Inc Surgical fastening device with initiator impregnation of a matrix or buttress to improve adhesive application
7708181, Mar 18 2008 Boston Scientific Scimed, Inc Endoscopic stapling devices and methods
7708182, Apr 17 2007 Covidien LP Flexible endoluminal surgical instrument
7708758, Aug 16 2006 ENDOBOTICS, LLC Surgical instrument
7714239, May 18 2007 Ethicon Endo-Surgery, Inc Force switch
7717312, Jun 03 2005 Covidien LP Surgical instruments employing sensors
7717313, Oct 18 2004 Covidien LP Surgical apparatus and structure for applying sprayable wound treatment material
7717846, Sep 06 2002 C.R. Bard, Inc. External endoscopic accessory control system
7718180, Oct 23 2003 Immunizing compositions comprising nucleic acids encoding the HIV-1 matrix protein myristate binding site
7718556, Dec 16 2002 Gunze Limited Medical film
7721930, Nov 10 2006 Ethicon Endo-Surgery, Inc Disposable cartridge with adhesive for use with a stapling device
7721931, Jan 10 2007 Cilag GmbH International Prevention of cartridge reuse in a surgical instrument
7721933, Oct 13 2000 Covidien LP Surgical fastener applying apparatus
7721934, Jan 31 2006 Ethicon Endo-Surgery, Inc. Articulatable drive shaft arrangements for surgical cutting and fastening instruments
7721936, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
7722527, May 03 2004 ENDO OPERATIONS LIMITED Surgical implants and related methods
7722607, Sep 30 2005 TYCO HEALTHCARE GROUP AG; Covidien AG In-line vessel sealer and divider
7722610, Jun 02 2005 Covidien LP Multiple coil staple and staple applier
7726537, Oct 04 2002 Covidien LP Surgical stapler with universal articulation and tissue pre-clamp
7726538, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7726539, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7727954, Apr 13 2006 Warsaw Orthopedic, Inc Drug depot implant designs
7729742, Dec 21 2001 Biosense, Inc Wireless position sensor
7731072, Jun 18 2007 Cilag GmbH International Surgical stapling and cutting instrument with improved anvil opening features
7731073, May 19 2006 Applied Medical Resources Corporation Surgical stapler with firing lock mechanism
7731724, Apr 14 2005 Cilag GmbH International Surgical clip advancement and alignment mechanism
7735703, Jun 29 2007 Cilag GmbH International Re-loadable surgical stapling instrument
7736374, Mar 01 2005 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Tissue manipulation and securement system
7738971, Jan 10 2007 Cilag GmbH International Post-sterilization programming of surgical instruments
7740159, Aug 02 2006 Cilag GmbH International Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
7743960, Jun 14 2002 Covidien LP Surgical device
7744624, Oct 18 2004 Covidien LP Extraluminal sealant applicator and method
7744627, Jun 17 2002 Covidien LP Annular support structures
7744628, May 10 2002 Covidien LP Surgical stapling apparatus having a wound closure material applicator assembly
7748587, Feb 07 2003 Max Kabushiki Kaisha Staple refill, stapler and cartridge
7749204, Oct 20 2004 Ethicon, Inc Reinforced absorbable multilayered fabric for use in tissue repair and regeneration
7751870, Jan 30 2002 Covidien LP Surgical imaging device
7753245, Jun 22 2007 Cilag GmbH International Surgical stapling instruments
7753904, Jan 31 2006 Cilag GmbH International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
7758612, Apr 27 2004 Covidien LP Surgery delivery device and mesh anchor
7766207, Dec 30 2003 Ethicon Endo-Surgery, Inc Articulating curved cutter stapler
7766209, Feb 13 2008 Cilag GmbH International Surgical stapling instrument with improved firing trigger arrangement
7766210, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting and fastening instrument with user feedback system
7766821, Jun 08 2004 Henke-Sass, Wolf GmbH Bendable portion of an insertion tube of an endoscope and method of producing it
7766894, Feb 15 2001 AURIS HEALTH, INC Coaxial catheter system
7770773, Jul 27 2005 Covidien LP Surgical device
7770774, Aug 28 1995 Covidien LP Surgical stapler
7770775, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting and fastening instrument with adaptive user feedback
7770776, Jan 26 2005 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Rotatable stapling head of a surgical stapler
7771396, Mar 22 2006 Ethicon Endo-Surgery, Inc. Intubation device for enteral feeding
7772720, Dec 03 2007 SPX Corporation Supercapacitor and charger for secondary power
7776037, Jul 07 2006 TYCO HEALTHCARE GROUP AG; Covidien AG System and method for controlling electrode gap during tissue sealing
7776060, Mar 26 2002 SYNOVIS LIFE TECHNOLOGIES, INC Circular stapler buttress combination
7778004, Sep 13 2005 AXON ENTERPRISE, INC Systems and methods for modular electronic weaponry
7780054, Feb 18 2005 Ethicon Endo-Surgery, Inc Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint
7780055, Apr 06 2005 Covidien LP Loading unit having drive assembly locking mechanism
7780663, Sep 22 2006 Ethicon Endo-Surgery, Inc. End effector coatings for electrosurgical instruments
7780685, Nov 09 2006 Ethicon Endo-Surgery, Inc Adhesive and mechanical fastener
7784662, Feb 18 2005 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground
7784663, Mar 17 2005 Cilag GmbH International Surgical stapling instrument having load sensing control circuitry
7789875, Feb 24 1998 AURIS HEALTH, INC Surgical instruments
7789883, Feb 14 2007 Olympus Corporation Curative treatment system, curative treatment device, and treatment method for living tissue using energy
7789889, Apr 15 2002 Cook Biotech Incorporated Apparatus and method for producing a reinforced surgical staple line
7793812, Feb 14 2008 Cilag GmbH International Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
7794475, Sep 29 2006 Cilag GmbH International Surgical staples having compressible or crushable members for securing tissue therein and stapling instruments for deploying the same
7798386, May 30 2007 Cilag GmbH International Surgical instrument articulation joint cover
7799039, Nov 09 2005 Ethicon Endo-Surgery, Inc Surgical instrument having a hydraulically actuated end effector
7799044, Mar 22 2002 GYRUS ACMI, INC Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
7799965, Apr 11 2006 KPR U S , LLC Wound dressings with anti-microbial and zinc-containing agents
7803151, Dec 04 2001 Covidien LP System and method for calibrating a surgical instrument
7806871, May 09 2005 Boston Scientific Scimed, Inc. Method and device for tissue removal and for delivery of a therapeutic agent or bulking agent
7806891, Nov 20 1998 Intuitive Surgical Operations, Inc Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
7810690, Oct 09 2004 Ethicon Endo-Surgery, Inc Surgical stapling instrument
7810691, May 16 2007 ENTERPRISE SCIENCE FUND, LLC Gentle touch surgical stapler
7810692, Feb 14 2008 Cilag GmbH International Disposable loading unit with firing indicator
7810693, May 30 2007 Cilag GmbH International Surgical stapling and cutting instrument with articulatable end effector
7815092, Jul 27 2005 Covidien LP Staple pocket arrangement for surgical stapler
7815565, May 16 2003 Ethicon Endo-Surgery, Inc Endcap for use with an endoscope
7819296, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with retractable firing systems
7819297, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with reprocessible handle assembly
7819298, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with control features operable with one hand
7819299, Jun 04 2007 Cilag GmbH International Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system
7819884, Feb 15 2001 AURIS HEALTH, INC Robotically controlled medical instrument
7819886, Oct 08 2004 Covidien LP Endoscopic surgical clip applier
7819896, Nov 04 2002 Covidien LP Tool assembly for a surgical stapling device
7823592, Oct 18 2004 Covidien LP Annular adhesive structure
7823760, May 01 2007 Covidien LP Powered surgical stapling device platform
7824401, Oct 08 2004 Intuitive Surgical Operations, Inc Robotic tool with wristed monopolar electrosurgical end effectors
7824426, Oct 20 2000 Covidien LP Directionally biased staples and cartridge having directionally biased staples
7828189, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7828794, Aug 25 2005 TYCO HEALTHCARE GROUP AG; Covidien AG Handheld electrosurgical apparatus for controlling operating room equipment
7828808, Jun 07 2004 Intuitive Surgical Operations, Inc Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
7832408, Jun 04 2007 Cilag GmbH International Surgical instrument having a directional switching mechanism
7832611, May 16 2007 ENTERPRISE SCIENCE FUND, LLC Steerable surgical stapler
7832612, Sep 19 2008 Cilag GmbH International Lockout arrangement for a surgical stapler
7833234, Oct 06 2004 Sofradim Production Appliance for storing, distributing and placing surgical fasteners
7836400, Mar 31 2006 Malikie Innovations Limited Snooze support for event reminders
7837079, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7837080, Sep 18 2008 Cilag GmbH International Surgical stapling instrument with device for indicating when the instrument has cut through tissue
7837081, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7837694, Apr 28 2005 Warsaw Orthopedic, Inc Method and apparatus for surgical instrument identification
7838789, Aug 30 2006 LITTELFUSE INTERNATIONAL HOLDING, LLC Rocker switch
7841503, Jul 16 2006 MEDIGUS LTD Endoscopic device comprising linear staplers and a video camera on its distal end
7842025, Dec 31 2001 Biosense Webster, Inc. Dual-function catheter handle
7842028, Apr 15 2005 ENDOBOTICS, LLC Surgical instrument guide device
7845533, Jun 22 2007 Covidien LP Detachable buttress material retention systems for use with a surgical stapling device
7845534, Jun 03 2005 Covidien LP Surgical stapler with timer and feedback display
7845535, Oct 06 2006 Covidien LP Surgical instrument having a plastic surface
7845536, Oct 18 2004 Covidien LP Annular adhesive structure
7845537, Jan 31 2006 Cilag GmbH International Surgical instrument having recording capabilities
7846149, Apr 15 2002 Covidien LP Instrument introducer
7850623, Oct 27 2005 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
7850642, Aug 12 2004 AURIS HEALTH, INC Methods using a robotic catheter system
7850982, Dec 01 2004 Covidien LP Biomaterial drug delivery and surface modification compositions
7854736, Mar 04 2005 Gyrus Ent, L.L.C. Surgical instrument and method
7857183, Mar 31 2005 Cilag GmbH International Surgical instrument incorporating an electrically actuated articulation mechanism
7857185, Feb 14 2008 Cilag GmbH International Disposable loading unit for surgical stapling apparatus
7857186, Sep 19 2008 Cilag GmbH International Surgical stapler having an intermediate closing position
7857813, Aug 29 2006 SPINAL ELEMENTS, INC Tissue access guidewire system and method
7861906, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with articulatable components
7862579, Jul 28 2004 Cilag GmbH International Electroactive polymer-based articulation mechanism for grasper
7866525, Oct 06 2006 Covidien LP Surgical instrument having a plastic surface
7866527, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with interlockable firing system
7866528, Oct 04 2005 Covidien LP Staple drive assembly
7870989, Jun 03 2005 Covidien LP Surgical stapler with timer and feedback display
7871418, Oct 06 2006 ETHICON ENDO-SURGERY, OHIO Applier for fastener for single lumen access anastomosis
7879070, Jul 28 2004 Cilag GmbH International Electroactive polymer-based actuation mechanism for grasper
7883465, Oct 20 2000 Ethicon Endo-Surgery, Inc. Finger operated switch for controlling a surgical handpiece
7886951, Nov 24 2008 Covidien LP Pouch used to deliver medication when ruptured
7886952, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
7887530, Apr 13 2007 Covidien LP Powered surgical instrument
7887535, Oct 18 1999 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing wave jaw
7887563, Jan 22 2003 INTECH DIRECT, INC Surgical staple
7891531, Jan 31 2006 Sub-miniature surgical staple cartridge
7891532, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7892245, Nov 29 2002 Apparatus and method for manipulating tissue
7893586, Feb 20 2006 Black & Decker Inc DC motor with dual commutator bar set and selectable series and parallel connected coils
7896214, Sep 23 2008 Covidien LP Tissue stop for surgical instrument
7896215, Jun 19 1998 Boston Scientific Scimed, Inc. Device for full thickness resectioning of an organ
7896877, May 20 2004 Gyrus Medical Limited Surgical instrument
7896895, Nov 23 2005 Ethicon Endo-Surgery, Inc Surgical clip and applier device and method of use
7900805, Jan 10 2007 Cilag GmbH International Surgical instrument with enhanced battery performance
7905380, Jun 04 2007 Cilag GmbH International Surgical instrument having a multiple rate directional switching mechanism
7905381, Sep 19 2008 Cilag GmbH International Surgical stapling instrument with cutting member arrangement
7905889, May 20 2005 TELEFLEX LIFE SCIENCES LLC Integrated handle assembly for anchor delivery system
7905893, Oct 19 2000 Ethicon Endo-Surgery, Inc Method for delivering a plurality of fasteners
7905902, Jun 16 2003 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Surgical implant with preferential corrosion zone
7909039, Sep 10 2004 INHA-INDUSTRY PARTNERSHIP INSTITUTE Operating staple and intraluminal stapler for operation having the operating staple
7909191, Jun 03 2005 VIANT AS&O HOLDINGS, LLC Connectable instrument trays for creating a modular case
7909220, Oct 05 2007 Covidien LP Surgical stapler having an articulation mechanism
7909221, Jun 03 2005 Covidien LP Battery powered surgical instrument
7913891, Feb 14 2008 Cilag GmbH International Disposable loading unit with user feedback features and surgical instrument for use therewith
7913893, Aug 28 1995 Covidien LP Surgical stapler
7914543, Oct 14 2003 Ethicon Endo-Surgery, Inc Single fold device for tissue fixation
7914551, Jul 28 2004 Cilag GmbH International Electroactive polymer-based articulation mechanism for multi-fire surgical fastening instrument
7918230, Sep 21 2007 Covidien LP Surgical device having a rotatable jaw portion
7918376, Mar 09 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Articulated surgical instrument
7918377, Oct 16 2008 Cilag GmbH International Surgical stapling instrument with apparatus for providing anvil position feedback
7918845, Jan 15 2003 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Endoluminal tool deployment system
7918848, Mar 25 2005 MAQUET CARDIOVASCULAR LLC Tissue welding and cutting apparatus and method
7918867, Dec 07 2001 Abbott Laboratories Suture trimmer
7918873, Jun 07 2001 Abbott Vascular Inc Surgical staple
7922061, May 21 2008 Cilag GmbH International Surgical instrument with automatically reconfigurable articulating end effector
7922063, Oct 31 2007 Covidien LP Powered surgical instrument
7922743, Oct 18 2004 Covidien LP Structure for applying sprayable wound treatment material
7926691, Apr 14 2008 Covidien LP Variable compression surgical fastener cartridge
7927328, Jan 24 2006 TYCO HEALTHCARE GROUP AG; Covidien AG System and method for closed loop monitoring of monopolar electrosurgical apparatus
7928281, Jun 19 1992 3M Innovative Properties Company Wound covering
7931660, May 10 2007 Covidien LP Powered tacker instrument
7931695, Jul 15 2003 DSM IP ASSETS B V Compliant osteosynthesis fixation plate
7934630, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
7934631, Nov 10 2008 Boston Scientific Scimed, Inc Multi-fire stapling systems and methods for delivering arrays of staples
7935773, Aug 19 2004 Covidien LP Water-swellable copolymers and articles and coatings made therefrom
7938307, Oct 18 2004 Covidien LP Support structures and methods of using the same
7941865, Nov 20 2006 Black & Decker Inc. Rechargeable battery pack and operating system
7942301, Apr 17 2008 Medtronic Vascular, Inc.; Medtronic Vascular, Inc Vascular puncture stapling system
7942303, Jun 06 2008 Covidien LP Knife lockout mechanisms for surgical instrument
7942890, Mar 15 2005 Covidien LP Anastomosis composite gasket
7944175, Apr 26 2006 Makita Corporation Battery charging systems
7946453, Nov 09 2006 Ethicon Endo-Surgery, Inc Surgical band fluid media dispenser
7950560, Apr 13 2007 Covidien LP Powered surgical instrument
7950561, Jun 18 2007 Covidien LP Structure for attachment of buttress material to anvils and cartridges of surgical staplers
