The input surface of a photocathode consisting of a membrane of p-type silicon is modified to improve it's sensitivity. The p-type concentration is locally increased and the surface is coated with silicon nitride.

Patent
   4099198
Priority
May 14 1975
Filed
May 14 1976
Issued
Jul 04 1978
Expiry
May 14 1996
Assg.orig
Entity
unknown
36
4
EXPIRED
1. A photocathode including a membrane of p-type silicon having a first major surface for receiving illumination and a second major surface from which electrons are emitted in response to the received illumination, said first major surface comprising a surface region having a p+ impurity concentration, an exterior surface layer of silicon nitride overlying said surface region, and a coating on said second major surface of a material which reduces its work function.
2. A photocathode as claimed in claim 1 and wherein the first and second major surfaces are substantially parallel and of approximately the same size.
3. A photocathode as claimed in claim 1 and wherein the coating material is caesium oxide.
4. A photocathode as claimed in claim 1 and wherein the p-type impurity is boron.
5. A photocathode as claimed in claim 4 and wherein the p+ layer resuls from a diffusion process produced from a boron oxide vapour deposition at an elevated temperature.
6. A photocathode as claimed in claim 4 and wherein the p+ layer is produced by boron ion implantation.
7. A photocathode as claimed in claim 1 wherein the silicon nitride layer is laid down by vapour deposition, and is produced by passing a mixture of silane gas and ammonia gas in an inert carrier gas over the silicon membrane which is held at about 800°C.
8. A photocathode as defined in claim 4 wherein said surface region is rendered p+ by a boron concentration in the range 1020 -101022 per c.c. as compared with a boron concentration of the membrane in the order of 5 × 1018 per c.c., said surface region having excess impurity concentration which is negligible at depths greater than 0.1 - 0.2μm.
9. A photocathode as defined in claim 8 wherein said membrane is of a thickness in the range 2 - 20μm.

This invention relates to photocathodes, and in particular seeks to improve the photo-sensitivity of silicon photocathodes.

According to this invention a photocathode includes a thin membrane of p-type silicon having a first major surface for receiving illumination and a second major surface from which electrons are emitted in response to the received illumination, said first major surface comprising a surface region having a locally increased concentration of p-type impurity, and being provided with an exterior surface layer of silicon nitride.

Preferably the first and second major surfaces are substantially parallel and of approximately the same size. It is usally necessary to coat the said second surface with a material which reduces its work function in order to produce what is usually termed negative electron affinity. Preferably this material is caesium oxide.

Preferably the p-type impurity is boron, and the concentration at the surface is made sufficiently great to render the surface region p+. The surface concentration of the boron to produce the required p+ condition is about 1020 per c.c., as compared to a typical bulk concentration of 5 ×1018 per c.c. and the penetration of the p+ impurity into the body of the silicon membrane is preferably very shallow; typically the excess impurity concentration is negligible at depths greater than 0.1 to 0.2 μm (1 μm = 10-6 meters).

Preferably again the p+ layer results from a diffision process produced from a boron oxide vapour deposition at an elevated temperature, or it can alternatively be produced by boron ion implantation.

Similarly the silicon nitride layer can be subsequently laid down by a vapour deposition process, and conveniently is produced by passing a mixture of silane gas and ammonia gas (in an inert carrier gas such as nitrogen) over the silicon membrane which is held at about 800°C

The use of a silicon nitride layer over a p+ surface permits a significant increase in photo-sensitivity to be obtained for the silicon photocathode. The increase in photo-sensitivity stems from two main effects. Firstly, the silicon nitride acts as a diffussion barrier, and prevents the tendency for the surface layer of p+ (usually boron) to evaporate away during the usual high temperature outgassing step in the manufacturing process. Secondly, by adjusting the thickness of the silicon nitride to a desired value, the silicon nitride (which is light transmissive) behaves as an anti-reflection coating and correspondingly increases the proportion of the illumination that reaches the photocathode.

The invention is further described, by way of example, with reference to the accompanying drawings in which,

FIG. 1 shows a section view through a photocathode in accordance with the present invention, and

FIG. 2 shows a plan view of the same photocathode.

Referring to the drawings, a thin membrane 1 of p-type silicon is supported by a relatively thick frame 2 which is formed integrally with it. The membrane 1 can be produced from a thick single block of silicon by selectively etching a central region of one major surface 8 to leave the thick frame 2. By using an etchant which etches away the unwanted material fairly slowly, and by rotating the thick block of silicon as it is etched, a membrane having a uniform thickness can be produced. The membrane 1 is formed integrally with the frame 2 since, typically the thickness of the membrane 1 is between 2μum and 20μm and is consequently very fragile. A thickness of 100μm for the frame 2, has been found satisfactory. If the diameter of the membrane is large, radial supports 3 may be left to provide greater mechanical strength (the radial supports are omitted from FIG. 1).

