A modular element for heat exchangers with thermoplastic tubes consisting of a plurality of tubes connected to one another by spacers located at intervals allowing the mutual tape-like positioning of the tubes, a tube nest consisting of a plurality of such modular elements, and a process for making the modular elements and the tube nests.

Patent
   4030540
Priority
Apr 20 1972
Filed
Mar 21 1973
Issued
Jun 21 1977
Expiry
Jun 21 1994
Assg.orig
Entity
unknown
71
6
EXPIRED
2. A tube nest for heat exchangers comprising a plurality of modular elements superimposed over one another and contiguous to one another to form a layered rectangular structure, each modular element being stackable, flexible and planar and capable of being spirally windable on a reel, each modular element comprising in combination a plurality of contiguous flexible thermoplastic tubes in a parallel and spaced apart single layer arrangement, a plurality of rigid spacers each consisting of two parts, each part having on its inner face semicircular groove forming holes when said two parts are joined together for collecting said tubes and to retain them freely movable therein, and pins and bores forming joint means on each part for joining said two parts to one another, and outer pins and bores forming coupling means on outer faces of said two parts for coupling said rigid spacers to one another in a superimposed position and for aligning the tubes of adjacent modular elements in either a staggered or in-line position, a tube head being mounted on the ends of said plurality of tubes, the ends being inserted into holes of said tube heads.
1. A tube nest for heat exchanger which is easily constructed from flexible modular elements spirally windable on a reel comprising:
a. a plurality of modular elements forming a rectangular box shaped structure, each module being stackable, flexible and planar;
b. each modular element comprising in combination a plurality of flexible thermoplastic tubes in a parallel and spaced apart single layer arrangement, a plurality of rigid spacers each comprising two parts, each part having an inner face with semicircular grooves and an outer flat face such that when said two parts are mated, parallel and spaced apertures are formed to retain said thermoplastic tubes of the modular element, pins and bores adjacent at least some of said semicircular grooves on the inner faces of each part forming a connection means to connect said two parts to form said rigid spacer;
c. abutting modular elements being joined at abutting flat surfaces of said rigid spacers by outer pins and bores as coupling means in said flat surfaces, said coupling means aligning the tubes of adjacent modular elements in either staggered or in-line position; and
d. a tube head being mounted on the ends of said plurality of tubes.
3. The tube nest of claim 2 wherein a metal form is provided to contain and support the tube heads and plastic tube layers and to allow the composition of the tube nest itself.

The present invention relates to heat exchangers consisting of tubes of the thermoplastic material, suitable for fluid under non high pressure and temperature, and thereby compatible with the nature of the materials forming the tubes themselves.

Said heat exchangers can be used for instance, and only by way of non limitative example, for refrigerating by means of air, the steam condensing water, in thermo-electric power plants.

More particularly, the object of the present invention is the structural arrangement of the tube nests of the heat exchangers, with reference, among others, to the mutual spacing apart and positioning of the tubes, so as to form a modular element, and to the connection of the tubes themselves (forming the exchange surface) to the manifolds supplying the fluid to the single tubes.

Another object of the present invention is the manufacturing process of the single modular elements and the connection of said elements to each other, so that more modular elements will form an extremely simple, economical tube nest, also having a very large surface and very great dimensions.

The manufacturing process allows the embodiment of the modular elements also with very long tubes, which after their assembling to form the modular element, can be easily transported as the modules are wound on a reel, and are subsequently unwound so that at the mounting space said modules can be connected to one another and held together by a frame, forming thus an exchanger with right tubes, with no intermediate coupling, suitable to form heat exchangers with a reduced number of connections between the tubes and the manifolds.

In the prior art, a particularly important problem was the connection system of the tubes to the tubehead and to the manifolds, due to the scarce safety offered by said connections for an entire reliability of the seals, and this system was always very expensive. Very important is also the solution of the positioning problem and of the mutual spacing apart of the tubes so as to allow the positioning and spacing apart of the tubes also for very long tubes, in order to ensure the geometrical features, i.e. the longitudinal and transversal pitch between the centres of the single tubes, suitable to embody the optimum geometric arrangement for the thermal exchange.