7951071, Jun 02 1999 Covidien LP Moisture-detecting shaft for use with an electro-mechanical surgical device
7951166, Jun 17 2002 Covidien LP Annular support structures
7954682, Jan 10 2007 Cilag GmbH International Surgical instrument with elements to communicate between control unit and end effector
7954684, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with a firing member return mechanism
7954686, Sep 19 2008 Cilag GmbH International Surgical stapler with apparatus for adjusting staple height
7954687, Nov 06 2007 Covidien LP Coated surgical staples and an illuminated staple cartridge for a surgical stapling instrument
7954688, Aug 22 2008 Medtronic, Inc. Endovascular stapling apparatus and methods of use
7955257, Jan 05 2006 Depuy Spine, Inc Non-rigid surgical retractor
7959050, Jul 25 2005 Cilag GmbH International Electrically self-powered surgical instrument with manual release
7959051, Feb 15 2008 Cilag GmbH International Closure systems for a surgical cutting and stapling instrument
7959052, Jun 05 2006 MEDIGUS LTD Endoscopic stapler having camera
7963432, Sep 06 2007 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Driverless surgical stapler
7963433, Sep 21 2007 Covidien LP Surgical device having multiple drivers
7963963, Oct 30 2002 Medtronic, Inc Electrosurgical hemostat
7963964, Feb 10 2000 Surgical clamp assembly with electrodes
7966799, Sep 29 2006 Cilag GmbH International Method of manufacturing staples
7967178, Oct 06 2006 Covidien LP Grasping jaw mechanism
7967179, Mar 31 2009 Covidien LP Center cinch and release of buttress material
7967180, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
7967181, Aug 29 2007 Covidien LP Rotary knife cutting systems
7967839, May 20 2002 ROCKY MOUNTAIN BIOSYSTEMS, INC Electromagnetic treatment of tissues and cells
7972298, Mar 05 2004 AURIS HEALTH, INC Robotic catheter system
7976563, Jul 11 2006 KARL STORZ SE & CO KG Medical instrument
7980443, Feb 15 2008 Cilag GmbH International End effectors for a surgical cutting and stapling instrument
7988015, Dec 12 2003 AUTOMATED MERCHANDISING SYSTEMS LLC Adjustable storage rack for a vending machine
7988026, Sep 06 2007 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Endocutter with staple feed
7988027, Mar 31 2009 Covidien LP Crimp and release of suture holding buttress material
7988028, Sep 23 2008 Covidien LP Surgical instrument having an asymmetric dynamic clamping member
7988779, Oct 30 2003 NANO MET-ZERO, INC Absorbent articles comprising nanoparticles
7992757, May 03 2006 Datascope Corp Systems and methods of tissue closure
7993360, Jul 11 2006 ARTHREX, INC Rotary shaver with improved connection between flexible and rigid rotatable tubes
7997468, May 05 2008 Covidien LP Surgical instrument with clamp
7997469, Oct 04 2005 Covidien LP Staple drive assembly
8002696, Sep 22 2005 Olympus Corporation Endoscope system
8002784, May 12 2006 KARL STORZ SE & CO KG Manipulator
8002785, Sep 04 2004 Roche Diabetes Care, Inc Lancing apparatus for producing a puncture wound
8002795, Jun 03 2005 Covidien LP Surgical instruments employing sensors
8006365, Jan 30 2008 EasyLap Ltd.; EASYLAP LTD Device and method for applying rotary tacks
8006885, Apr 09 2007 Covidien LP Surgical stapling apparatus with powered retraction
8006889, Jun 19 1998 Boston Scientific Scimed, Inc. Method and device for full thickness resectioning of an organ
8007511, Jun 06 2003 AURIS HEALTH, INC Surgical instrument design
8007513, Jun 12 2008 Cilag GmbH International Partially reusable surgical stapler
8011550, Mar 31 2009 Covidien LP Surgical stapling apparatus
8011551, Jul 01 2008 Covidien LP Retraction mechanism with clutch-less drive for use with a surgical apparatus
8011553, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
8011555, Mar 06 2007 Covidien LP Surgical stapling apparatus
8012170, Apr 27 2009 Covidien LP Device and method for controlling compression of tissue
8016176, Jun 04 2008 Covidien LP Surgical stapling instrument with independent sequential firing
8016177, May 25 2007 Covidien LP Staple buttress retention system
8016178, Mar 31 2009 Covidien LP Surgical stapling apparatus
8016849, Oct 18 2004 Covidien LP Apparatus for applying wound treatment material using tissue-penetrating needles
8016855, Jan 08 2002 Covidien LP Surgical device
8016858, Jun 02 1999 Covidien LP Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
8016881, Jul 31 2002 MiRus LLC Sutures and surgical staples for anastamoses, wound closures, and surgical closures
8020742, Mar 15 2007 Covidien LP Powered surgical stapling device
8020743, Oct 15 2008 Cilag GmbH International Powered articulatable surgical cutting and fastening instrument with flexible drive member
8021375, Apr 21 2008 Conmed Corporation Surgical clip applicator
8021377, Aug 07 2002 Boston Scientific Scimed, Inc. Electroactive polymer actuated medical devices
8025199, Feb 23 2004 Covidien LP Surgical cutting and stapling device
8028883, Oct 26 2006 Covidien LP Methods of using shape memory alloys for buttress attachment
8028884, Apr 22 2008 Covidien LP Cartridge for applying varying amounts of tissue compression
8028885, May 19 2006 Cilag GmbH International Electric surgical instrument with optimized power supply and drive
8033438, Oct 14 2005 Covidien LP Surgical stapling device
8033442, Nov 04 2002 Covidien LP Tool assembly for a surgical stapling device
8034077, Jul 26 2005 Cilag GmbH International Method for surgical stapling and cutting device with dual actuating control knob
8034363, Dec 11 2008 Ethicon, Inc Sustained release systems of ascorbic acid phosphate
8035487, Aug 08 2001 Stryker Corporation Method for assembling, identifying and controlling a powered surgical tool assembly assembled from multiple components
8037591, Feb 02 2009 Ethicon Endo-Surgery, Inc Surgical scissors
8038045, May 25 2007 Covidien LP Staple buttress retention system
8038046, May 19 2006 Cilag GmbH International Electrical surgical instrument with optimized power supply and drive
8038686, Apr 14 2005 Cilag GmbH International Clip applier configured to prevent clip fallout
8043207, Jun 19 1998 Boston Scientific Scimed, Inc Non-circular resection device and endoscope
8043328, Aug 29 2001 RICHARD A HILLSTEAD, INC Medical instrument
8047236, Sep 12 2008 Boston Scientific Scimed, Inc. Flexible conduit with locking element
8048503, Jul 29 2005 W L GORE & ASSOCIATES, INC Highly porous self-cohered web materials
8056787, Mar 28 2007 Cilag GmbH International Surgical stapling and cutting instrument with travel-indicating retraction member
8056788, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
8056789, Jun 03 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Staple and feeder belt configurations for surgical stapler
8057508, Jul 28 2004 Cilag GmbH International Surgical instrument incorporating an electrically actuated articulation locking mechanism
8058771, Aug 06 2008 Cilag GmbH International Ultrasonic device for cutting and coagulating with stepped output
8061576, Aug 31 2007 Covidien LP Surgical instrument
8062330, Jun 27 2007 Covidien LP Buttress and surgical stapling apparatus
8066167, Mar 23 2009 Cilag GmbH International Circular surgical stapling instrument with anvil locking system
8066168, Apr 30 1993 Tyco Healthcare Group LP Surgical instrument having an articulated jaw structure and a detachable knife
8070033, Sep 23 1997 Covidien LP Surgical stapling apparatus
8070035, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
8070036, Sep 06 2007 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD True multi-fire surgical stapler configured to fire staples of different sizes
8070743, Nov 01 2002 VALENTX, INC Devices and methods for attaching an endolumenal gastrointestinal implant
8075571, Apr 14 2005 Cilag GmbH International Surgical clip applier methods
8083118, Sep 23 1997 Covidien LP Surgical stapling apparatus
8083119, Jun 18 2007 Covidien LP Interlocking buttress material retention system
8083120, Sep 18 2008 Cilag GmbH International End effector for use with a surgical cutting and stapling instrument
8084001, May 02 2005 Cornell Research Foundation, Inc Photoluminescent silica-based sensors and methods of use
8085013, Jan 02 2008 MEDIATEK INC DC power converter and mode-switching method
8087563, Sep 23 1997 Covidien LP Surgical stapling apparatus
8091756, May 09 2008 Covidien LP Varying tissue compression using take-up component
8092443, Mar 30 2009 Medtronic, Inc. Element for implantation with medical device
8092932, Oct 31 2005 Black & Decker Inc. Battery pack and internal component arrangement within the battery pack for cordless power tool system
8096458, Nov 24 2008 Covidien LP Pouch used to deliver medication when ruptured
8096459, Oct 11 2005 Ethicon Endo-Surgery, Inc Surgical stapler with an end effector support
8097017, Oct 18 2004 Covidien LP Surgical fasteners coated with wound treatment materials
8100310, Apr 14 2008 Covidien LP Variable compression surgical fastener apparatus
8100872, Oct 23 2002 Covidien LP Medical dressing containing antimicrobial agent
8102278, Nov 15 2002 VEGA Grieshaber KG Wireless communication
8105350, May 23 2006 ENDOBOTICS, LLC Surgical instrument
8108072, Sep 30 2007 Intuitive Surgical Operations, Inc Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information
8109426, Aug 12 2008 Covidien LP Surgical tilt anvil assembly
8110208, Mar 30 2009 Biolife, L.L.C. Hemostatic compositions for arresting blood flow from an open wound or surgical site
8113405, Sep 03 2008 Covidien LP Surgical instrument with indicator
8113410, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with control features
8114100, Dec 06 2006 Ethicon Endo-Surgery, Inc Safety fastener for tissue apposition
8123103, Oct 17 2003 Covidien LP Adaptor for anvil delivery
8123766, Sep 17 2003 W L GORE & ASSOCIATES, INC Circular stapler buttress
8123767, Sep 17 2003 W L GORE & ASSOCIATES, INC Circular stapler buttress
8127975, Oct 04 2005 Covidien LP Staple drive assembly
8127976, May 08 2009 Covidien LP Stapler cartridge and channel interlock
8128624, May 30 2006 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical instrument that directs energy delivery and protects adjacent tissue
8128643, Oct 17 2006 Covidien LP Apparatus for applying surgical clips
8128645, Nov 20 2000 GERD IP, INC Stapler for endoscopes
8132703, Sep 03 2008 Covidien LP Surgical instrument with indicator
8132706, Jun 05 2009 Covidien LP Surgical stapling apparatus having articulation mechanism
8136712, Dec 10 2009 Cilag GmbH International Surgical stapler with discrete staple height adjustment and tactile feedback
8136713, Mar 25 2008 Covidien LP Surgical stapling instrument having transducer effecting vibrations
8140417, May 10 2007 Sharp Kabushiki Kaisha Data transmission system and data transmitting method
8141762, Oct 09 2009 Cilag GmbH International Surgical stapler comprising a staple pocket
8141763, Mar 19 2004 Covidien LP Anvil assembly with improved cut ring
8146790, Jul 11 2009 Covidien LP Surgical instrument with safety mechanism
8147485, Jan 24 2006 Covidien AG System and method for tissue sealing
8152041, Oct 14 2009 Covidien LP Varying tissue compression aided by elastic members
8157145, May 31 2007 Cilag GmbH International Pneumatically powered surgical cutting and fastening instrument with electrical feedback
8157148, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
8157151, Oct 15 2009 Covidien LP Staple line reinforcement for anvil and cartridge
8157152, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staples sizes
8157153, Jan 31 2006 Cilag GmbH International Surgical instrument with force-feedback capabilities
8157793, Oct 25 2006 KARL STORZ SE & CO KG Manipulator for medical use
8161977, Jan 31 2006 Cilag GmbH International Accessing data stored in a memory of a surgical instrument
8162138, Nov 09 2009 ContainMed, Inc.; CONTAINMED, INC Universal surgical fastener sterilization caddy
8162197, Aug 28 1995 Covidien LP Surgical stapler
8167185, Jan 31 2006 Cilag GmbH International Surgical instrument having recording capabilities
8167895, Mar 15 2005 Covidien LP Anastomosis composite gasket
8167898, May 05 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Flexible cutter for surgical stapler
8170241, Apr 17 2008 TELADOC HEALTH, INC Mobile tele-presence system with a microphone system
8172120, May 16 2007 ENTERPRISE SCIENCE FUND, LLC Maneuverable surgical stapler
8172122, Jun 04 2008 Covidien LP Surgical stapling instrument with independent sequential firing
8172124, Jan 31 2006 Cilag GmbH International Surgical instrument having recording capabilities
8177797, Jul 17 2003 Gunze Limited Suture reinforement material for automatic suturing device
8180458, Dec 17 2007 Thermage, Inc. Method and apparatus for digital signal processing for radio frequency surgery measurements
8181840, Mar 19 2004 Covidien LP Tissue tensioner assembly and approximation mechanism for surgical stapling device
8186555, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with mechanical closure system
8186556, May 09 2008 Covidien LP Variable compression surgical fastener apparatus
8186560, Jun 29 2007 Cilag GmbH International Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
8191752, Oct 06 2006 Covidien LP Surgical instrument having a plastic surface
8192460, Jun 17 2002 Covidien LP Annular support structures
8196795, Feb 14 2008 Cilag GmbH International Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
8196796, Jun 04 2007 Cilag GmbH International Shaft based rotary drive system for surgical instruments
8201720, Nov 24 2008 Covidien LP Pouch used to deliver medication when ruptured
8201721, Oct 31 2007 Covidien LP Powered surgical instrument
8202549, Aug 14 2007 The Regents of the University of California Mesocellular oxide foams as hemostatic compositions and methods of use
8205779, Jul 23 2009 Covidien LP Surgical stapler with tactile feedback system
8205780, Mar 22 2007 Covidien LP Apparatus for forming variable height surgical fasteners
8205781, Sep 19 2008 Cilag GmbH International Surgical stapler with apparatus for adjusting staple height
8206291, Mar 27 2009 Covidien LP Portal device
8210411, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
8210414, Jan 05 2001 Covidien LP Staple buttress retention system
8210415, Jan 31 2006 Sub-miniature surgical staple cartridge
8210416, Sep 23 1997 Covidien LP Surgical stapling apparatus
8211123, Dec 21 2001 Abbott Laboratories Suture trimmer
8211125, Aug 15 2008 Ethicon Endo-Surgery, Inc Sterile appliance delivery device for endoscopic procedures
8214019, Feb 23 2004 Biosense Webster, Inc. Robotically guided catheter
8215531, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having a medical substance dispenser
8215533, Aug 29 2007 Covidien LP Rotary knife cutting systems
8220468, Mar 31 2008 Intuitive Surgical Operations, Inc. Sterile drape interface for robotic surgical instrument
8220688, Dec 24 2009 Cilag GmbH International Motor-driven surgical cutting instrument with electric actuator directional control assembly
8220690, Sep 29 2006 Ethicon Endo-Surgery, Inc Connected surgical staples and stapling instruments for deploying the same
8221424, Dec 20 2004 Globus Medical, Inc Surgical instrument for orthopedic surgery
8225799, Oct 18 2004 Covidien LP Support structures and methods of using the same
8225980, Jun 02 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD True multi-fire surgical stapler with buttress strip
8226715, Jun 30 2003 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Scaffold for connective tissue repair
8227946, Jun 07 2010 MPLUS CO , LTD Flat type vibration motor
8231040, Apr 14 2008 Covidien LP Variable compression surgical fastener cartridge
8231042, Nov 06 2008 Covidien LP Surgical stapler
8231043, Mar 06 2007 Covidien LP Surgical stapling apparatus
8236010, Mar 23 2006 Cilag GmbH International Surgical fastener and cutter with mimicking end effector
8241271, Jun 30 2005 Intuitive Surgical Operations, Inc Robotic surgical instruments with a fluid flow control system for irrigation, aspiration, and blowing
8241308, Apr 24 2002 Boston Scientific Scimed, Inc Tissue fastening devices and processes that promote tissue adhesion
8241322, Jul 27 2005 Covidien LP Surgical device
8245594, Dec 23 2008 Intuitive Surgical Operations, Inc Roll joint and method for a surgical apparatus
8245898, Jul 26 2005 Cilag GmbH International Surgical stapling and cutting device