In the drawings, for the sake of clarity the thickness of the membrane 1 is greatly exaggerated in relation to its diameter. The p-type silicon contains a boron concentration of about 5 × 1018 per c.c., and in the region of a first major surface 4 there is provided a surface region 5 which is p+, the boron concentration at the surface being about 1020 to 2022 per c.c. A layer 6 of silicon nitride is provided over the p+ surface region 5.

The p+ surface region 5 can be produced by any convenient method, and in particular it can be produced by conventional vapour deposition of boron oxide onto the first major surface 4, the boron diffusing from the oxide a short distance into the membrane 1. The surface region 5 is relatively shallow, and the excess p+ concentration of boron is very small at distances of 0.1 to 0.2μm and greater from the surface. Vapour deposition and diffusion processes are now so well known it is not thought necessary to describe them in greater detail.

The layer 6 of silicon nitride is also laid down by vapour deposition. Although the production of a layer of silicon nitride is not as easy as, say, the growth of silicon dioxide, a number of known methods do exist, of which the most satisfactory is probably a chemcial vapour deposition process. In one example of this method a mixture of silane and ammonia in a carrier gas of nitrogen is passed over the surface of the membrane 1 at an elevated temperature (about 800°C is satisfactory). The silane and ammonia concentrations in the nitrogen are typically 0.3% and 0.5% respectively. The deposition in continued until a silicon nitride layer of about 0.1 to 0.2μm thickness has been built up. The precise thickness is dependent on the wavelengths of light with which the photocathode is to be used since the layer of silicon nitride is arranged to behave as an anti-reflection coating.

The photocathode is subsequently outgassed at a temperature of about 1200° C and then a layer 7 of caesium oxide is laid down on a second major surface 8. The presence of the caesium reduces the work function of the silicon surface 8 and produces a negative electron affinity; that is to say, free electrons generated within the silicon membrane 1 are ejected through the layer 7 of caesium oxide. The presence of the silicon nitride layer 6 playes a very important part during the high temperature outgassing step mentioned earlier since it effectively prevents evaporation of the p+ layer which would otherwise occur.

In operation, light is incident on the surface of the silicon nitride layer 6, which, because it behaves as an anti-reflection coating causes a greater proportion of the light to reach the interior of the silicon membrane 1, than would otherwise be the case. As already mentioned the thickness of the layer of silicon nitride 6 is chosen with regard to its anti-reflection properties and in order to keep the light attenuation to a minimum the optical thickness is preferably a quarter wavelength of the incident light, or the mean wavelength if a band of wavelengths are used (note that it is the wavelength of light in the silicon nitride that must be used to calculate the thickness). For an anti-reflection coating which is intended to be most effective at the near infra-red (wavelength -- 0.8μm) a thickness of about 0.11μm is satisfactory for the silicon nitride layer, assuming that its refractive index is about 2.

The incident light generates photo-electrons within the silicon membrane 1, and the p+ gradient reduces the problem of surface recombination and the doping gradient accelerates the electrons towards the surface 8 of the photocathode where the reduced work function at the surface enables the electrons to be emitted.

It is believed that use of the present invention permits an increase in the photo-senstivity by a factor of about 3; a factor of 2 improvement being attributable to the preservation of the p+ surface by the layer of silicon nitride, and a factor of 1.5 improvement resulting from the decrease in reflectivity at the surface.