Certain other features are present in the type of exchanger according to the present invention, furthermore, namely the mounting possibility of assembling various standard elements; the manufacturing process allowing in the same time to transport very long modular elements with a very reduced cost and to obtain tube nests the dimensions of which were not attainable by the prior art, with the economy which can be obtained by the present invention.

All advantages and features above indicated are rendered possible by the manufacturing process according to this invention utilizing the flexibility of the thermoplastic tubes and according to which it is provided of:

a. winding or unwinding said tubes, individually or in groups of more tubes, on reels or coils;

b. connecting more tubes by means of suitable spacers, made of two parts, consisting of thermoplastic material, located along the axis of the tubes, at suitable intervals;

c. connecting to one another the spacers in order to allow the mutual positioning of the tubes until forming the tube nest proper;

d. allowing the connection of the ends of the tubes to the manifolds supplying the fluid into the tubes themselves by means of contrivances safely effective, reliable and economical.

The present invention will be now described with reference to certain embodiments thereof at present preferred, shown by way of non limitative example and with reference to the attached drawings, wherein:

FIG. 1 diagrammatically shows a modular element according to the present invention;

FIG. 2A, 2B, 2C show a spacer element component of the modular element of FIG. 1.

FIG. 3 shows a scheme of the constructive and mounting process for obtaining by a power operated system the modular element of FIG. 1.

FIG. 4 shows a roller used for spacing apart the tubes by the power operated process.

FIG. 5 shows a stationary comb-like spacer which can be used in order to obtain the spacing and the positioning of the tubes by the power operated process for making the modules.

FIG. 6 shows the scheme of a possible equipment for connecting to one another the two halves of the spacers by the power operated process for making the modules.

FIG. 7 shows one or more modular elements wound on a reel and ready to be transported.

FIG. 8 shows a scheme of the mounting system and process for obtaining from more modules the tube nest.

FIG. 9 shows more modular elements connected to one another until forming the tube nest.

FIG. 10A, 10B, 10C show some connections of the ends of the tubes forming the tube nest to manifolds supplying the fluid to the single tubes.

FIG. 11 diagrammatically shows in exploded view a tube nest obtained by the manufacturing process.

With reference in FIG. 1, the numeral reference 1 shows a plurality of tubes, having whatsoever cross sectional shape, either circular or not circular, the axes of which are parallel, as the tubes 1 are held and kept spaced apart from each other by the positioning and spacing elements 2, better shown in the FIGS. 2A, 2B, 2C located along the axes of the tubes 1, at suitable intervals.

With reference to FIGS. 2A, 2B, 2C, the spacer element 2 is also made of thermoplastic material, made of two halves 3 and 4, so that when the two halves have been joined, an element will be embodied, provided with the holes 5 suitably spaced apart from one another.

The two halves of the element 2 (see FIG. 2A) are provided with the pin and bore joint member 6 and 7 respectively, serving the function of connecting to one another the two halves so as to form a single element 2; the pin or gudgeon member 8 and the bore member 9 serve also the function of connecting together more elements 2 until forming a tube head obtained by assembling the elements themselves, as shown in FIG. 2C. The connection of the members can be obtained either by friction or by insertion of the pin member into the bore member and the joint members can have the most different forms, namely conical, cylindrical, with the bore cylindrical while the pin member has a cross-like form, with rectangular or square shape cross-section, etc., and can be located in whatever position on the spacers.

Each single element 2, in two separate part 3 and 4 is mounted on the tubes and when the two parts are closed, the element 2 establishes the mutual positioning of the axes of the tubes of a single modular element, as the tubes 1 are received within the holes 5 of the element 2.

By placing at regular intervals, along the axes of the tubes, more elements 2, the purpose will be attained of maintaining parallel to one another the axes of the tubes which in the illustrative example of FIG. 1 are all contained in one plane.

For mounting the modular element, the tubes can already be predisposed in suitable lengths and inserted into the seat 10 of one of the two halves, for instance the lower half part 4 of the spacer element 2; then the second half part 3 of the spacer element 2 will be placed on the lower half, and the joints 6 and 7, shown by way of example of FIG. 2A, are connected in order to connect the two half-elements 3 and 4 which will form a single spacer 2.