8245899, Feb 06 2009 Cilag GmbH International Driven surgical stapler improvements
8245900, Oct 06 2006 Covidien LP Surgical instrument having a plastic surface
8245901, Oct 26 2006 Covidien LP Methods of using shape memory alloys for buttress attachment
8246637, Oct 05 2006 Covidien LP Flexible endoscopic stitching devices
8256654, May 25 2007 Covidien LP Staple buttress retention system
8256655, Apr 22 2008 Covidien LP Cartridge for applying varying amounts of tissue compression
8256656, Sep 23 1997 Covidien LP Surgical stapling apparatus
8257251, Apr 08 2009 Cilag GmbH International Methods and devices for providing access into a body cavity
8257356, Oct 15 2004 SPINAL ELEMENTS, INC Guidewire exchange systems to treat spinal stenosis
8257391, Jun 17 2002 Covidien LP Annular support structures
8257634, Oct 06 2009 Covidien LP Actuation sled having a curved guide member and method
8261958, Jan 06 2010 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Stapler cartridge with staples frangibly affixed thereto
8262655, Nov 21 2007 Ethicon Endo-Surgery, Inc Bipolar forceps
8267300, Dec 30 2009 Cilag GmbH International Dampening device for endoscopic surgical stapler
8267924, Apr 13 2007 Covidien LP Powered surgical instrument
8267946, Oct 08 2004 Covidien LP Endoscopic surgical clip applier
8267951, Jun 12 2008 Atricure, Inc Dissecting cannula and methods of use thereof
8269121, May 18 2007 Ethicon Endo-Surgery, Inc Force switch
8272553, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
8272554, Sep 21 2007 Covidien LP Surgical device having multiple drivers
8272918, Jul 03 2009 Simulation dog tail swinging installment
8273404, May 19 2008 CARDINAL HEALTH SWITZERLAND 515 GMBH Extraction of solvents from drug containing polymer reservoirs
8276801, Feb 01 2011 Covidien LP Surgical stapling apparatus
8276802, Jul 11 2009 Covidien LP Surgical instrument with double cartridge and anvil assemblies
8281973, Oct 05 2001 Covidien LP Surgical stapling device
8281974, Jan 14 2009 Covidien LP Surgical stapler with suture locator
8285367, Oct 05 2007 GEARBOX, LLC Vasculature and lymphatic system imaging and ablation associated with a reservoir
8286845, Nov 27 2000 Boston Scientific Scimed, Inc Full thickness resection device control handle
8286846, May 19 2006 Cilag GmbH International Method for operating an electrical surgical instrument with optimal tissue compression
8287561, Jun 28 2002 Boston Scientific Scimed, Inc Balloon-type actuator for surgical applications
8292147, Oct 05 2007 Covidien LP Surgical stapler having an articulation mechanism
8292150, Nov 02 2010 Covidien LP Adapter for powered surgical devices
8292151, Oct 04 2002 Covidien LP Tool assembly for surgical stapling device
8292152, Sep 23 1997 Covidien LP Surgical stapling apparatus
8292155, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
8292157, Feb 12 2007 Cilag GmbH International Electrical surgical instrument with optimized power supply and drive
8292888, Apr 20 2001 Covidien LP Bipolar or ultrasonic surgical device
8298161, Sep 12 2002 Intuitive Surgical Operations, Inc Shape-transferring cannula system and method of use
8298677, Nov 26 2002 Cornell Research Foundation, Inc Fluorescent silica-based nanoparticles
8302323, Jun 21 2010 Covidien LP Hemostatic patch
8308040, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulatable end effector
8308042, Jun 18 2007 Covidien LP Structure for attachment of buttress material to anvils and cartridges of surgical stapler
8308043, May 19 2009 Covidien LP Recognition of interchangeable component of a device
8308046, Jun 18 2007 Covidien LP Interlocking buttress material retention system
8308659, May 09 2008 Greatbatch Ltd.; Greatbatch Ltd Bi-directional sheath deflection mechanism
8313496, Feb 02 2001 LSI Solutions, Inc System for endoscopic suturing
8313509, Jan 19 2010 Covidien LP Suture and retainer assembly and SULU
8317070, Aug 31 2005 Cilag GmbH International Surgical stapling devices that produce formed staples having different lengths
8317071, Mar 09 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Endocutter with auto-feed buttress
8317074, Jul 28 2004 Cilag GmbH International Electroactive polymer-based articulation mechanism for circular stapler
8317790, Sep 14 2007 W L GORE & ASSOCIATES, INC Surgical staple line reinforcements
8319002, Dec 06 2007 Nanosys, Inc Nanostructure-enhanced platelet binding and hemostatic structures
8322455, Jun 27 2006 Cilag GmbH International Manually driven surgical cutting and fastening instrument
8322589, Jun 22 2007 Cilag GmbH International Surgical stapling instruments
8322590, Oct 28 2009 Covidien LP Surgical stapling instrument
8323314, Jun 12 2007 ONESUBSEA IP UK LIMITED Surgical fastener
8323789, Aug 31 2006 Cambridge Enterprise Limited Nanomaterial polymer compositions and uses thereof
8328061, Feb 02 2010 Covidien LP Surgical instrument for joining tissue
8328062, Jul 21 2009 Covidien LP Surgical instrument with curvilinear tissue-contacting surfaces
8328063, Aug 12 2008 Covidien LP Surgical tilt anvil assembly
8328064, May 06 2009 Covidien LP Pin locking mechanism for a surgical instrument
8328802, Mar 19 2008 Covidien AG Cordless medical cauterization and cutting device
8328823, May 10 2007 Covidien LP Powered tacker instrument
8333313, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with a firing member return mechanism
8333691, Feb 05 2004 Polydiagnost GmbH Endoscope comprising a flexible probe
8333764, May 12 2004 Medtronic, Inc.; Medtronic, Inc Device and method for determining tissue thickness and creating cardiac ablation lesions
8336753, Oct 04 2005 Covidien LP Staple drive assembly
8336754, Feb 04 2011 Covidien LP Locking articulation mechanism for surgical stapler
8342377, Sep 23 1997 Covidien LP Surgical stapling apparatus
8342378, Aug 17 2009 Covidien LP One handed stapler
8342379, Sep 21 2007 Covidien LP Surgical device having multiple drivers
8348123, Apr 29 2003 Covidien LP Surgical stapling device with dissecting tip
8348125, Jun 03 2005 Covidien LP Battery powered surgical instrument
8348126, Mar 31 2009 Covidien LP Crimp and release of suture holding buttress material
8348127, Apr 07 2010 Covidien LP Surgical fastener applying apparatus
8348129, Oct 09 2009 Cilag GmbH International Surgical stapler having a closure mechanism
8348130, Dec 10 2010 Covidien LP Surgical apparatus including surgical buttress
8348131, Sep 29 2006 Ethicon Endo-Surgery, Inc Surgical stapling instrument with mechanical indicator to show levels of tissue compression
8348972, Jul 11 2007 Covidien LP Surgical staple with augmented compression area
8353437, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with a geared return mechanism
8353438, Nov 19 2009 Cilag GmbH International Circular stapler introducer with rigid cap assembly configured for easy removal
8353439, Nov 19 2009 Cilag GmbH International Circular stapler introducer with radially-openable distal end portion
8356740, Mar 09 2009 Aesculap AG Controlling compression applied to tissue by surgical tool
8357144, Jun 02 1999 Covidien LP Electro-mechanical surgical device
8360296, Sep 09 2010 Cilag GmbH International Surgical stapling head assembly with firing lockout for a surgical stapler
8360297, Sep 29 2006 Ethicon Endo-Surgery, Inc Surgical cutting and stapling instrument with self adjusting anvil
8360298, Sep 23 2008 Covidien LP Surgical instrument and loading unit for use therewith
8360299, Aug 11 2009 Covidien LP Surgical stapling apparatus
8361501, Sep 30 2004 COVALON TECHNOLOGIES INC Non-adhesive elastic gelatin matrices
8365973, Jun 03 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD D-shaped surgical staples
8365975, May 05 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Cam-controlled knife for surgical instrument
8365976, Sep 29 2006 Ethicon Endo-Surgery, Inc Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
8366559, Jun 23 2010 IN TECH MEDICAL SAS Cannulated flexible drive shaft
8366787, Aug 04 2000 Depuy Synthes Products, LLC Hybrid biologic-synthetic bioabsorbable scaffolds
8371491, Feb 15 2008 Cilag GmbH International Surgical end effector having buttress retention features
8371492, Mar 06 2007 Covidien LP Surgical stapling apparatus
8371493, Mar 06 2007 Covidien LP Surgical stapling apparatus
8372094, Oct 15 2004 Covidien LP Seal element for anastomosis
8376865, Jun 20 2006 CARDIACMD, INC Torque shaft and torque shaft drive
8377029, Apr 23 2003 OTSUKA PHARMACEUTICAL FACTORY, INC Drug solution filling plastic ampoule and process for producing the same
8377044, Mar 30 2007 Ethicon Endo-Surgery, Inc Detachable end effectors
8382761, Aug 29 2007 Covidien LP Surgical staple with adjustable width backspan
8387848, Aug 20 2009 Covidien LP Surgical staple
8388633, Oct 31 2006 Ethicon, Inc. Implantable repair device
8393513, Apr 11 2002 Covidien LP Surgical stapling apparatus including an anvil and cartridge each having cooperating mating surfaces
8393514, Sep 30 2010 Cilag GmbH International Selectively orientable implantable fastener cartridge
8393516, Feb 26 2009 Covidien LP Surgical stapling apparatus with curved cartridge and anvil assemblies
8397971, Feb 05 2009 Cilag GmbH International Sterilizable surgical instrument
8397973, Mar 09 2009 Aesculap AG Wide handle for true multi-fire surgical stapler
8398633, Oct 30 2009 Covidien LP Jaw roll joint
8398673, Feb 15 2008 Take5 Endotech Surgical instrument for grasping and cutting tissue
8403138, Apr 10 2008 Aesculap AG Surgical clip cartridge and housing member for use therein
8403197, Apr 30 1993 Covidien LP Surgical instrument having an articulated jaw structure and a detachable knife
8403198, Mar 22 2007 Covidien LP Apparatus for forming variable height surgical fasteners
8403945, Feb 25 2010 Covidien LP Articulating endoscopic surgical clip applier
8403950, Dec 03 2007 Covidien AG Cordless hand-held ultrasonic cautery cutting device
8408439, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulatable end effector
8408442, Oct 04 2002 Covidien LP Tool assembly for a surgical stapling device
8409079, May 14 2008 Olympus Corporation Electric bending operation device and medical treatment system including electric bending operation device
8409174, Jul 25 2007 KARL STORZ SE & CO KG Medical manipulator system
8409222, Oct 08 2004 Covidien LP Endoscopic surgical clip applier
8409223, Aug 29 2008 Covidien LP Endoscopic surgical clip applier with clip retention
8413870, Jul 07 2006 Ethicon Endo-Surgery, Inc Surgical stapling instrument
8413871, Mar 06 2007 Covidien LP Surgical stapling apparatus
8413872, Oct 28 2009 Covidien LP Surgical fastening apparatus
8414577, Feb 05 2009 Cilag GmbH International Surgical instruments and components for use in sterile environments
8418908, Oct 26 2011 Covidien LP Staple feeding and forming apparatus
8418909, Jun 02 2009 Covidien LP Surgical instrument and method for performing a resection
8424737, Sep 11 2006 Covidien LP Rotating knob locking mechanism for surgical stapling device
8424739, Oct 17 2003 Covidien LP Surgical stapling device with independent tip rotation
8424740, Jun 04 2007 Cilag GmbH International Surgical instrument having a directional switching mechanism
8424741, Jan 31 2001 Rex Medical, L.P. Apparatus and method for resectioning gastro-esophageal tissue
8425600, Nov 14 2007 Interfaced medical implant assembly
8430292, Oct 28 2009 Covidien LP Surgical fastening apparatus
8430892, Oct 06 2009 Covidien LP Surgical clip applier having a wireless clip counter
8430898, Jul 31 2007 Cilag GmbH International Ultrasonic surgical instruments
8439246, Jul 20 2010 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Surgical stapler with cartridge-adjustable clamp gap
8444036, Feb 06 2009 Cilag GmbH International Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
8444100, Jun 04 2009 NIFCO INC Retainer structure
8444549, Apr 16 2009 Covidien LP Self-steering endoscopic device
8453904, Oct 08 2007 W L GORE & ASSOCIATES, INC Apparatus for supplying surgical staple line reinforcement
8453906, Jul 14 2010 Cilag GmbH International Surgical instruments with electrodes
8453907, Feb 06 2009 Cilag GmbH International Motor driven surgical fastener device with cutting member reversing mechanism
8453908, Feb 13 2008 Cilag GmbH International Surgical stapling instrument with improved firing trigger arrangement
8453912, Aug 28 1995 Covidien LP Surgical stapler
8453914, Dec 24 2009 Cilag GmbH International Motor-driven surgical cutting instrument with electric actuator directional control assembly
8454628, Sep 20 2002 Syntheon, LLC Surgical fastener aligning instrument particularly for transoral treatment of gastroesophageal reflux disease
8454640, Mar 22 2002 Gyrus ENT L.L.C. Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
8457757, Nov 26 2007 MICROTRANSPONDER, INC Implantable transponder systems and methods
8459520, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
8459525, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
8464922, May 09 2008 Covidien LP Variable compression surgical fastener cartridge
8464923, Aug 31 2005 Cilag GmbH International Surgical stapling devices for forming staples with different formed heights
8464924, Apr 03 2001 Covidien LP Surgical stapling device for performing circular anastomoses
8464925, May 11 2010 Ethicon Endo-Surgery, Inc Methods and apparatus for delivering tissue treatment compositions to stapled tissue
8465502, Aug 25 2008 Covidien LP Surgical clip applier and method of assembly
8469973, Jan 27 2006 Intuitive Surgical Operations, Inc Apparatus and method for sternotomy closure
8470355, Oct 01 2009 Covidien LP Mesh implant
8474677, Sep 30 2010 Cilag GmbH International Fastener system comprising a retention matrix and a cover
8475453, Oct 06 2006 Covidien LP Endoscopic vessel sealer and divider having a flexible articulating shaft
8475454, Mar 01 2012 Electrosurgical midline clamping scissors
8475474, Jul 28 1999 Aesculap AG Anastomosis method utilizing tool with fluid-driven actuator
8475491, Apr 21 2008 QUICKRING MEDICAL TECHNOLOGIES LTD Surgical stapling systems
8479969, Jan 10 2007 Ethicon LLC Drive interface for operably coupling a manipulatable surgical tool to a robot
8480703, Nov 19 2010 Covidien LP Surgical device
8485412, Sep 29 2006 Cilag GmbH International Surgical staples having attached drivers and stapling instruments for deploying the same
8485413, Feb 05 2009 Cilag GmbH International Surgical stapling instrument comprising an articulation joint
8490853, Oct 18 2004 Covidien LP Surgical apparatus and structure for applying sprayable wound treatment material
8491603, Jun 14 2006 MACDONALD, DETTWILER AND ASSOCIATES INC Surgical manipulator
8496153, Mar 29 2007 Covidien LP Anvil-mounted dissecting tip for surgical stapling device
8496154, Oct 08 2009 Covidien LP Pair of double staple pusher in triple row stapler
8496155, May 29 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Surgical stapler with angled feeder belts
8496156, Apr 22 2008 Covidien LP Cartridge for applying varying amounts of tissue compression
8496683, Jun 27 2007 Covidien LP Buttress and surgical stapling apparatus
8499992, Apr 27 2009 Covidien LP Device and method for controlling compression of tissue
8499993, Sep 29 2006 Cilag GmbH International Surgical staple cartridge
8500762, Oct 17 2007 SURGICAL STRUCTURES, LTD Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof
8505227, Mar 24 2009 Sturm, Ruger & Company, Inc Firearm with quick coupling barrel interlock system
8506555, Feb 03 2006 THE EUROPEAN ATOMIC ENERGY COMMUNITY EURATOM Robotic surgical system for performing minimally invasive medical procedures
8506557, Apr 13 2007 Covidien LP Powered surgical instrument
8506580, Apr 11 2007 Covidien LP Surgical clip applier
8506581, Oct 05 2006 Covidien LP Flexible endoscopic stitching devices
8512359, Nov 30 2001 Covidien LP Surgical device
8517239, Feb 05 2009 Cilag GmbH International Surgical stapling instrument comprising a magnetic element driver
8517241, Apr 16 2010 Covidien LP Hand-held surgical devices
8517243, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
8517244, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having a medical substance dispenser
8521273, Jan 29 2008 MICROCHIPS BIOTECH, INC Drug delivery devices, kits and methods therefor
8523042, Oct 21 2009 The General Hospital Corporation Apparatus and method for preserving a tissue margin