Pool, Peter James, Howorth, Jonathan Ross

Patent Priority Assignee Title
10121914, Apr 10 2012 KLA-Tencor Corporation Back-illuminated sensor with boron layer
10194108, May 14 2015 KLA-Tencor Corporation Sensor with electrically controllable aperture for inspection and metrology systems
10197501, Dec 12 2011 KLA-Tencor Corporation Electron-bombarded charge-coupled device and inspection systems using EBCCD detectors
10199197, Aug 03 2012 KLA-Tencor Corporation Photocathode including silicon substrate with boron layer
10269842, Jan 10 2014 Hamamatsu Photonics K.K.; KLA-Tencor Corporation Anti-reflection layer for back-illuminated sensor
10313622, Apr 06 2016 KLA-Tencor Corporation Dual-column-parallel CCD sensor and inspection systems using a sensor
10446696, Apr 10 2012 KLA-Tencor Corporation Back-illuminated sensor with boron layer
10462391, Aug 14 2015 KLA-Tencor Corporation Dark-field inspection using a low-noise sensor
10466212, Aug 29 2014 KLA—Tencor Corporation Scanning electron microscope and methods of inspecting and reviewing samples
10748730, May 21 2015 KLA-Tencor Corporation Photocathode including field emitter array on a silicon substrate with boron layer
10943760, Oct 12 2018 KLA Corporation; National Institute of Advanced Industrial Science and Technology Electron gun and electron microscope
11081310, Aug 03 2012 KLA-Tencor Corporation Photocathode including silicon substrate with boron layer
11114489, Jun 18 2018 KLA-Tencor Corporation; Hamamatsu Photonics K.K. Back-illuminated sensor and a method of manufacturing a sensor
11114491, Dec 12 2018 KLA Corporation Back-illuminated sensor and a method of manufacturing a sensor
11186917, Jan 30 2018 THE ADMINISTRATORS OF THE TULANE EDUCATIONAL FUND D B A TULANE UNIVERSITY Composite electrodes and methods for the fabrication and use thereof
11417492, Sep 26 2019 KLA Corporation Light modulated electron source
11715615, Sep 26 2019 KLA Corporation Light modulated electron source
11848350, Apr 08 2020 KLA Corporation Back-illuminated sensor and a method of manufacturing a sensor using a silicon on insulator wafer
4266334, Jul 25 1979 RCA Corporation Manufacture of thinned substrate imagers
4498225, May 06 1981 The United States of America as represented by the Secretary of the Army Method of forming variable sensitivity transmission mode negative electron affinity photocathode
4683399, Jun 29 1981 Conexant Systems, Inc Silicon vacuum electron devices
5315126, Oct 13 1992 ITT Corporation Highly doped surface layer for negative electron affinity devices
5354694, Oct 13 1992 ITT Corporation Method of making highly doped surface layer for negative electron affinity devices
9076639, Sep 07 2011 KLA-Tencor Corporation Transmissive-reflective photocathode
9347890, Dec 19 2013 KLA-Tencor Corporation Low-noise sensor and an inspection system using a low-noise sensor
9410901, Mar 17 2014 KLA-Tencor Corporation Image sensor, an inspection system and a method of inspecting an article
9426400, Dec 10 2012 KLA-Tencor Corporation Method and apparatus for high speed acquisition of moving images using pulsed illumination
9478402, Apr 01 2013 KLA-Tencor Corporation Photomultiplier tube, image sensor, and an inspection system using a PMT or image sensor
9496425, Apr 10 2012 KLA-Tencor Corporation Back-illuminated sensor with boron layer
9601299, Aug 03 2012 KLA-Tencor Corporation Photocathode including silicon substrate with boron layer
9620341, Apr 01 2013 KLA-Tencor Corporation Photomultiplier tube, image sensor, and an inspection system using a PMT or image sensor
9620547, Mar 17 2014 KLA-Tencor Corporation Image sensor, an inspection system and a method of inspecting an article
9748294, Jan 10 2014 HAMAMATSU PHOTONICS K K ; KLA-Tencor Corporation Anti-reflection layer for back-illuminated sensor
9767986, Aug 29 2014 KLA-Tencor Corporation Scanning electron microscope and methods of inspecting and reviewing samples
9818887, Apr 10 2012 KLA-Tencor Corporation Back-illuminated sensor with boron layer
9860466, May 14 2015 KLA-Tencor Corporation Sensor with electrically controllable aperture for inspection and metrology systems
Patent Priority Assignee Title
3458782,
3699404,
3960620, Apr 21 1975 RCA Corporation Method of making a transmission mode semiconductor photocathode
3990100, Oct 09 1974 Sony Corporation Semiconductor device having an antireflective coating
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 14 1976English Electric Valve Company Limited(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Jul 04 19814 years fee payment window open
Jan 04 19826 months grace period start (w surcharge)
Jul 04 1982patent expiry (for year 4)
Jul 04 19842 years to revive unintentionally abandoned end. (for year 4)
Jul 04 19858 years fee payment window open
Jan 04 19866 months grace period start (w surcharge)
Jul 04 1986patent expiry (for year 8)
Jul 04 19882 years to revive unintentionally abandoned end. (for year 8)
Jul 04 198912 years fee payment window open
Jan 04 19906 months grace period start (w surcharge)
Jul 04 1990patent expiry (for year 12)
Jul 04 19922 years to revive unintentionally abandoned end. (for year 12)