FIG. 3 diagrammatically shows another mounting process which is easy to embody as it is power operated and it uses spacer and/or conveyor rollers 11 or equivalent mechanical devices; the conveyor rollers 11 and/or the mechanical equivalent devices are provided with comb-like or groove-like devices which serve the function of holding constant the distances between the axes of the termoplastic tubes 1.

The tubes 1 feed the spacer roller 11 and/or the conveyor 14 as each tube comes either from a supply reel or directly from extrusion heads followed by the associated systems for cooling the tube, the reels or the extrusion systems being diagrammatically shown at 12 in FIG. 3.

The roller or rollers 11, the spacers 16 and/or the conveyor or the conveyors 14 cause the tubes 1 to forwards move, and said tubes are received into the spacer positioning members 2, as shown in FIGS. 2A, 2B, 2C, and this operation can be carried out either manually or by a power operated system.

The forwards movement of the tubes 1 can also be obtained by means of a collecting reel 15 and the spacing of the tubes coming from the feeding system 12 can also be made by means of stationary comb-like or ring-like elements 16, immersed if the case may be into a liquid bath, serving the function of cooling the combs or the rings. The numeral reference 14 denotes a conveyor tape supporting the modular element and which can be located before the collecting reel.

The FIG. 5 shows a detail of a spacer comb-like element as shown by 16 in FIG, 3, within the grooves of which can slide the tubes 1 coming from the system 12.

In FIG. 3, the numeral reference 16B denotes a guide which form a reservior for the spacer half-elements shown by 3 and 4 in FIG. 2A. The two half elements can also be mechanically connected as it is shown only by way of non limitative example in FIG. 6.

In FIG. 6 a system of contrast springs 22 and cams 21 allows a to and from movement within guides not shown in figure for the pins 20 connected to two frames 23, so that the pins 20 can enter into the seats 10 of the spacer half elements 3 and 4.

A system of cams 18 and the contrast springs 19 allows for the two frames 23 a mutual nearing and spacing away movement which causes the pins 20 to press against one another the two half-elements 3 and 4 and to carry out mechanically their connection, for instance by means of the pins 6 and the bores 7 as shown in FIG. 2A. The levers 24 with the return springs not shown in the figure allow, furthermore the connection to one another of one half element 3 and 4 at the time.

The movements of the cams 18 and 21 and the feeding movement of the tubes 1 are timed with one another.

When the tubes have been moved forward through the desired length in order to obtain a modular element or multiples thereof, the tubes are cut from the reel, and the modular element as shown in FIG. 1 will be thus completed.

The so mounted modular element can be wound around a collecting reel during its manufacture, and sequentially, (and this is rendered possible by the flexibility of the thermoplastic tubes) on the same reel it will be possible to wound more than one modular element of FIG. 1.

FIG. 7 shows, accordingly, one reel on which the modular elements ready for their possible transportation are wound.

With reference to FIG. 8, a mounting process will be described which starting from the modules allows the tube nest to be obtained.

One of the modules will be unwound from one reel 15 containing one or more modules, and the unwound modules will be located on a plane formed if the case may be, by the same frame which is destined to support the tube nest when mounted.

Subsequently, from the same reel or from other reels, a second module will be unwound and located above the module previously located on the plane so that the respective spacers 2 of the two modules will be located on one another.

In fact the first spacer 2, counted starting from the end of the tubes forming the first module can be located in contact with the first spacer 2, counted as above described, of the module which has been subsequently located above the first.

The same condition occurs also for all the spacer elements 2 of both modules, which must contact, accordingly, the second spacer of the first module with the second spacer of the second module which has been subsequently superposed respectively and so on.

Each of the superposed spacers 2 will be positioned with respect to the other so that the joint members 8 and 9 shown in FIG. 2A located outside of the spacers will be inserted into one another by a suitable pressure.

In this case by arranging the pin member 8 of the joint in respect of the bore 9 it will be possible either to stagger or not to stagger the axes of the tubes of the two modules, embodying thus an aligned arrangment or a staggered arrangement, so as to obtain a rectangular, or square or triangular arrangement of the centres of the single tubes pertaining to contigous lines.