8523043, Dec 07 2010 Immersion Corporation Surgical stapler having haptic feedback
8523881, Jul 26 2010 VALTECH CARDIO, LTD Multiple anchor delivery tool
8523900, Feb 03 2009 KARL STORZ SE & CO KG Medical manipulator
8529588, Jan 25 1999 Applied Medical Resources Corporation Multiple clip applier apparatus and method
8529600, Sep 30 2010 Ethicon Endo-Surgery, Inc Fastener system comprising a retention matrix
8529819, Mar 06 2007 Covidien LP Wound closure material
8532747, Aug 22 2008 DEVICOR MEDICAL PRODUCTS, INC Biopsy marker delivery device
8534528, Jun 04 2007 Cilag GmbH International Surgical instrument having a multiple rate directional switching mechanism
8535304, Mar 31 2006 ELECTROPHYSIOLOGY FRONTIERS S P A System and method for advancing, orienting, and immobilizing on internal body tissue a catheter or other therapeutic device
8540128, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved end effector
8540129, Feb 13 2008 Cilag GmbH International Surgical stapling instrument with improved firing trigger arrangement
8540130, Feb 14 2008 Cilag GmbH International Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
8540131, Mar 15 2011 Ethicon Endo-Surgery, Inc Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
8540133, Sep 19 2008 Cilag GmbH International Staple cartridge
8540733, Jun 14 2002 Covidien LP Surgical method and device having a first jaw and a second jaw in opposed correspondence for clamping, cutting, and stapling tissue
8540735, Dec 16 2010 Boston Scientific Scimed, Inc; APOLLO ENDOSURGERY, INC Endoscopic suture cinch system
8550984, Nov 27 2003 Olympus Corporation Insertion auxiliary implement
8551076, Jun 13 2006 Intuitive Surgical Operations, Inc Retrograde instrument
8556151, Sep 11 2007 Covidien LP Articulating joint for surgical instruments
8556918, Sep 17 2003 W L GORE & ASSOCIATES, INC Circular stapler buttress
8556920, Apr 14 2005 Ethicon Endo-Surgery, Inc. Surgical clip
8556935, Mar 15 2011 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Method of manufacturing surgical staples
8561870, Feb 13 2008 Cilag GmbH International Surgical stapling instrument
8561873, Oct 15 2009 Covidien LP Staple line reinforcement for anvil and cartridge
8567656, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
8568425, Nov 01 2010 Covidien LP Wire spool for passing of wire through a rotational coupling
8573459, May 19 2006 Cilag GmbH International Optimal tissue compression electrical surgical instrument
8573461, Feb 14 2008 Cilag GmbH International Surgical stapling instruments with cam-driven staple deployment arrangements
8573462, May 19 2006 Cilag GmbH International Electrical surgical instrument with optimized power supply and drive
8573465, Feb 14 2008 Cilag GmbH International Robotically-controlled surgical end effector system with rotary actuated closure systems
8574263, Jul 20 2011 Covidien LP Coaxial coil lock
8579176, Jul 26 2005 Cilag GmbH International Surgical stapling and cutting device and method for using the device
8579178, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staples sizes
8579937, Jul 31 2002 Covidien LP Tool member cover and cover deployment device
8579938, Jul 23 2008 Covidien LP Staple for use in surgical procedures
8584919, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with load-sensitive firing mechanism
8585721, Oct 12 2011 Covidien LP Mesh fixation system
8590760, May 25 2004 Abbott Vascular Inc Surgical stapler
8590762, Jun 29 2007 Cilag GmbH International Staple cartridge cavity configurations
8590764, Dec 24 2003 Boston Scientific Scimed, Inc Circumferential full thickness resectioning device
8596515, Jun 18 2010 Covidien LP Staple position sensor system
8602287, Sep 23 2008 Cilag GmbH International Motor driven surgical cutting instrument
8602288, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
8603135, Jul 20 2011 Covidien LP Articulating surgical apparatus
8608043, Oct 06 2006 Covidien LP Surgical instrument having a multi-layered drive beam
8608044, Feb 15 2008 Cilag GmbH International Feedback and lockout mechanism for surgical instrument
8608045, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
8608046, Jan 07 2010 Cilag GmbH International Test device for a surgical tool
8608745, Mar 26 2007 DEPUY SYNTHES PRODUCTS, INC System, apparatus, and method for cutting bone during an orthopaedic surgical procedure
8613383, Jul 14 2010 Cilag GmbH International Surgical instruments with electrodes
8613384, Jul 07 2006 Ethicon Endo-Surgery, Inc Surgical stapling instrument and a staple cartridge and staple for such an instrument
8616431, Jun 04 2007 Cilag GmbH International Shiftable drive interface for robotically-controlled surgical tool
8622274, Feb 14 2008 Cilag GmbH International Motorized cutting and fastening instrument having control circuit for optimizing battery usage
8622275, Nov 19 2009 Cilag GmbH International Circular stapler introducer with rigid distal end portion
8627993, May 19 2006 Ethicon Endo-Surgery, Inc. Active braking electrical surgical instrument and method for braking such an instrument
8627995, May 19 2006 Cilag GmbH International Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
8628518, Dec 30 2005 Intuitive Surgical Operations, Inc Wireless force sensor on a distal portion of a surgical instrument and method
8628544, Sep 23 2008 Covidien LP Knife bar for surgical instrument
8631987, Aug 02 2006 Cilag GmbH International Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
8631992, May 03 2009 Aesculap AG Feeder belt with padded staples for true multi-fire surgical stapler
8631993, Jul 11 2009 Covidien LP Surgical instrument with double cartridge and anvil assemblies
8632462, Mar 14 2011 Cilag GmbH International Trans-rectum universal ports
8632525, Sep 17 2010 Cilag GmbH International Power control arrangements for surgical instruments and batteries
8632535, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
8632563, May 08 2003 Olympus Corporation Surgical instrument
8636187, Aug 31 2005 Cilag GmbH International Surgical stapling systems that produce formed staples having different lengths
8636191, May 09 2003 Covidien LP Anastomotic staple with capillary which expels a bonding agent upon deformation
8636193, Jul 27 2005 Covidien LP Staple pocket arrangement for surgical stapler
8636736, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument
8636766, Sep 23 1997 Covidien LP Surgical stapling apparatus including sensing mechanism
8640788, Nov 13 2009 Intuitive Surgical Operations, Inc Motor interface for parallel drive shafts within an independently rotating member
8646674, May 11 2010 Ethicon Endo-Surgery, Inc Methods and apparatus for delivering tissue treatment compositions to stapled tissue
8647258, Jan 10 2008 Covidien LP Apparatus for endoscopic procedures
8647350, Aug 11 2009 Datascope Corp Delivery device and method for compliant tissue fasteners
8652120, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
8652151, Jul 09 2001 Covidien LP Right angle clip applier apparatus and method
8657174, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument having handle based power source
8657176, Sep 30 2010 Ethicon Endo-Surgery, Inc Tissue thickness compensator for a surgical stapler
8657177, Oct 25 2011 Covidien LP Surgical apparatus and method for endoscopic surgery
8657178, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus
8657814, Aug 22 2005 MEDTRONIC ABLATION FRONTIERS TECHNOLOGIES LLC User interface for tissue ablation system
8662370, Apr 08 2010 Introducer system and assembly for surgical staplers
8663192, Apr 27 2009 INTERSECT ENT, INC Devices and methods for treating pain associated with tonsillectomies
8663224, Sep 09 2010 Depuy Synthes Products, LLC Surgical nail
8664792, Jun 21 2010 ENVISION ENERGY DEMARK APS Wind turbine and a shaft for a wind turbine
8668129, Dec 16 2008 Covidien LP Surgical apparatus including surgical buttress
8668130, Jun 29 2007 Cilag GmbH International Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
8672206, Oct 25 2011 Covidien LP Apparatus for endoscopic procedures
8672207, Jul 30 2010 Ethicon Endo-Surgery, Inc Transwall visualization arrangements and methods for surgical circular staplers
8672208, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
8672951, Jul 26 2005 Cilag GmbH International Electrically self-powered surgical instrument with manual release
8678263, Sep 24 2007 Covidien LP Materials delivery system for stapling device
8679093, Nov 23 2010 DARE MB INC Multi-dose drug delivery device and method
8679137, Sep 17 2003 W L GORE & ASSOCIATES, INC Circular stapler buttress
8679154, Jan 12 2007 Cilag GmbH International Adjustable compression staple and method for stapling with adjustable compression
8679156, Jan 12 2007 Cilag GmbH International Adjustable compression staple and method for stapling with adjustable compression
8679454, Oct 05 2001 Surmodics, Inc. Particle immobilized coatings and uses thereof
8684250, Oct 18 2004 Covidien LP Annular adhesive structure
8684253, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
8685020, May 17 2010 Cilag GmbH International Surgical instruments and end effectors therefor
8695866, Oct 01 2010 Cilag GmbH International Surgical instrument having a power control circuit
8696665, Mar 26 2010 Cilag GmbH International Surgical cutting and sealing instrument with reduced firing force
8701958, Jan 11 2007 Cilag GmbH International Curved end effector for a surgical stapling device
8701959, Jun 06 2008 Covidien LP Mechanically pivoting cartridge channel for surgical instrument
8701960, Jun 22 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Surgical stapler with reduced clamp gap for insertion
8708210, Oct 05 2006 Covidien LP Method and force-limiting handle mechanism for a surgical instrument
8708211, Feb 12 2009 Covidien LP Powered surgical instrument with secondary circuit board
8708213, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
8714429, Apr 29 2003 Covidien LP Dissecting tip for surgical stapler
8715226, Nov 15 2005 The Johns Hopkins University Active cannula for bio-sensing and surgical intervention
8720766, Sep 29 2006 Cilag GmbH International Surgical stapling instruments and staples
8721630, Mar 23 2006 Cilag GmbH International Methods and devices for controlling articulation
8721646, Oct 10 2006 FOX, WILLIAM CASEY Methods and apparatus for a staple
8721666, Sep 26 2007 Ethicon, Inc Method of facial reconstructive surgery using a self-anchoring tissue lifting device
8727197, Jun 29 2007 Cilag GmbH International Staple cartridge cavity configuration with cooperative surgical staple
8728119, Jun 07 2001 ABBOTT VASCULAR INC. Surgical staple
8728120, Jun 12 2007 Covidien LP Biomechanical fastener
8733612, Aug 17 2009 Covidien LP Safety method for powered surgical instruments
8733613, Sep 29 2010 Cilag GmbH International Staple cartridge
8733614, Oct 06 2006 Covidien LP End effector identification by mechanical features
8734478, Mar 14 2011 Cilag GmbH International Rectal manipulation devices
8740034, Sep 30 2010 Cilag GmbH International Surgical stapling instrument with interchangeable staple cartridge arrangements
8740037, Sep 30 2010 Cilag GmbH International Compressible fastener cartridge
8740038, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a releasable portion
8746529, Jan 31 2006 Cilag GmbH International Accessing data stored in a memory of a surgical instrument
8746530, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
8746533, Jan 14 2011 New Hope Ventures, LP Surgical stapling device and method
8746535, Sep 30 2010 Ethicon Endo-Surgery, Inc Tissue thickness compensator comprising detachable portions
8747238, Jun 28 2012 Cilag GmbH International Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
8752264, Mar 06 2012 Covidien LP Surgical tissue sealer
8752699, Sep 30 2010 Ethicon Endo-Surgery, Inc Implantable fastener cartridge comprising bioabsorbable layers
8752747, Jan 31 2006 Cilag GmbH International Surgical instrument having recording capabilities
8752749, Feb 14 2008 Cilag GmbH International Robotically-controlled disposable motor-driven loading unit
8757287, Aug 17 2005 BSH HAUSGERÄTE GMBH Electric-motor kitchen appliance comprising an electric or electronic control
8757465, Sep 30 2010 Cilag GmbH International Fastener system comprising a retention matrix and an alignment matrix
8757467, May 05 2008 Covidien LP Surgical instrument with sequential clamping and cutting
8758235, Jul 13 2011 Cook Medical Technologies LLC Foldable surgical retractor
8758366, Jul 09 2007 TELEFLEX LIFE SCIENCES LLC Multi-actuating trigger anchor delivery system
8758391, Feb 14 2008 Cilag GmbH International Interchangeable tools for surgical instruments
8758438, Dec 08 2000 Warsaw Orthopedic, Inc Implant for orthopedic applications
8763875, Sep 29 2006 Cilag GmbH International End effector for use with a surgical fastening instrument
8763877, Sep 30 2010 Ethicon Endo-Surgery, Inc Surgical instruments with reconfigurable shaft segments
8763879, Jan 31 2006 Cilag GmbH International Accessing data stored in a memory of surgical instrument
8770458, Oct 06 2006 Covidien LP Surgical instrument having a plastic surface
8770459, Oct 17 2003 Covidien LP Surgical stapling device with independent tip rotation
8770460, Dec 23 2008 Shield for surgical stapler and method of use
8771169, Jan 10 2008 Covidien LP Imaging system for a surgical device
8771312, Nov 05 2007 Aesculap AG Anastomosis fasteners
8777004, Sep 30 2010 Ethicon Endo-Surgery, Inc Compressible staple cartridge comprising alignment members
8783541, Oct 03 2006 Cilag GmbH International Robotically-controlled surgical end effector system
8783542, Sep 30 2010 Ethicon Endo-Surgery, Inc Fasteners supported by a fastener cartridge support
8783543, Jul 30 2010 Ethicon Endo-Surgery, Inc Tissue acquisition arrangements and methods for surgical stapling devices
8784304, Feb 11 2003 Olympus Corporation Over-tube, method of manufacturing over-tube, method of disposing over-tube, and method of treatment in abdominal cavity
8784404, Jun 29 2009 Steris Corporation Flexible wrist-type element and methods of manufacture and use thereof
8784415, May 05 2008 Stryker Corporation Powered surgical tool with an isolation circuit connected between the tool power terminals and the memory internal to the tool
8789737, Apr 27 2011 Covidien LP Circular stapler and staple line reinforcement material
8789739, Sep 06 2011 Ethicon Endo-Surgery, Inc Continuous stapling instrument
8789740, Jul 30 2010 Ethicon Endo-Surgery, Inc Linear cutting and stapling device with selectively disengageable cutting member
8789741, Sep 24 2010 Cilag GmbH International Surgical instrument with trigger assembly for generating multiple actuation motions
8790684, Oct 31 2007 CARDINAL HEALTH SWITZERLAND 515 GMBH Vascular closure device
8794496, Sep 11 2006 Covidien LP Rotating knob locking mechanism for surgical stapling device
8794497, Sep 09 2010 Cilag GmbH International Surgical stapling head assembly with firing lockout for a surgical stapler
8795276, Jun 09 2010 Cilag GmbH International Electrosurgical instrument employing a plurality of electrodes
8795308, May 09 2008 Laparoscopic gastric and intestinal trocar
8800837, Apr 13 2007 Covidien LP Powered surgical instrument
8800838, Aug 31 2005 Cilag GmbH International Robotically-controlled cable-based surgical end effectors
8800840, Apr 11 2002 Covidien LP Surgical stapling apparatus including an anvil and cartridge each having cooperating mating surfaces
8800841, Mar 15 2011 Ethicon Endo-Surgery, Inc Surgical staple cartridges
8801732, Jan 26 2009 Ethicon Endo-Surgery, Inc Surgical stapler to secure a tissue fold
8801734, Jul 30 2010 Ethicon Endo-Surgery, Inc Circular stapling instruments with secondary cutting arrangements and methods of using same
8801735, Jul 30 2010 Ethicon Endo-Surgery, Inc Surgical circular stapler with tissue retention arrangements
8801752, Aug 04 2008 Covidien LP Articulating surgical device
8806973, Dec 02 2009 Covidien LP Adapters for use between surgical handle assembly and surgical end effector
8808294, Sep 09 2008 FOX, WILLIAM CASEY Method and apparatus for a multiple transition temperature implant
8808311, Apr 25 2002 Covidien LP Surgical instruments including MEMS devices
8808325, Sep 29 2006 Cilag GmbH International Surgical stapling instrument with staples having crown features for increasing formed staple footprint
8814024, Sep 30 2010 Ethicon Endo-Surgery, Inc Fastener system comprising a plurality of connected retention matrix elements
8814025, Sep 15 2011 Ethicon Endo-Surgery, Inc Fibrin pad matrix with suspended heat activated beads of adhesive
8820603, Sep 23 2008 Cilag GmbH International Accessing data stored in a memory of a surgical instrument
8820605, Jan 31 2006 Cilag GmbH International Robotically-controlled surgical instruments
8820606, Feb 24 2012 Covidien LP Buttress retention system for linear endostaplers
8827133, Jan 11 2007 Cilag GmbH International Surgical stapling device having supports for a flexible drive mechanism
8827134, Jun 19 2009 Covidien LP Flexible surgical stapler with motor in the head
8827903, Mar 14 2011 Cilag GmbH International Modular tool heads for use with circular surgical instruments
8833632, Sep 06 2011 Ethicon Endo-Surgery, Inc Firing member displacement system for a stapling instrument
8834498, Nov 10 2006 Ethicon Endo-Surgery, Inc Method and device for effecting anastomosis of hollow organ structures using adhesive and fasteners
8834518, Apr 12 2010 Cilag GmbH International Electrosurgical cutting and sealing instruments with cam-actuated jaws
8840003, Sep 30 2010 Ethicon Endo-Surgery, Inc Surgical stapling instrument with compact articulation control arrangement
8840603, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
8840609, Jul 23 2010 Conmed Corporation Tissue fusion system and method of performing a functional verification test
8844789, Jan 31 2006 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
8851354, Dec 24 2009 Cilag GmbH International Surgical cutting instrument that analyzes tissue thickness
8852185, May 19 2011 Covidien LP Apparatus for performing an electrosurgical procedure
8852199, Aug 06 2010 Abyrx, Inc. Method and device for handling bone adhesives
8857693, Mar 15 2011 Ethicon Endo-Surgery, Inc Surgical instruments with lockable articulating end effector
8857694, Sep 30 2010 Ethicon Endo-Surgery, Inc Staple cartridge loading assembly
8858538, Feb 27 2009 MODULAR SURGICAL, INC Apparatus and methods for hybrid endoscopic and laparoscopic surgery
8858571, Nov 09 2005 Cilag GmbH International Hydraulically and electrically actuated articulation joints for surgical instruments
8858590, Mar 14 2011 Cilag GmbH International Tissue manipulation devices
8864007, Sep 30 2010 Cilag GmbH International Implantable fastener cartridge having a non-uniform arrangement
8864009, Sep 30 2010 Cilag GmbH International Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
8870049, Mar 14 2008 ASENSUS SURGICAL, I NC Hernia stapler
8870050, Nov 04 2011 Covidien LP Surgical stapling apparatus including releasable buttress
8870912, May 31 2011 Intuitive Surgical Operations, Inc Surgical instrument with single drive input for two end effector mechanisms
8875971, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with interlockable firing system
8875972, Feb 15 2008 Cilag GmbH International End effector coupling arrangements for a surgical cutting and stapling instrument
8876857, Nov 13 2009 Intuitive Surgical Operations, Inc End effector with redundant closing mechanisms
8876858, Apr 14 2010 Tuebingen Scientific Medical GmbH Surgical instrument with elastically movable instrument head
8888792, Jul 14 2008 Cilag GmbH International Tissue apposition clip application devices and methods
8893946, Mar 28 2007 Cilag GmbH International Laparoscopic tissue thickness and clamp load measuring devices
8893949, Sep 30 2010 Cilag GmbH International Surgical stapler with floating anvil
8894647, Jan 13 2012 Covidien LP System and method for performing surgical procedures with a reusable instrument module
8899462, Oct 25 2011 Covidien LP Apparatus for endoscopic procedures
8899463, Sep 30 2010 Cilag GmbH International Surgical staple cartridges supporting non-linearly arranged staples and surgical stapling instruments with common staple-forming pockets
8899464, Oct 03 2011 Cilag GmbH International Attachment of surgical staple buttress to cartridge
8899465, Sep 29 2006 Cilag GmbH International Staple cartridge comprising drivers for deploying a plurality of staples
8899466, Nov 19 2009 Cilag GmbH International Devices and methods for introducing a surgical circular stapling instrument into a patient
8905287, Oct 20 2000 Covidien LP Directionally biased staple and anvil assembly
8905977, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
8911426, Feb 08 2010 MICROCHIPS BIOTECH, INC Low-permeability, laser-activated drug delivery device
8911471, Mar 23 2006 Cilag GmbH International Articulatable surgical device
8920433, Jul 31 2009 Dexterite Surgical Ergonomic and semi-automatic manipulator, and applications to instruments for minimally invasive surgery
8920435, Jul 26 2005 Cilag GmbH International Method for operating a surgial stapling and cutting device
8920438, Oct 08 2004 Covidien LP Apparatus for applying surgical clips
8920443, Feb 17 2004 Cook Biotech Incorporated Medical devices and methods useful for applying bolster material
8920444, Feb 17 2004 Cook Biotech Incorporated Medical devices and methods useful for applying bolster material
8925782, Sep 30 2010 Ethicon Endo-Surgery, Inc Implantable fastener cartridge comprising multiple layers
8925783, Oct 31 2007 Covidien LP Powered surgical instrument
8925788, Jun 29 2007 Cilag GmbH International End effectors for surgical stapling instruments
8926598, Mar 15 2011 Ethicon Endo-Surgery, Inc Surgical instruments with articulatable and rotatable end effector
8931682, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
8936614, Dec 30 2010 Covidien LP Combined unilateral/bilateral jaws on a surgical instrument
8939343, Sep 23 1997 Covidien LP Surgical stapling apparatus including a drive beam
8939344, Mar 31 2009 Covidien LP Surgical stapling apparatus
8939974, Oct 09 2009 Cilag GmbH International Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism
8945163, Apr 01 2009 Ethicon Endo-Surgery, Inc Methods and devices for cutting and fastening tissue
8955732, Aug 11 2009 Covidien LP Surgical stapling apparatus
8956390, May 21 2008 Cook Biotech Incorporated Devices and methods for applying bolster materials to surgical fastening apparatuses
8960519, Jun 02 1999 Covidien LP Shaft, e.g., for an electro-mechanical surgical device
8960520, Oct 05 2007 Covidien LP Method and apparatus for determining parameters of linear motion in a surgical instrument
8960521, Jul 15 2011 Covidien LP Loose staples removal system
8967443, Oct 05 2007 Covidien LP Method and apparatus for determining parameters of linear motion in a surgical instrument
8967446, May 09 2008 Covidien LP Variable compression surgical fastener cartridge
8967448, Dec 14 2011 Covidien LP Surgical stapling apparatus including buttress attachment via tabs
8968276, Sep 21 2007 Covidien LP Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
8968337, Jul 28 2010 Covidien LP Articulating clip applier
8968355, Aug 04 2008 Covidien LP Articulating surgical device
8968358, Aug 05 2009 Covidien LP Blunt tissue dissection surgical instrument jaw designs
8973803, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with control features operable with one hand
8973804, Sep 29 2006 Cilag GmbH International Cartridge assembly having a buttressing member
8974440, Aug 15 2007 Board of Regents of the University of Nebraska Modular and cooperative medical devices and related systems and methods
8978954, Sep 30 2010 Ethicon Endo-Surgery, Inc Staple cartridge comprising an adjustable distal portion
8978955, Mar 14 2011 Cilag GmbH International Anvil assemblies with collapsible frames for circular staplers
8978956, Sep 30 2010 Ethicon Endo-Surgery, Inc Jaw closure arrangements for surgical instruments
8979890, Oct 01 2010 Cilag GmbH International Surgical instrument with jaw member
8982195, Sep 07 2006 JOHNSON & JOHNSON SURGICAL VISION, INC Digital video capture system and method with customizable graphical overlay
8985428, Dec 31 2009 Covidien LP Indicator for surgical stapler
8991676, Jun 29 2007 Cilag GmbH International Surgical staple having a slidable crown
8991677, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
8991678, Nov 15 2011 Intuitive Surgical Operations, Inc Surgical instrument with stowing knife blade
8992422, Mar 23 2006 Cilag GmbH International Robotically-controlled endoscopic accessory channel
8996165, Oct 21 2008 TELADOC HEALTH, INC Telepresence robot with a camera boom
8998058, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
8998059, Aug 01 2011 Ethicon Endo-Surgery, Inc Adjunct therapy device having driver with cavity for hemostatic agent
8998061, Oct 01 2010 Covidien LP Surgical fastener applying apparatus
8998935, Dec 17 2002 Applied Medical Resources Corporation Surgical staple-clip and applier
8998951, Mar 15 2011 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Method of manufacturing surgical staples
9004339, May 26 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Cartridgizable feeder belt for surgical stapler
9005230, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
9005238, Aug 23 2007 Covidien LP Endoscopic surgical devices
9005243, Jun 27 2007 Covidien LP Buttress and surgical stapling apparatus
9010608, Dec 14 2011 Covidien LP Releasable buttress retention on a surgical stapler
9016540, Apr 27 2009 Covidien LP Device and method for controlling compression of tissue
9016541, May 09 2008 Covidien LP Varying tissue compression with an anvil configuration
9016542, Sep 30 2010 Ethicon Endo-Surgery, Inc Staple cartridge comprising compressible distortion resistant components
9017331, Jul 27 2011 Bone staple, instrument and method of use and manufacturing
9023014, Sep 21 2007 Covidien LP Quick connect assembly for use between surgical handle assembly and surgical accessories
9027817, Sep 23 1997 Covidien LP Surgical stapling apparatus including sensing mechanism
9028494, Jun 28 2012 Cilag GmbH International Interchangeable end effector coupling arrangement
9028495, Jun 23 2010 Covidien LP Surgical instrument with a separable coaxial joint
9028519, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
9033203, Sep 30 2010 Ethicon Endo-Surgery, Inc Fastening instrument for deploying a fastener system comprising a retention matrix
9033204, Mar 14 2011 Cilag GmbH International Circular stapling devices with tissue-puncturing anvil features
9038881, May 05 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Feeder belt actuation mechanism for true multi-fire surgical stapler
9044227, Sep 30 2010 Ethicon Endo-Surgery, Inc Collapsible fastener cartridge
9044228, Sep 30 2010 Ethicon Endo-Surgery, Inc Fastener system comprising a plurality of fastener cartridges
9044229, Mar 15 2011 Ethicon Endo-Surgery, Inc Surgical fastener instruments
9044230, Feb 13 2012 Cilag GmbH International Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
9050083, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
9050084, Sep 23 2011 Cilag GmbH International Staple cartridge including collapsible deck arrangement
9050120, Sep 30 2007 Intuitive Surgical Operations, Inc Apparatus and method of user interface with alternate tool mode for robotic surgical tools
9055941, Sep 23 2011 Cilag GmbH International Staple cartridge including collapsible deck
9055942, Oct 03 2005 Boston Scientific Scimed, Inc Endoscopic plication devices and methods
9055943, Sep 21 2007 Covidien LP Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
9055944, Mar 10 2011 Covidien LP Surgical instrument buttress attachment
9060769, Sep 08 2000 ABBOTT VASCULAR INC. Surgical stapler
9060770, Oct 03 2006 Cilag GmbH International Robotically-driven surgical instrument with E-beam driver
9060894, Dec 03 2008 C R BARD, INC Catheter sheath for implant delivery
9072515, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus
9072523, Nov 05 2010 Cilag GmbH International Medical device with feature for sterile acceptance of non-sterile reusable component
9072535, May 27 2011 Cilag GmbH International Surgical stapling instruments with rotatable staple deployment arrangements
9072536, Jun 28 2012 Cilag GmbH International Differential locking arrangements for rotary powered surgical instruments
9078653, Mar 26 2012 Cilag GmbH International Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
9084601, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
9084602, Jan 26 2011 Covidien LP Buttress film with hemostatic action for surgical stapling apparatus
9089326, Oct 07 2011 Cilag GmbH International Dual staple cartridge for surgical stapler
9089330, Mar 14 2011 Cilag GmbH International Surgical bowel retractor devices
9089352, Oct 31 2008 Surgical robot system having tool for minimally invasive surgery
9095339, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
9095362, Nov 15 2010 Intuitive Surgical Operations, Inc Method for passively decoupling torque applied by a remote actuator into an independently rotating member
9096033, May 14 2010 Intuitive Surgical Operations, Inc. Surgical system instrument sterile adapter
9101358, Jun 15 2012 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
9101385, Jun 28 2012 Cilag GmbH International Electrode connections for rotary driven surgical tools
9107663, Sep 06 2011 Ethicon Endo-Surgery, Inc Stapling instrument comprising resettable staple drivers
9110587, Jul 13 2012 Samsung Electronics Co., Ltd. Method for transmitting and receiving data between memo layer and application and electronic device using the same
9113862, Sep 30 2010 Cilag GmbH International Surgical stapling instrument with a variable staple forming system
9113864, Sep 30 2010 Ethicon Endo-Surgery, Inc Surgical cutting and fastening instruments with separate and distinct fastener deployment and tissue cutting systems
9113865, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a layer
9113870, May 09 2008 Covidien LP Variable compression surgical fastener apparatus
9113874, Jan 31 2006 Ethicon LLC Surgical instrument system
9113880, Oct 05 2007 Covidien LP Internal backbone structural chassis for a surgical device
9113881, Mar 16 2012 Covidien LP Travel clip for surgical staple cartridge
9113883, Mar 14 2011 Cilag GmbH International Collapsible anvil plate assemblies for circular surgical stapling devices
9113884, Mar 14 2011 Cilag GmbH International Modular surgical tool systems
9119657, Jun 28 2012 Cilag GmbH International Rotary actuatable closure arrangement for surgical end effector
9119898, Nov 07 2008 Sofradim Production Medical implant including a 3D mesh of oxidized cellulose and a collagen sponge
9119957, Jun 28 2002 Cochlear Limited; The University of Iowa Research Foundation Cochlear implant system component having multiple electrode assemblies
9123286, Mar 05 2012 SAMSUNG DISPLAY CO , LTD Power generator having a power selector and organic light emitting display device using the same
9125649, Sep 15 2011 Ethicon Endo-Surgery, Inc Surgical instrument with filled staple
9125654, Mar 14 2011 Cilag GmbH International Multiple part anvil assemblies for circular surgical stapling devices
9125662, Jun 28 2012 Cilag GmbH International Multi-axis articulating and rotating surgical tools
9131940, Sep 29 2010 Cilag GmbH International Staple cartridge
9138225, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulatable end effector
9138226, Oct 04 2002 Covidien LP Cartridge assembly for a surgical stapling device
9149274, Mar 23 2006 Cilag GmbH International Articulating endoscopic accessory channel
9149324, Jul 08 2010 Cilag GmbH International Surgical instrument comprising an articulatable end effector
9149325, Jan 25 2013 Cilag GmbH International End effector with compliant clamping jaw
9155536, Apr 26 2011 Aesculap AG Circular stapler
9168038, Sep 30 2010 Ethicon Endo-Surgery, Inc Staple cartridge comprising a tissue thickness compensator
9168039, Sep 06 2007 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Surgical stapler with staples of different sizes
9179911, Sep 29 2006 Cilag GmbH International End effector for use with a surgical fastening instrument
9179912, Feb 14 2008 Cilag GmbH International Robotically-controlled motorized surgical cutting and fastening instrument
9186046, Aug 14 2007 AURIS HEALTH, INC Robotic instrument systems and methods utilizing optical fiber sensor
9186137, Dec 10 2010 Covidien LP Cartridge shipping aid
9186140, Feb 17 2004 Cook Biotech Incorporated Medical devices and methods useful for applying bolster material
9186143, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
9192377, Jun 02 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Work hardening of staples within surgical stapler