The superposing operation of the modules continues sequentially until, a tube nest has been obtained by locating more modules on one another.

FIG. 9 shows more modules connected to one another by the spacers 2 and already mounted in a frame.

FIG. 11 shows the elements of the finished nest consisting of the frame 25 formed by two longitudinal beams 26, by many cross members 27 connecting said beams and which can be shaped so as to collect the bases of the plate which has been formed due to the mutual connection, on one another, of the single spacers 2.

The frame 25 can be completed by other cross members 28 suitably connected to the beams 26 and can include also tie-rods 29 and sections 40 shown in FIG. 9 for connecting to one another the cross-members 27 and 28.

The beams 26 can also be connected with the cross-like tie rods 39.

The ends of the tubes 1 are connected to manifolds 31 of either tube head type and/or tubular type.

The FIG. 10A shows a kind of connection effected between the tubes 1 and the tubehead 30 through which holes have been made.

Within said holes the sleeves 32 made of rubber or other sufficiently elastic material are located, and after lubrication or in the absence thereof, into the hole of the sleeve the end of each tube 1 will be inserted. The insertion of the tubes into the holes of the sleeve 32 can be made before the module to which pertain the tubes which are inserted into the holes of the sleeves will be covered by the subsequent module.

The rubber sleeve 32 can have its outer surface and/or its inner hole either smooth or bowed or corrugated, etc.

Inside the plastic tube it is possible to insert a metal bushing 33 (FIG. 10B) which is capable of preventing the tube from being pressed flat.

FIG. 10b in fact shows the insertion of the ends of the tubes into the hole made through the tubehead of a manifold which shows two circlips; the fixed circlip 34 which has been inserted into the hole and connected to the tubehead by electric or resistance welding, and a second circlip 35 which is subsequently inserted into the same hole until pressing the O-ring 36 which adheres to the outer surface of the thermoplastic tube 1 and to the hole, embodying thus the seal.

Inside the thermoplastic tube 1 a metal bushing 33 will be inserted so as to avoid the tube to be crushed by the O-ring 36.

The circlip 35 will be then pressed and connected to the tubehead 30 by electrowelding dots or by resistance welding dots or by glueing, etc.

The FIG. 10C shows another type of connection; 37 is a metal tube forming a manifold element which can have a circular or non circular cross section, along a generatrix of which are provided the holes into which are received the metal nipples 33 suitably connected to the manifold 37 by means of welding, glueing by resins, mechanical fixing, etc.

On said nipples which have an external diameter equal to, or slighly lesser, than the internal diameter of the thermoplastic tubes 1, are inserted the thermoplastic tubes 1 themselves, so as to embody the unit as shown in the FIG. 10C.

The so obtained piece is inserted into a suitable mould for moulding thermoplastic material of the same nature as that forming the tubes.

The mould which consists of two halves, allows a layer of thermoplastic material 38 to be deposited on the outer surface of the manifold 37, on the outer surface of the ends of the tubes 1 inserted on the nipples 33, by injection of the plastic material.

The advantages obtained by the manufacturing system as above described are those of enabling the embodiment of a very economical exchanger, as the spacing operations of the tubes do not require that they are carried out individually for each tube at the moment of the construction of the exchanger, this being, as it is known, the most time consuming operation of the embodiment.

Also the operation for connecting the ends of the tubes to the manifolds is embodied by a reliable system as far as the seal is concerned, both in case of conventional manifold of the tubehead type, and in case of manifold obtained by covering of a metal tubular manifold by thermoplastic material of the same nature of the tubes.

Moreover, the manufacturing system and the mounting of the modules allows their transportation, even if formed by very long tubes, by winding of the modules and subsequent unwinding thereof, rendering thus possible the embodiment of very economical exchangers.

The surface of the exchanger can be extended at will by combination or connection of more modules, obtained by the described mounting and manufacturing process.

In the specification of the present invention, reference has been made, by way of example, to one or more particular embodiments, but it will be understood that modifications can be adopted without departing from the scope of the present industrial privilege.