9192380, Mar 06 2007 Covidien LP Surgical stapling apparatus
9192384, Nov 09 2012 Covidien LP Recessed groove for better suture retention
9198661, Sep 06 2011 Ethicon Endo-Surgery, Inc Stapling instrument comprising a plurality of staple cartridges stored therein
9198662, Mar 28 2012 Cilag GmbH International Tissue thickness compensator having improved visibility
9204830, Apr 15 2005 Surgisense Corporation Surgical instruments with sensors for detecting tissue properties, and system using such instruments
9204877, Sep 21 2007 Covidien LP Surgical device having a rotatable jaw portion
9204878, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with interlockable firing system
9204879, Jun 28 2012 Cilag GmbH International Flexible drive member
9204880, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprising capsules defining a low pressure environment
9204923, Jul 16 2008 Intuitive Surgical Operations, Inc Medical instrument electronically energized using drive cables
9211120, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprising a plurality of medicaments
9211121, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus
9211122, Mar 14 2011 Cilag GmbH International Surgical access devices with anvil introduction and specimen retrieval structures
9216019, Sep 23 2011 Cilag GmbH International Surgical stapler with stationary staple drivers
9216020, Sep 30 2010 CHANGZHOU KANGDI MEDICAL STAPLER CO , LTD Endoscopic surgical cutting stapler with a chain articulation
9216062, Feb 15 2012 Intuitive Surgical Operations, Inc Seals and sealing methods for a surgical instrument having an articulated end effector actuated by a drive shaft
9220500, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising structure to produce a resilient load
9220501, Sep 30 2010 Cilag GmbH International Tissue thickness compensators
9220502, Dec 28 2011 Covidien LP Staple formation recognition for a surgical device
9220559, Sep 24 2010 Cilag GmbH International Articulation joint features for articulating surgical device
9226751, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
9232941, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a reservoir
9232945, Sep 09 2010 Cilag GmbH International Surgical stapling head assembly with firing lockout for a surgical stapler
9237891, Aug 31 2005 Cilag GmbH International Robotically-controlled surgical stapling devices that produce formed staples having different lengths
9237892, Dec 14 2011 Covidien LP Buttress attachment to the cartridge surface
9241714, Mar 28 2012 Cilag GmbH International Tissue thickness compensator and method for making the same
9241758, Jan 25 2013 Cilag GmbH International Surgical instrument with blade compliant along vertical cutting edge plane
9254131, Jul 11 2007 Covidien LP Surgical staple with augmented compression area
9265500, Jun 17 2010 Covidien LP Surgical staple
9271753, Aug 08 2002 Atropos Limited Surgical device
9271799, May 27 2011 Cilag GmbH International Robotic surgical system with removable motor housing
9272406, Sep 30 2010 Cilag GmbH International Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
9277919, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising fibers to produce a resilient load
9277922, Dec 14 2011 Covidien LP Surgical stapling apparatus including buttress attachment via tabs
9282962, Sep 30 2010 Cilag GmbH International Adhesive film laminate
9282963, Nov 02 2010 Covidien LP Adapter for powered surgical devices
9282966, Jul 28 2004 Cilag GmbH International Surgical stapling instrument
9282974, Jun 28 2012 Cilag GmbH International Empty clip cartridge lockout
9283054, Aug 23 2013 Cilag GmbH International Interactive displays
9289206, Jun 29 2007 Cilag GmbH International Lateral securement members for surgical staple cartridges
9289207, Nov 29 2012 Cilag GmbH International Surgical staple with integral pledget for tip deflection
9289210, Sep 19 2008 Cilag GmbH International Surgical stapler with apparatus for adjusting staple height
9289212, Sep 17 2010 Cilag GmbH International Surgical instruments and batteries for surgical instruments
9289225, Jan 31 2006 Cilag GmbH International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
9289256, Jun 28 2012 Cilag GmbH International Surgical end effectors having angled tissue-contacting surfaces
9295463, Oct 08 2009 Covidien LP Shape memory fasteners and method of use
9295464, Sep 30 2010 Cilag GmbH International Surgical stapler anvil comprising a plurality of forming pockets
9295466, Nov 30 2012 Covidien LP Surgical apparatus including surgical buttress
9301752, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a plurality of capsules
9301753, Sep 30 2010 Cilag GmbH International Expandable tissue thickness compensator
9301755, Sep 30 2010 Cilag GmbH International Compressible staple cartridge assembly
9301759, Mar 23 2006 Cilag GmbH International Robotically-controlled surgical instrument with selectively articulatable end effector
9307965, Sep 30 2010 Cilag GmbH International Tissue stapler having a thickness compensator incorporating an anti-microbial agent
9307986, Mar 01 2013 Cilag GmbH International Surgical instrument soft stop
9307987, Dec 24 2009 Cilag GmbH International Surgical cutting instrument that analyzes tissue thickness
9307988, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
9307989, Mar 28 2012 Cilag GmbH International Tissue stapler having a thickness compensator incorportating a hydrophobic agent
9307994, Apr 03 2001 Covidien LP Surgical stapling device for performing circular anastomoses
9308009, Nov 05 2010 Cilag GmbH International Surgical instrument with modular shaft and transducer
9314246, Sep 30 2010 Cilag GmbH International Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
9314247, Mar 28 2012 Cilag GmbH International Tissue stapler having a thickness compensator incorporating a hydrophilic agent
9314594, Mar 27 2008 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter manipulator assembly
9320518, Sep 30 2010 Cilag GmbH International Tissue stapler having a thickness compensator incorporating an oxygen generating agent
9320520, Jan 31 2006 Cilag GmbH International Surgical instrument system
9320521, Jun 27 2006 Cilag GmbH International Surgical instrument
9320523, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprising tissue ingrowth features
9326767, Mar 01 2013 Cilag GmbH International Joystick switch assemblies for surgical instruments
9326768, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
9326769, Jan 31 2006 Cilag GmbH International Surgical instrument
9326770, Jan 31 2006 Cilag GmbH International Surgical instrument
9326771, Sep 19 2008 Cilag GmbH International Staple cartridge
9332974, Sep 30 2010 Cilag GmbH International Layered tissue thickness compensator
9332984, Mar 27 2013 Cilag GmbH International Fastener cartridge assemblies
9332987, Mar 14 2013 Cilag GmbH International Control arrangements for a drive member of a surgical instrument
9333082, Jul 10 2007 Warsaw Orthopedic, Inc Delivery system attachment
9345477, Sep 30 2010 Cilag GmbH International Tissue stapler having a thickness compensator comprising incorporating a hemostatic agent
9345481, Mar 13 2013 Cilag GmbH International Staple cartridge tissue thickness sensor system
9351726, Mar 14 2013 Cilag GmbH International Articulation control system for articulatable surgical instruments
9351727, Mar 14 2013 Cilag GmbH International Drive train control arrangements for modular surgical instruments
9351730, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprising channels
9351731, Dec 14 2011 Covidien LP Surgical stapling apparatus including releasable surgical buttress
9358003, Mar 01 2013 Cilag GmbH International Electromechanical surgical device with signal relay arrangement
9358005, Sep 30 2010 Cilag GmbH International End effector layer including holding features
9358015, Aug 29 2008 Covidien LP Endoscopic surgical clip applier with wedge plate
9364217, Oct 16 2012 Covidien LP In-situ loaded stapler
9364219, Oct 04 2005 Covidien LP Staple drive assembly
9364220, Jun 19 2012 Covidien LP Apparatus for endoscopic procedures
9364229, Mar 15 2005 Covidien LP Circular anastomosis structures
9364230, Jun 28 2012 Cilag GmbH International Surgical stapling instruments with rotary joint assemblies
9364233, Sep 30 2010 Cilag GmbH International Tissue thickness compensators for circular surgical staplers
9370341, Oct 23 2008 Covidien LP Surgical retrieval apparatus
9370358, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
9370364, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
9386983, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument
9386984, Feb 08 2013 Cilag GmbH International Staple cartridge comprising a releasable cover
9386985, Oct 15 2012 Cilag GmbH International Surgical cutting instrument
9386988, Sep 30 2010 Cilag GmbH International Retainer assembly including a tissue thickness compensator
9393015, Feb 06 2009 Cilag GmbH International Motor driven surgical fastener device with cutting member reversing mechanism
9393018, Sep 22 2011 Cilag GmbH International Surgical staple assembly with hemostatic feature
9398911, Mar 01 2013 Cilag GmbH International Rotary powered surgical instruments with multiple degrees of freedom
9402604, Jul 20 2012 Covidien LP Apparatus for endoscopic procedures
9402626, Mar 23 2006 Cilag GmbH International Rotary actuatable surgical fastener and cutter
9402628, Oct 26 2011 Covidien LP Staple feeding and forming apparatus
9408604, Sep 29 2006 Cilag GmbH International Surgical instrument comprising a firing system including a compliant portion
9408606, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
9408622, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
9414838, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprised of a plurality of materials
9414848, Apr 30 2014 GYRUS ACMI, INC , D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA Rotary tool with improved coupling assembly
9414880, Oct 24 2011 Cilag GmbH International User interface in a battery powered device
9421013, Oct 28 2009 Covidien LP Surgical Fastening Apparatus
9421014, Oct 18 2012 Covidien LP Loading unit velocity and position feedback
9427223, Apr 09 2007 Creative Surgical, LLC Frame device
9427232, Nov 08 2013 C R BARD, INC Surgical fastener
9433411, Oct 04 2002 Covidien LP Tool assembly for a surgical stapling device
9433419, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a plurality of layers
9433420, Jan 23 2013 Covidien LP Surgical apparatus including surgical buttress
9439649, Jan 31 2006 Cilag GmbH International Surgical instrument having force feedback capabilities
9439651, May 19 2006 Cilag GmbH International Methods for cryptographic identification of interchangeable parts for surgical instruments
9445808, Dec 11 2012 Cilag GmbH International Electrosurgical end effector with tissue tacking features
9445813, Aug 23 2013 Cilag GmbH International Closure indicator systems for surgical instruments
9451956, Nov 10 2008 Boston Scientific Scimed, Inc Multi-fire stapling systems
9451958, Jan 31 2006 Cilag GmbH International Surgical instrument with firing actuator lockout
9463260, Jun 29 2009 Covidien LP Self-sealing compositions
9468438, Mar 01 2013 Cilag GmbH International Sensor straightened end effector during removal through trocar
9480476, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising resilient members
9480492, Oct 25 2011 Covidien LP Apparatus for endoscopic procedures
9483095, Mar 04 2013 Abbott Medical Optics Inc Apparatus and method for providing a modular power supply with multiple adjustable output voltages
9486213, Nov 14 2011 THD Lap Ltd.; EASYLAP LTD Drive mechanism for articulating tacker
9486214, Feb 06 2009 Cilag GmbH International Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
9486302, Feb 11 2009 Nanyang Technological University Multi-layered surgical prosthesis
9492146, Oct 25 2011 Covidien LP Apparatus for endoscopic procedures
9492167, Mar 23 2006 Cilag GmbH International Articulatable surgical device with rotary driven cutting member
9492170, Aug 10 2011 Cilag GmbH International Device for applying adjunct in endoscopic procedure
9492189, Mar 13 2013 Covidien LP Apparatus for endoscopic procedures
9498211, May 12 2009 Ethicon, Inc Methods of using applicator instruments for securing prosthetic devices to tissue
9498215, Dec 31 2012 Intuitive Surgical Operations, Inc Surgical staple cartridge with enhanced knife clearance
9498219, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
9510827, Mar 25 2013 Covidien LP Micro surgical instrument and loading unit for use therewith
9510828, Aug 23 2013 Cilag GmbH International Conductor arrangements for electrically powered surgical instruments with rotatable end effectors
9510830, Jul 28 2004 Cilag GmbH International Staple cartridge
9510846, Jan 26 2010 ARTACK MEDICAL 2013 LTD Articulating medical instrument
9510925, Feb 02 2010 Covidien LP Surgical meshes
951393,
9517063, Mar 28 2012 Cilag GmbH International Movable member for use with a tissue thickness compensator
9517068, Jan 31 2006 Cilag GmbH International Surgical instrument with automatically-returned firing member
9522029, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument having handle based power source
9526564, Oct 08 2012 Covidien LP Electric stapler device
9539020, Dec 27 2013 Cilag GmbH International Coupling features for ultrasonic surgical instrument
9545258, May 17 2007 Boston Scientific Scimed, Inc Tissue aperture securing and sealing apparatuses and related methods of use
9549732, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
9549735, Dec 23 2013 Cilag GmbH International Fastener cartridge comprising a firing member including fastener transfer surfaces
9554794, Mar 01 2013 Cilag GmbH International Multiple processor motor control for modular surgical instruments
9554796, Jul 18 2012 Covidien LP Multi-fire surgical stapling apparatus including safety lockout and visual indicator
9561032, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
9561038, Jun 28 2012 Cilag GmbH International Interchangeable clip applier
9561045, Jun 13 2006 Intuitive Surgical Operations, Inc Tool with rotation lock
9566061, Sep 30 2010 Cilag GmbH International Fastener cartridge comprising a releasably attached tissue thickness compensator
9572574, Sep 30 2010 Cilag GmbH International Tissue thickness compensators comprising therapeutic agents
9572577, Mar 27 2013 Cilag GmbH International Fastener cartridge comprising a tissue thickness compensator including openings therein
9574644, May 30 2013 Cilag GmbH International Power module for use with a surgical instrument
9585657, Feb 15 2008 Cilag GmbH International Actuator for releasing a layer of material from a surgical end effector
9585658, Jun 04 2007 Cilag GmbH International Stapling systems
9585660, Jan 07 2010 Cilag GmbH International Method for testing a surgical tool
9585662, Dec 23 2013 Cilag GmbH International Fastener cartridge comprising an extendable firing member
9585663, Jul 28 2004 Cilag GmbH International Surgical stapling instrument configured to apply a compressive pressure to tissue
9592050, Mar 28 2012 Cilag GmbH International End effector comprising a distal tissue abutment member
9592052, Aug 31 2005 Cilag GmbH International Stapling assembly for forming different formed staple heights
9592053, Sep 30 2010 Cilag GmbH International Staple cartridge comprising multiple regions
9592054, Sep 23 2011 Cilag GmbH International Surgical stapler with stationary staple drivers
9597073, Mar 22 2007 Covidien LP Apparatus for forming variable height surgical fasteners
9597074, Aug 15 2013 Cilag GmbH International Endoluminal stapler with rotating wheel cam for multi-staple firing
9597075, Jul 30 2010 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
9597080, Sep 24 2007 Covidien LP Insertion shroud for surgical instrument
9597104, Jun 01 2012 Covidien LP Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
9603595, Sep 29 2006 Cilag GmbH International Surgical instrument comprising an adjustable system configured to accommodate different jaw heights
9603598, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved end effector
9603991, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having a medical substance dispenser
9610080, Oct 15 2009 Covidien LP Staple line reinforcement for anvil and cartridge
9615826, Sep 30 2010 Cilag GmbH International Multiple thickness implantable layers for surgical stapling devices
9629623, Mar 14 2013 Cilag GmbH International Drive system lockout arrangements for modular surgical instruments
9629626, Feb 02 2006 Covidien LP Mechanically tuned buttress material to assist with proper formation of surgical element in diseased tissue
9629629, Mar 14 2013 Cilag GmbH International Control systems for surgical instruments
9629814, Sep 30 2010 Cilag GmbH International Tissue thickness compensator configured to redistribute compressive forces
9636113, Jan 03 2008 Covidien LP Surgical stapler
9642620, Dec 23 2013 Cilag GmbH International Surgical cutting and stapling instruments with articulatable end effectors
9649096, Mar 22 2011 HUMAN EXTENSIONS LTD Motorized surgical instruments
9649110, Apr 16 2013 Cilag GmbH International Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
9649111, Jun 28 2012 Cilag GmbH International Replaceable clip cartridge for a clip applier
9655613, Mar 14 2013 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Beltless staple chain for cartridge and cartridgeless surgical staplers
9655614, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
9655615, Apr 19 2011 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Active wedge and I-beam for surgical stapler
9655624, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved end effector
9656024, May 25 2011 AUTO INJECTION TECHNOLOGIES LLC Medicament delivery device with cap
9658011, Aug 17 2011 LWRC International LLC Bolt carrier and bolt for gas operated firearms
9662110, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulatable end effector
9662131, Oct 31 2007 KARL STORZ SE & CO KG Manipulator for medical use
9668729, Mar 13 2013 Covidien LP Surgical stapling apparatus
9668732, Mar 15 2013 Applied Medical Resources Corporation Surgical stapler handle assembly having actuation mechanism with longitudinally rotatable shaft
9675344, Jan 07 2011 Z-MEDICAL GMBH & CO KG Surgical instrument
9675351, Oct 26 2011 Covidien LP Buttress release from surgical stapler by knife pushing
9675355, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved end effector
9675372, Dec 24 2009 Cilag GmbH International Motor-driven surgical cutting instrument with electric actuator directional control assembly
9675375, Mar 29 2006 Cilag GmbH International Ultrasonic surgical system and method
9681870, Dec 23 2013 Cilag GmbH International Articulatable surgical instruments with separate and distinct closing and firing systems
9681873, May 19 2006 Cilag GmbH International Electrical surgical stapling instrument with tissue compressive force control
9687230, Mar 14 2013 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
9687231, Feb 13 2008 Cilag GmbH International Surgical stapling instrument
9687232, Dec 23 2013 Cilag GmbH International Surgical staples
9687236, Oct 01 2010 Cilag GmbH International Surgical instrument having a power control circuit
9687237, Sep 23 2011 Cilag GmbH International Staple cartridge including collapsible deck arrangement
9690362, Mar 26 2014 Cilag GmbH International Surgical instrument control circuit having a safety processor
9693772, Oct 15 2009 Covidien LP Staple line reinforcement for anvil and cartridge
9693777, Feb 24 2014 Cilag GmbH International Implantable layers comprising a pressed region
9693819, Apr 27 2000 Medtronic, Inc. Vibration sensitive ablation device and method
9700309, Mar 01 2013 Cilag GmbH International Articulatable surgical instruments with conductive pathways for signal communication
9700310, Aug 23 2013 Cilag GmbH International Firing member retraction devices for powered surgical instruments
9700312, Jan 28 2014 Covidien LP Surgical apparatus
9700317, Sep 30 2010 Cilag GmbH International Fastener cartridge comprising a releasable tissue thickness compensator
9700319, May 15 2013 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Surgical stapling and cutting apparatus, clamp mechanisms, systems and methods
9700321, Jan 11 2007 Cilag GmbH International Surgical stapling device having supports for a flexible drive mechanism
9706991, Sep 29 2006 Cilag GmbH International Staple cartridge comprising staples including a lateral base
9706993, Mar 08 2013 Covidien LP Staple cartridge with shipping wedge
9707043, Sep 02 2011 Stryker Corporation Surgical instrument including housing, a cutting accessory that extends from the housing and actuators that establish the position of the cutting accessory relative to the housing
9724091, Jan 11 2007 Cilag GmbH International Surgical stapling device
9724092, Dec 23 2013 Cilag GmbH International Modular surgical instruments
9724094, Sep 05 2014 Cilag GmbH International Adjunct with integrated sensors to quantify tissue compression
9724096, Mar 29 2014 STANDARD BARIATRICS, INC End effectors, surgical stapling devices, and methods of using same
9724098, Mar 28 2012 Cilag GmbH International Staple cartridge comprising an implantable layer
9730692, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved staple cartridge
9730695, Mar 26 2014 Cilag GmbH International Power management through segmented circuit
9730697, Feb 13 2012 Cilag GmbH International Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
9733663, Mar 26 2014 Cilag GmbH International Power management through segmented circuit and variable voltage protection
9737301, Sep 05 2014 Cilag GmbH International Monitoring device degradation based on component evaluation
9737302, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having a restraining member
9737303, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
9737365, May 23 2003 KEYSIGHT TECHNOLOGIES SINGAPORE HOLDINGS PTE LTD Tool with articulation lock
9743928, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
9743929, Mar 26 2014 Cilag GmbH International Modular powered surgical instrument with detachable shaft assemblies
9750498, Jun 04 2007 Cilag GmbH International Drive systems for surgical instruments
9750499, Mar 26 2014 Cilag GmbH International Surgical stapling instrument system
9750501, Jan 11 2007 Cilag GmbH International Surgical stapling devices having laterally movable anvils
9750502, Oct 01 2010 Covidien LP Surgical stapling device for performing circular anastomosis and surgical staples for use therewith
9757123, Jan 10 2007 Cilag GmbH International Powered surgical instrument having a transmission system
9757124, Feb 24 2014 Cilag GmbH International Implantable layer assemblies
9757126, Mar 31 2014 Covidien LP Surgical stapling apparatus with firing lockout mechanism
9757128, Sep 05 2014 Cilag GmbH International Multiple sensors with one sensor affecting a second sensor's output or interpretation
9757130, Feb 28 2007 Cilag GmbH International Stapling assembly for forming different formed staple heights
9763662, Dec 23 2013 Cilag GmbH International Fastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
9770245, Feb 15 2008 Cilag GmbH International Layer arrangements for surgical staple cartridges
9770317, Dec 31 2014 Ethicon, Inc Curved surgical fasteners for securing prosthetic devices to tissue
9775608, Feb 24 2014 Cilag GmbH International Fastening system comprising a firing member lockout
9775609, Aug 23 2013 Cilag GmbH International Tamper proof circuit for surgical instrument battery pack
9775613, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved end effector
9775614, May 27 2011 Cilag GmbH International Surgical stapling instruments with rotatable staple deployment arrangements
9782169, Mar 01 2013 Cilag GmbH International Rotary powered articulation joints for surgical instruments
9788834, Mar 28 2012 Cilag GmbH International Layer comprising deployable attachment members
9788836, Sep 05 2014 Cilag GmbH International Multiple motor control for powered medical device
9795379, Feb 28 2013 Cilag GmbH International Surgical instrument with multi-diameter shaft
9795380, Sep 02 2014 Ethicon LLC Devices and methods for facilitating closing and clamping of an end effector of a surgical device
9795381, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
9795382, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a cam and driver arrangement
9795384, Mar 27 2013 Cilag GmbH International Fastener cartridge comprising a tissue thickness compensator and a gap setting element
9801626, Apr 16 2013 Cilag GmbH International Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
9801627, Sep 26 2014 Cilag GmbH International Fastener cartridge for creating a flexible staple line
9801628, Sep 26 2014 Cilag GmbH International Surgical staple and driver arrangements for staple cartridges
9801634, Sep 30 2010 Cilag GmbH International Tissue thickness compensator for a surgical stapler
9804618, Mar 26 2014 Cilag GmbH International Systems and methods for controlling a segmented circuit
9808244, Mar 14 2013 Cilag GmbH International Sensor arrangements for absolute positioning system for surgical instruments
9808246, Mar 06 2015 Cilag GmbH International Method of operating a powered surgical instrument
9808247, Sep 30 2010 Cilag GmbH International Stapling system comprising implantable layers
9808249, Aug 23 2013 Cilag GmbH International Attachment portions for surgical instrument assemblies
9814460, Apr 16 2013 Cilag GmbH International Modular motor driven surgical instruments with status indication arrangements
9814462, Sep 30 2010 Cilag GmbH International Assembly for fastening tissue comprising a compressible layer
9820738, Mar 26 2014 Cilag GmbH International Surgical instrument comprising interactive systems
9820741, May 12 2011 Covidien LP Replaceable staple cartridge
9820770, Nov 14 2008 Boston Scientific Scimed, Inc. Method and system for reversibly controlled drilling of luminal occlusions
9826976, Apr 16 2013 Cilag GmbH International Motor driven surgical instruments with lockable dual drive shafts
9826977, Mar 26 2014 Cilag GmbH International Sterilization verification circuit
9826978, Sep 30 2010 Cilag GmbH International End effectors with same side closure and firing motions
9833236, Sep 30 2010 Cilag GmbH International Tissue thickness compensator for surgical staplers
9833238, Sep 30 2010 Cilag GmbH International Retainer assembly including a tissue thickness compensator
9833241, Apr 16 2014 Cilag GmbH International Surgical fastener cartridges with driver stabilizing arrangements
9833242, Sep 30 2010 Cilag GmbH International Tissue thickness compensators
9839420, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising at least one medicament
9839421, Feb 28 2013 Cilag GmbH International Jaw closure feature for end effector of surgical instrument
9839422, Feb 24 2014 Cilag GmbH International Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
9839423, Feb 24 2014 Cilag GmbH International Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument
9839425, Jun 26 2014 Covidien LP Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
9839427, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
9839428, Dec 23 2013 Cilag GmbH International Surgical cutting and stapling instruments with independent jaw control features
9839429, Feb 15 2008 Cilag GmbH International Stapling system comprising a lockout
9839480, Jul 09 2012 Covidien LP Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
9844368, Apr 16 2013 Cilag GmbH International Surgical system comprising first and second drive systems
9844369, Apr 16 2014 Ethicon LLC Surgical end effectors with firing element monitoring arrangements
9844372, Sep 30 2010 Cilag GmbH International Retainer assembly including a tissue thickness compensator
9844373, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a driver row arrangement
9844374, Dec 18 2014 Cilag GmbH International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
9844375, Dec 18 2014 Cilag GmbH International Drive arrangements for articulatable surgical instruments
9844376, Nov 06 2014 Cilag GmbH International Staple cartridge comprising a releasable adjunct material
9844379, Jul 28 2004 Ethicon LLC Surgical stapling instrument having a clearanced opening
9848871, Jun 10 2014 Cilag GmbH International Woven and fibrous materials for reinforcing a staple line
9848873, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a driver and staple cavity arrangement
9848875, Mar 28 2012 Cilag GmbH International Anvil layer attached to a proximal end of an end effector
9848877, Sep 02 2014 Ethicon LLC Methods and devices for adjusting a tissue gap of an end effector of a surgical device
9848898, Mar 27 2008 Mayo Foundation for Medical Education and Research; AEGIS MEDICAL INNOVATIONS INC Navigation and tissue capture systems and methods
9855040, Mar 04 2015 Covidien LP Surgical stapling loading unit having articulating jaws
9855041, May 12 2009 Cilag GmbH International Surgical fasteners for securing prosthetic devices to tissue
9861359, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
9861361, Sep 30 2010 Cilag GmbH International Releasable tissue thickness compensator and fastener cartridge having the same
9867612, Apr 16 2013 Cilag GmbH International Powered surgical stapler
9867613, Dec 19 2013 Covidien LP Surgical staples and end effectors for deploying the same
9867616, May 09 2008 Covidien LP Variable compression surgical fastener cartridge
9867618, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus including firing force regulation
9868198, Jun 01 2012 Covidien LP Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
9872682, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
9872683, Mar 14 2013 Applied Medical Resources Corporation Surgical stapler with partial pockets
9872684, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus including firing force regulation
9877721, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising tissue control features
9883860, Mar 14 2013 Cilag GmbH International Interchangeable shaft assemblies for use with a surgical instrument
9883861, Sep 30 2010 Cilag GmbH International Retainer assembly including a tissue thickness compensator
9884456, Feb 24 2014 Cilag GmbH International Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments
9888919, Mar 14 2013 Cilag GmbH International Method and system for operating a surgical instrument
9888924, Mar 06 2007 Covidien LP Wound closure material
9889230, Oct 17 2008 Covidien LP Hemostatic implant
9895147, Nov 09 2005 Cilag GmbH International End effectors for surgical staplers
9895148, Mar 06 2015 Cilag GmbH International Monitoring speed control and precision incrementing of motor for powered surgical instruments
9895813, Mar 31 2008 Intuitive Surgical Operations, Inc Force and torque sensing in a surgical robot setup arm
9901342, Mar 06 2015 Cilag GmbH International Signal and power communication system positioned on a rotatable shaft
9901343, Dec 08 2011 OCUNETICS, INC ; O3X OPTIX LLC; O3 Optix LLC Fasteners, deployment systems, and methods for ophthalmic tissue closure and fixation of ophthalmic prostheses and other uses
9907620, Jun 28 2012 Cilag GmbH International Surgical end effectors having angled tissue-contacting surfaces
9913642, Mar 26 2014 Cilag GmbH International Surgical instrument comprising a sensor system
9913647, Feb 15 2008 Cilag GmbH International Disposable loading unit for use with a surgical instrument
9913648, May 27 2011 Cilag GmbH International Surgical system
9913694, May 31 2011 Intuitive Surgical Operations, Inc Grip force control in a robotic surgical instrument
9918704, Mar 14 2011 Cilag GmbH International Surgical instrument
9918716, Mar 28 2012 Cilag GmbH International Staple cartridge comprising implantable layers
9918717, Mar 18 2015 Covidien LP Pivot mechanism for surgical device
9918778, May 02 2006 Aesculap AG Laparoscopic radiofrequency surgical device
9924942, Aug 23 2013 Cilag GmbH International Motor-powered articulatable surgical instruments
9924944, Oct 16 2014 Cilag GmbH International Staple cartridge comprising an adjunct material
9924947, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a compressible portion
9924961, Mar 06 2015 Cilag GmbH International Interactive feedback system for powered surgical instruments
9931118, Feb 27 2015 Cilag GmbH International Reinforced battery for a surgical instrument
9943309, Dec 18 2014 Cilag GmbH International Surgical instruments with articulatable end effectors and movable firing beam support arrangements
9943310, Sep 26 2014 Cilag GmbH International Surgical stapling buttresses and adjunct materials