Roma, Carlo

Patent Priority Assignee Title
10322262, May 21 2009 C R BARD, INC Medical device securement system
10362738, Sep 10 2015 Komatsu Ltd. Work vehicle
10537714, Nov 11 2009 VENETEC INTERNATIONAL, INC Stabilizing device for an extension set
10561815, Aug 31 2005 C. R. Bard, Inc. Anchoring system for a catheter
10729887, Mar 15 2013 C R BARD, INC Securement device having an integral strap and dressing
10852073, Jun 09 2014 GTK TIMEK GROUP SA Thermal roller and producing process
11035615, Aug 23 2018 Caterpillar Inc. Support clip for finned tube type heat exchangers
11047631, Feb 20 2019 Caterpillar Inc.; Caterpillar Inc Bumper clip for tube type heat exchangers
11478616, Mar 15 2013 C. R. Bard, Inc. Securement device having an integral strap and dressing
11813407, Aug 31 2005 C. R. Bard, Inc. Anchoring system for a catheter
4108240, May 07 1975 Aktiebolaget Atomenergi Heat exchanger system
4114683, Aug 18 1976 Hamon Sobelco S.A. Flexible tube type fluid-fluid heat exchanger
4117884, Mar 21 1975 Air Frohlich AG fur Energie-Ruckgewinnung Tubular heat exchanger and process for its manufacture
4199070, Feb 15 1977 Modular rack
4201264, Jul 31 1978 OWENS-ILLINOIS, INC Solar water tank
4231421, Dec 01 1978 Carrier Corporation Wound fin heat exchanger support
4265063, Jul 16 1979 CATERPILLAR INC , A CORP OF DE Guard structure for hydraulic conduits of a mobile apparatus
4304077, Jul 16 1979 CATERPILLAR INC , A CORP OF DE Mounting assembly for hydraulic conduits of a mobile apparatus
4344480, Mar 30 1978 JOY POWER PRODUCTS, INC , A CORP OF PA Support for heat exchange tubes
4378923, Jul 09 1981 Nippon Kokan Kabushiki Kaisha; Nichiei Distribution Systems, Inc. Binding device for elongated pipes
4408570, May 26 1982 Shell Oil Company Tube hanger for steam generator
4538678, Jul 29 1982 Nisshin Chemical Industry Co., Ltd. Heat exchanging device
4570704, Mar 26 1984 L AND M RADIATOR INC Support for heat exchanger tubes
4660790, Dec 05 1984 Nicolay GmbH Cable support with tines
4769876, Feb 26 1987 Wire separator structure and method
5136985, Sep 12 1991 Jason Incorporated; DLTK, INC Boiler tube support
5154139, May 14 1990 Norton Company Refractory tube block
5377939, Mar 11 1992 DaimlerChrysler Aerospace Airbus GmbH Device for mounting elongated components, such as electrical wiring, especially in an aircraft
5404941, Aug 10 1993 The Babcock & Wilcox Company Split ring tube spacer assembly
5660165, Jun 07 1994 Bradford White Corporation Back-up heater
5806811, May 22 1996 SIEMON COMPANY, THE Wire manager for use with stand-off legs
5941483, Apr 24 1998 Volvo Trucks North America, Inc.; Volvo Trucks North America, Inc Service line clamp with cable tie mount
5992802, May 14 1997 Campbell Design Systems Cable support
6007029, Jun 03 1998 Astech, Inc. Boiler tube alignment link system
6142216, Jul 27 1994 Bradford White Corporation Indirect water heater
6273030, Oct 06 2000 The Babcock & Wilcox Company Spacer bar with tube sleeve and tab
6736191, Oct 09 2001 Power Engineering Contractors, Inc. Heat exchanger having longitudinal structure and mounting for placement in seawater under piers for heating and cooling of buildings
7007748, Sep 30 2003 Bradford White Corporation Indirect water heater and method of manufacturing same
7024757, Apr 30 2002 Cesaroni Technology Incorporated Device and method for positioning flexible tubes into a core and articles made therefrom
7063132, Dec 29 2003 Bradford White Corporation Multi-wall heat exchanger for a water heater
7063133, Dec 29 2003 Bradford White Corporation Multi-wall heat exchanger for a water heater
7806169, Feb 07 2005 JMS CO , LTD Heat exchanger, method for manufacturing the same, and heart-lung machine
7879013, Dec 21 2005 VENETEC INTERNATIONAL, INC Intravenous catheter anchoring device
7985206, Jul 13 2006 Venetec International, Inc. Intravenous securement device with adhesively interconnected anchoring component and permeable adhesive strip
8025643, Oct 17 1997 Venetec International, Inc. Anchoring system for a medical article
8052648, Dec 21 2005 VENETEC INTERNATIONAL, INC Intravenous catheter anchoring device
8052649, Sep 19 2005 VENETEC INTERNATIONAL INC Medical tubing securement assembly and methods of use
8172807, Jul 13 2006 Venetec International, Inc. Intravenous securement device with adhesively interconnected anchoring component and permeable adhesive strip
8177756, Sep 19 2005 Venetec International, Inc. Medical tubing securement assembly and methods of use
8231160, Apr 25 2006 Rack for carrying a hose
8246583, Oct 17 1997 Venetec International, Inc. Anchoring system for a medical article
8398599, Oct 17 1997 Venetec International, Inc. Anchoring system for a medical article
8590955, Apr 25 2006 Rack for carrying a hose
8679067, Sep 19 2005 Venetec International, Inc. Medical tubing securement assembly and methods of use
8807492, Jan 11 2013 Western Oilfields Supply Company Pipe crib-block
8915885, Dec 21 2005 Venetec International, Inc. Intravenous catheter anchoring device
9468740, Mar 10 2000 Venetec International, Inc. Medical anchoring system
9480821, Jun 30 2008 VENETEC INTERNATIONAL, INC Anchoring system for a medical article
9526871, Jan 12 2006 Venetec International, Inc. Universal catheter securement device
9616200, Dec 21 2005 Venetc International, Inc. Intravenous catheter anchoring device
9642987, Aug 31 2005 C R BARD, INC Anchoring system for a catheter
9974929, Jun 30 2008 Venetec International, Inc. Anchoring system for a medical article
D273760, Dec 25 1980 Nichiei Distribution Systems Inc.; Nippon Kokan Kabushiki Kaisha Pipe supporting and spacing member
D273761, Dec 25 1980 Nichiei Distribution Systems, Inc.; Nippon Kokan Kabushiki Kaisha Pipe supporting and spacing member
D280544, Jul 29 1982 Nisshin Chemical Industry Co., Ltd. Heat exchanger
D280545, Jul 29 1982 Nisshin Chemical Industry Co., Ltd. Heat exchanger
D280546, Jul 29 1982 Nisshin Chemical Industry Co., Ltd. Heat exchanger
D280547, Jul 29 1982 Nisshin Chemical Industry Co., Ltd. Heat exchanger
D311487, Feb 26 1987 BIODATA CORPORATION, 3615 DAVISVILLE ROAD, P O BOX 250, HATBORO, PA 19040-0250 A PA CORP Wire separator structure
D387978, Mar 05 1996 Tubing clamp for stainless steel
D485161, Mar 06 2003 EPM AV CORPORATION Heavy cable crimping block
Patent Priority Assignee Title
1907867,
2056920,
2983263,
3277959,
3422884,
3595309,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 21 1973Belleli Industrie Meccaniche S.p.A(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Jun 21 19804 years fee payment window open
Dec 21 19806 months grace period start (w surcharge)
Jun 21 1981patent expiry (for year 4)
Jun 21 19832 years to revive unintentionally abandoned end. (for year 4)
Jun 21 19848 years fee payment window open
Dec 21 19846 months grace period start (w surcharge)
Jun 21 1985patent expiry (for year 8)
Jun 21 19872 years to revive unintentionally abandoned end. (for year 8)
Jun 21 198812 years fee payment window open
Dec 21 19886 months grace period start (w surcharge)
Jun 21 1989patent expiry (for year 12)
Jun 21 19912 years to revive unintentionally abandoned end. (for year 12)