9962158, Feb 14 2008 Cilag GmbH International Surgical stapling apparatuses with lockable end effector positioning systems
9962161, Feb 12 2014 Cilag GmbH International Deliverable surgical instrument
9968354, Dec 23 2013 Cilag GmbH International Surgical staples and methods for making the same
9968355, Dec 18 2014 Cilag GmbH International Surgical instruments with articulatable end effectors and improved firing beam support arrangements
9968356, Nov 09 2005 Cilag GmbH International Surgical instrument drive systems
9968397, Oct 06 2006 Covidien LP Endoscopic vessel sealer and divider having a flexible articulating shaft
9974529, Mar 14 2011 Cilag GmbH International Surgical instrument
9974538, Mar 28 2012 Cilag GmbH International Staple cartridge comprising a compressible layer
9980630, Jun 13 2006 Intuitive Surgical Operations, Inc. Minimally invasive surgical system
9980713, Mar 14 2011 Cilag GmbH International Anvil assemblies with collapsible frames for circular staplers
9980729, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
9987000, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
9987006, Aug 23 2013 Cilag GmbH International Shroud retention arrangement for sterilizable surgical instruments
9987011, Oct 01 2010 Covidien LP Surgical fastener applying apparatus
9987012, Jul 21 2015 Covidien LP Small diameter cartridge design for a surgical stapling instrument
9987095, Jun 26 2014 Covidien LP Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units
9987099, Jun 18 2014 Covidien LP Disposable housings for encasing handle assemblies
9993248, Mar 06 2015 Cilag GmbH International Smart sensors with local signal processing
9993258, Feb 27 2015 Cilag GmbH International Adaptable surgical instrument handle
9999408, Sep 14 2011 Ethicon Endo-Surgery, Inc Surgical instrument with fluid fillable buttress
9999426, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
9999431, Jan 11 2007 Cilag GmbH International Surgical stapling device having supports for a flexible drive mechanism
20010025183,
20020022836,
20020029036,
20020095175,
20020103494,
20020117534,
20020127265,
20020134811,
20020143340,
20030009193,
20030039689,
20030045900,
20030078647,
20030084983,
20030093103,
20030096158,
20030139741,
20030153908,
20030163085,
20030181900,
20030195387,
20030205029,
20030216732,
20030236505,
20040006335,
20040006340,
20040028502,
20040030333,
20040034357,
20040044364,
20040068161,
20040068224,
20040068307,
20040070369,
20040073222,
20040078037,
20040093024,
20040098040,
20040101822,
20040102783,
20040108357,
20040110439,
20040115022,
20040116952,
20040147909,
20040164123,
20040167572,
20040181219,
20040193189,
20040199181,
20040222268,
20040225186,
20040232201,
20040236352,
20040243147,
20040243151,
20040243163,
20040247415,
20040254566,
20040254590,
20040260315,
20040267310,
20050010213,
20050032511,
20050033352,
20050054946,
20050059997,
20050070929,
20050075561,
20050080342,
20050085693,
20050090817,
20050096605,
20050096683,
20050124855,
20050125897,
20050131173,
20050131211,
20050131390,
20050131436,
20050131457,
20050137454,
20050137455,
20050139636,
20050143759,
20050143769,
20050154258,
20050154406,
20050165419,
20050169974,
20050171522,
20050177181,
20050182298,
20050187545,
20050203550,
20050216055,
20050228224,
20050240178,
20050245965,
20050246881,
20050256452,
20050261676,
20050263563,
20050267455,
20050283188,
20060008787,
20060015009,
20060020258,
20060020336,
20060025812,
20060041188,
20060047275,
20060049229,
20060052824,
20060052825,
20060064086,
20060079735,
20060086032,
20060087746,
20060089535,
20060100649,
20060173470,
20060180634,
20060185682,
20060201989,
20060212071,
20060235368,
20060252993,
20060271102,
20060287576,
20060289602,
20060291981,
20070010838,
20070026039,
20070026040,
20070027468,
20070027551,
20070049951,
20070049966,
20070051375,
20070073341,
20070078484,
20070084897,
20070093869,
20070102472,
20070106113,
20070106317,
20070119902,
20070134251,
20070135686,
20070135803,
20070155010,
20070170225,
20070173687,
20070173813,
20070175950,
20070175951,
20070175955,
20070190110,
20070191868,
20070194079,
20070194082,
20070203510,
20070208359,
20070213750,
20070225562,
20070233163,
20070243227,
20070244471,
20070246505,
20070275035,
20070276409,
20070279011,
20070286892,
20080003196,
20080015598,
20080021278,
20080023522,
20080029570,
20080029573,
20080029574,
20080029575,
20080030170,
20080051833,
20080065153,
20080078802,
20080082114,
20080082125,
20080082126,
20080085296,
20080086078,
20080091072,
20080108443,
20080128469,
20080129253,
20080135600,
20080140115,
20080154299,
20080169328,
20080169332,
20080169333,
20080172087,
20080190989,
20080197167,
20080200762,
20080200835,
20080200933,
20080249536,
20080255413,
20080262654,
20080287944,
20080294179,
20080296346,
20080297287,
20080308602,
20080308603,
20080315829,
20090001121,
20090001130,
20090004455,
20090005809,
20090012534,
20090020958,
20090048589,
20090076506,
20090078736,
20090081313,
20090090763,
20090099579,
20090099876,
20090119011,
20090143855,
20090149871,
20090171147,
20090177201,
20090177226,
20090188964,
20090198272,
20090204108,
20090206125,
20090206126,
20090206131,
20090206133,
20090206137,
20090206139,
20090206141,
20090206142,
20090242610,
20090247901,
20090255974,
20090270895,
20090275957,
20090277948,
20090281554,
20090292283,
20090308907,
20090318957,
20100016888,
20100023024,
20100023052,
20100036370,
20100069942,
20100076483,
20100076489,
20100100124,
20100133316,
20100133317,
20100145146,
20100147921,
20100147922,
20100179022,
20100191262,
20100193566,
20100204717,
20100222901,
20100249497,
20100267662,
20100274160,
20100292540,
20100298636,
20100312261,
20100318085,
20100331856,
20110006101,
20110011916,
20110022032,
20110024477,
20110024478,
20110036891,
20110046667,
20110060363,
20110082485,
20110082538,
20110087276,
20110091515,
20110114697,
20110125176,
20110137340,
20110147433,
20110163146,
20110174861,
20110180585,
20110192882,
20110215132,
20110275901,
20110276083,
20110278343,
20110290856,
20110293690,
20110295295,
20110313894,
20110315413,
20120004636,
20120016413,
20120029272,
20120074200,
20120080336,
20120080344,
20120080478,
20120080497,
20120080498,
20120109186,
20120125792,
20120130421,
20120143218,
20120175398,
20120193393,
20120199628,
20120234895,
20120234897,
20120248169,
20120283707,
20120289979,
20120292367,
20120298722,
20120310220,
20130006227,
20130012983,
20130020375,
20130020376,
20130023861,
20130026208,
20130026210,
20130030462,
20130041406,
20130087597,
20130098970,
20130116669,
20130131651,
20130153641,
20130162198,
20130175317,
20130214025,
20130233906,
20130256373,
20130256380,
20130261661,
20130270322,
20130317305,
20130334280,
20130334283,
20130334285,
20130341374,
20140001231,
20140001234,
20140005640,
20140005678,
20140005702,
20140005718,
20140014705,
20140018832,
20140039549,
20140041191,
20140048580,
20140103098,
20140151433,
20140158747,
20140165756,
20140166724,
20140166725,
20140166726,
20140175150,
20140175152,
20140188159,
20140224686,
20140224857,
20140243865,
20140246475,
20140248167,
20140249557,
20140263541,
20140263552,
20140263558,
20140284371,
20140291379,
20140291383,
20140299648,
20140303645,
20140330161,
20150053737,
20150053743,
20150053746,
20150053748,
20150060519,
20150060520,
20150060521,
20150076208,
20150076209,
20150076210,
20150083781,
20150090760,
20150090762,
20150144679,
20150150620,
20150173749,
20150173756,
20150173789,
20150196295,
20150196299,
20150201932,
20150201936,
20150201937,
20150201938,
20150201939,
20150201940,
20150201941,
20150231409,
20150250474,
20150272557,
20150272571,
20150272580,
20150272582,
20150297222,
20150297223,
20150297225,
20150313594,
20150324317,
20150374378,
20160000437,
20160000452,
20160066913,
20160074040,
20160183939,
20160183944,
20160199063,
20160199956,
20160235494,
20160242783,
20160249910,
20160249922,
20160256229,
20160262745,
20170105727,
20170105733,
20170224332,
20170231628,
20170281186,
20170360423,
20180168575,
20180168577,
20180168579,
20180168598,
20180168608,
20180168609,
20180168615,
20180168618,
20180168619,
20180168623,
20180168625,
20180168633,
20180168647,
20180168648,
20180168650,
20180368841,
20180368842,
20190105047,
20190150927,
20190269402,
20200015822,
20200054327,
20200222044,
20200345352,
20200390442,
20210068816,
20210177413,
20210307749,
20220054129,
20220061842,
20220257241,
20220296241,
20220296242,
20220296243,
20220313264,
20220346793,
20220370070,
AU2011218702,
AU2012200178,
CA2795323,
CA2813230,
CA2834501,
CN101779977,
CN103717151,
CN1163558,
CN1634601,
CN201617885,
CN201949071,
CN202397539,
CN202526242,
CN202982106,
CN203777011,
CN2488482,
CN2716900,
CN2738962,
CN2868212,
D286180, Oct 16 1984 United States Surgical Corporation Surgical fastener
D286441, Oct 16 1984 United States Surgical Corporation Surgical fastener
D286442, Dec 31 1985 United States Surgical Corporation Surgical fastener
D297764, Dec 18 1985 ETHICON, INC , A CORP OF NEW JERSEY Surgical staple cartridge
D327323, Aug 02 1989 Ethicon,Inc. Combination skin stapler and rotating head
D330699, Oct 19 1990 W W CROSS, INC , A CORP OF NH Insulated staple
D338729, Mar 22 1991 Ethicon, Inc. Linear surgical stapler
D347474, Oct 11 1991 Ethicon, Inc. Endoscopic stapler
D348930, Oct 11 1991 Ethicon, Inc. Endoscopic stapler
D352780, Apr 19 1993 Sherwood Services AG Combined suction, irrigation and electrosurgical handle
D357981, Sep 01 1993 United States Surgical Corporation Surgical stapler
D372086, Feb 03 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Aspirator attachment for a surgical device
D381077, Oct 25 1994 Ethicon Endo-Surgery Multifunctional surgical stapling instrument
D393067, Aug 27 1996 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical pencil
D416089, Apr 08 1996 Conmed Corporation Endoscopic linear stapling and dividing surgical instrument
D478665, Mar 22 2002 GYRUS ENT L L C Disposable trigger
D478986, Mar 22 2002 GYRUS ENT L L C Surgical tool
D484243, Mar 22 2002 GYRUS ENT L L C Surgical tool blade holder
D484595, Mar 22 2002 GYRUS ENT L L C Surgical tool blade holder
D484596, Mar 22 2002 GYRUS ENT L L C Surgical tool blade holder
D484977, Mar 22 2002 GYRUS ENT L L C Surgical tool blade holder
D502994, May 21 2003 Repeating multi-clip applier
D509297, Oct 17 2003 Covidien LP Surgical instrument
D509589, Oct 17 2003 Covidien LP Handle for surgical instrument
D605762, Jul 16 2007 Cilag GmbH International Surgical stapler cartridge
D650074, Oct 01 2010 Ethicon Endo-Surgery, Inc Surgical instrument
D706927, Jun 12 2013 BioMedical Enterprises, Inc. Orthopedic staple
D775336, Dec 23 2013 Cilag GmbH International Surgical fastener
D822206, Jun 24 2016 Cilag GmbH International Surgical fastener
D826405, Jun 24 2016 Cilag GmbH International Surgical fastener
D831209, Sep 14 2017 Cilag GmbH International Surgical stapler cartridge
D836198, Feb 17 2017 Cilag GmbH International Staple cartridge for a surgical stapler
D847989, Jun 24 2016 Cilag GmbH International Surgical fastener cartridge
D850617, Jun 24 2016 Cilag GmbH International Surgical fastener cartridge
D869655, Jun 28 2017 Cilag GmbH International Surgical fastener cartridge
D894389, Jun 24 2016 Cilag GmbH International Surgical fastener
D896379, Jun 24 2016 Cilag GmbH International Surgical fastener cartridge
D896380, Jun 24 2016 Cilag GmbH International Surgical fastener cartridge
D948043, Jun 24 2016 Cilag GmbH International Surgical fastener
DE10314072,
DE1775926,
DE19851291,
DE19924311,
DE20016423,
DE20112837,
DE20121753,
DE202004012389,
DE202007003114,
DE273689,
DE3036217,
DE3210466,
DE3709067,
EP756,
EP122046,
EP129442,
EP169044,
EP484677,
EP505036,
EP528478,
EP548998,
EP594148,
EP625335,
EP646357,
EP650701,
EP669104,
EP705571,
EP770355,
EP806914,
EP869742,
EP879742,
EP880338,
EP922435,
EP923907,
EP996378,
EP1011494,
EP1034747,
EP1034748,
EP1053719,
EP1055399,
EP1055400,
EP1080694,
EP1082944,
EP1090592,
EP1095627,
EP1157666,
EP1158917,
EP1253866,
EP1284120,
EP1285633,
EP1330201,
EP1330989,
EP1344498,
EP1374788,
EP1407719,
EP1599146,
EP1627605,
EP1632191,
EP1719461,
EP1767163,
EP1769754,
EP1837041,
EP1936253,
EP2039302,
EP2316345,
EP2486862,
EP2517638,
EP2621364,
EP2649948,
EP2649949,
EP2713902,
FR1112936,
FR2598905,
FR2765794,
FR2815842,
FR459743,
FR999646,
GB1210522,
GB1217159,
GB1339394,
GB2024012,
GB2109241,
GB2272159,
GB2336214,
GB939929,
GR930100110,
H1904,
H2037,
JP10118090,
JP2000014632,
JP2000033071,
JP2000112002,
JP2000166932,
JP2000171730,
JP2000287987,
JP2000325303,
JP2001087272,
JP2001276091,
JP2001514541,
JP2002051974,
JP2002085415,
JP2002143078,
JP2002314298,
JP2002528161,
JP2003135473,
JP2003300416,
JP2003521301,
JP2004147701,
JP2004162035,
JP2004229976,
JP2005013573,
JP2005080702,
JP2005131163,
JP2005131164,
JP2005131173,
JP2005131211,
JP2005131212,
JP2005137423,
JP2005328882,
JP2005335432,
JP2005342267,
JP2006187649,
JP2006281405,
JP2006346445,
JP2009189838,
JP2009507526,
JP2009539420,
JP2010069310,
JP2010098844,
JP2011524199,
JP2013541982,
JP2013541993,
JP2013542000,
JP4131860,
JP4215747,
JP4711908,
JP5033988,
JP5123325,
JP5237126,
JP56112235,
JP584252,
JP62170011,
JP6237937,
JP630945,
JP6327684,
JP7124166,
JP7255735,
JP7285089,
JP79622,
JP8159124,
JP8164141,
JP8182684,
JP8229050,
JP833642,
JP8507708,
KR20110003229,
RE28932, May 08 1975 United States Surgical Corporation Surgical stapling instrument
RE34519, Dec 31 1991 Ethicon, Inc. Surgical stapler cartridge lockout device
RE36720, Dec 13 1990 United States Surgical Corporation Apparatus and method for applying latchless surgical clips
RE37814, Sep 12 1996 Dean Allgeyer, M.D., Inc. Staple and staple applicator for use in skin fixation of catheters
RE38335, May 24 1994 ZIMMER SPINE, INC Surgical instrument
RE38708, Jul 11 1995 United States Surgical Corporation Disposable loading unit for surgical stapler
RE39358, May 21 1999 Gyrus Medical Limited Electrosurgery system and method
RE40237, May 30 2000 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
RE40514, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
RU1814161,
RU2008830,
RU2052979,
RU2098025,
RU2141279,
RU2144791,
RU2152756,
RU2161450,
RU2181566,
RU2187249,
RU2225170,
RU2242183,
RU2290884,
RU32984,
RU42750,
RU46916,
RU61114,
RU94014586,
RU94026118,
SU1009439,
SU1333319,
SU1377053,
SU1509051,
SU1561964,
SU1708312,
SU1722476,
SU1752361,
SU189517,
SU328636,
SU674747,
WO24322,
WO24330,
WO53112,
WO57796,
WO105702,
WO154594,
WO158371,
WO162164,
WO162169,
WO191646,
WO2065933,
WO219932,
WO226143,
WO236028,
WO3055402,
WO3079909,
WO3094747,
WO2004019803,
WO2004032783,
WO2004047626,
WO2004047653,
WO2004056277,
WO2004078050,
WO2004078051,
WO2004096015,
WO2006044581,
WO2006051252,
WO2006059067,
WO2006085389,
WO2007074430,
WO2007129121,
WO2007137304,
WO2007142625,
WO2008021969,
WO2008089404,
WO2009005969,
WO2009067649,
WO2009091497,
WO2011008672,
WO2011044343,
WO2012006306,
WO2012013577,
WO2012044606,
WO2012166503,
WO2013151888,
WO2015153340,
WO9315648,
WO9420030,
WO9517855,
WO9520360,
WO9623448,
WO9635464,
WO9639086,
WO9639088,
WO9724073,
WO9734533,
WO9903407,
WO9903409,
WO9948430,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 07 2019CRAINICH, LAWRENCEEthicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0637500866 pdf
Nov 12 2019HARRIS, JASON L Ethicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0637500866 pdf
Nov 12 2019SHELTON, FREDERICK E , IVEthicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0637500866 pdf
Nov 15 2019BAXTER, CHESTER O , IIIEthicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0637500866 pdf
Apr 05 2021Ethicon LLCCilag GmbH InternationalASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0637530204 pdf
Feb 23 2023Cilag GmbH International(assignment on the face of the patent)
Date Maintenance Fee Events
Feb 23 2023BIG: Entity status set to Undiscounted (note the period is included in the code).


Date Maintenance Schedule
Dec 03 20274 years fee payment window open
Jun 03 20286 months grace period start (w surcharge)
Dec 03 2028patent expiry (for year 4)
Dec 03 20302 years to revive unintentionally abandoned end. (for year 4)
Dec 03 20318 years fee payment window open
Jun 03 20326 months grace period start (w surcharge)
Dec 03 2032patent expiry (for year 8)
Dec 03 20342 years to revive unintentionally abandoned end. (for year 8)
Dec 03 203512 years fee payment window open
Jun 03 20366 months grace period start (w surcharge)
Dec 03 2036patent expiry (for year 12)
Dec 03 20382 years to revive unintentionally abandoned end. (for year 12)