A method of testing a magnetic bubble device which includes an integral magnetic shield is provided for setting the magnetization of the bias field thereof, in which a leakage magnetic field is induced in the shield of the device which is superimposed on the usual bias magnetic field for changing its magnetization.
|
3. Test apparatus for testing a magnetic domain device to determine whether the device operates at the centre of a preselected range of bias magnetic field strengths, the device having a substrate for supporting magnetic domains, bias field means for providing the bias magnetic field substantially normal to the substrate and a magnetic shield surrounding the substrate and the bias field means, the test apparatus including: means for applying an external magnetic field to opposed sides of the shield, which are substantially parallel to the bias field, to provide a magnetic field within the shield which superimposes linearly on said bias magnetic field without saturating the shield; and means for adjusting the magnitude of the applied external magnetic field.
1. A method of testing a magnetic domain device to determine whether the device operates at the centre of a preselected range of bias magnetic field strengths, the device having a substrate for supporting magnetic domains, bias field means for providing the bias magnetic field substantially normal to the substrate and a magnetic shield surrounding the substrate and the bias field means, the method including the steps of: applying an external magnetic field to opposed sides of the shield, which are substantially parallel to the bias field, to provide a magnetic field within the shield, which superimposes linearly on said bias magnetic field without saturating the shield; and monitoring the operation of the device whilst adjusting the value of said external field to determine whether said bias field is set to said centre of the preselected range of bias magnetic field strengths.
2. A method as claimed in
4. Apparatus as claimed in
5. Apparatus as claimed in
6. Apparatus as claimed in
7. Apparatus as claimed in
|
This invention relates to magnetic domain devices commonly referred to as magnetic bubble devices.
Present day magnetic bubble devices are normally provided with an internal magnet structure usually in the form of a pair of spaced magnets which are used to produce the required bias field--commonly referred to as the Z field--for the device chip. The device will usually operate over a range of bias fields--commonly referred to as its bias field margin--and it is desirable to set the magnetic field afforded by the bias field magnets so that the device operates at or near the centre of its bias field margin. In devices that are packaged in unshielded packages this is easily achieved by operating the device under test conditions and monitoring its error rate in some way, and by superimposing a test field on to the magnetic field provided by the bias field magnets so that the bias field may be effectively varied to determine the operating point of the device relative to its bias field margin. If the operating point is not centrally disposed a setting pulse is applied to the device which increases or decreases the field strength of the bias field magnets and the test is repeated.
However, it is becoming increasingly popular to provide devices with an integral magnetic shield which results in the device being less affected by external magnetic fields, but the provision of the shield means that when an external magnetic field which is large enough to be effective is applied to the device for determining the bias field margin, the relationship between the actual field seen by the device chip and the applied field is non-linear due to the saturation effects of the shield. This effect of the shield is overcome in prior art devices by either providing `Z` coils in the device package inside the shield which is undesirable on cost, size and weight grounds and also required extra electrical connection to be made to the device or by providing slots in the device within the device shield to enable a Z coil to be inserted. However difficulties arise in such devices in providing the slots which may also result in the device being of increased size.
The present invention relates to a method of testing and test apparatus which permit the bias field margin in shielded magnetic domain devices to be determined without the disadvantages of the prior art systems and which additionally enables the magnetisation of the bias field magnet or magnets in such devices to be set.
According to one aspect of the present invention there is provided a method of testing a magnetic domain device provided with an integral magnetic shield for setting purposes in which a leakage magnetic field is induced in the shield of said device which is superimposed on the usual bias magnetic field thereof for changing the effective magnetisation thereof.
In carrying out the method of testing the leakage magnetic field may be varied to determine the bias field margin of said device and the method may include the step of setting the bias magnetic field of said device so that it operates substantially in the centre thereof.
According to another aspect of the present invention there is provided test apparatus for carrying out the method of testing according to the said one aspect of the present invention, the test apparatus comprising magnetising means for inducing a leakage magnetic field in the shield of said device and in a preferred apparatus the magnetising means will comprise a generally `W` shaped magnetisable core, the two outer limbs of which co-act with opposed sides of the shield of said device to cause leakage magnetic fields to be induced in said sides.
In one apparatus in accordance with the said another aspect of the present invention, pulse setting means may be provided for setting the bias magnetic field of said device and this may comprise one pulse setting coil positioned on the centre limb of said magnetisable core and a further pulse setting coil positioned on the centre limb of an auxiliary substantially `W` shaped magnetisable core which is positioned relative to the said core such that said device is sandwiched therebetween.
The test apparatus according to the said another aspect of the invention may also be provided with connector means for making electrical connection to the connecting leads of said device to enable it to operate whilst being tested.
These and other features of the invention will now be described in greater detail by considering an exemplary embodiment of the invention which is described with reference to the accompanying drawing in which;
FIG. 1, depicts test apparatus in accordance with the present invention, and;
FIG. 2 is a side view of the test apparatus of FIG. 1, modified so as to enable electrical connection to be made to the magnetic bubble device being tested.
The superimposing of a test field on to the normal bias magnetic field of a shielded magnetic bubble device is achieved in accordance with the present invention by coupling the device shield to an externally generated magnetic field so that it is driven in a leakage mode, the leakage field being superimposed on to the internally generated bias magnetic field so as to change its effective field strength. Considering the test apparatus shown in FIG. 1 of the drawing, a bubble memory device 1 is diagrammatically shown in end view, for the sake of clarity without its connecting leads, the device 1 including a tubular magnetic shield 2 and inside the shield 2 a pair of magnets 3 which produce a bias magnetic field 4 which is generally perpendicular to the active surface 5 of a device chip 6. It is necessary, in order to achieve optimum performance, to set the field strength of the magnets 3 so that the device chip 6 operates at or near the centre of its bias field margin and to do this it is necessary to superimpose an externally generated test magnetic field on to the bias magnetic field 4 afforded by the magnets 3 so that this may be varied to determine the limits of the bias field margin relative to the normal operating point determined by the bias magnets 3. In the test apparatus shown in the drawing, the test field that is superimposed on the bias magnetic field 4 is derived by means of two offset coils 7 which are provided around the outer limbs 8 of a generally `W` shaped ferrite core 9, the outer limbs 8 of the ferrite core 9 being extended relative to the centre limb 10 of the core 9 and spaced apart so as to provide a recess for the bubble memory device 1, the limbs 8 of the ferrite core 9 lying closely adjacent respective opposed sides 11 of the shield 2 and the upper surface of the limb 10 being closely adjacent to the lower portion 12 (as viewed in FIG. 1 of the drawing) of the shield 2. The coils 7 provided around the limbs 8 of the ferrite core 9 are both energised so as to cause the resulting magnetic fields to be additive in the centre limb 10 of the ferrite core 9 and due to the close proximity of the extended parts of the limbs 8 with the sides 11 of the shield 2, a leakage field is set up in the two sides 11 of the shield 2 which is superimposed onto the bias field 4 afforded by the magnets 3. Because the shield 2 is driven in a leakage mode and not into saturation, the relationship between the magnetic field seen by the device chip 6 and the externally generated magnetic field is substantially linear. By varying the excitation of the coils 7 the magnitude and direction of the test field superimposed on to the bias magnetic field may be varied to determine the bias field margin in the usual way. If after determining the bias field margin it is found that the device chip is not operating centrally of it, it is necessary to apply a setting pulse to the bias magnets 3 in order to change their magnetisation to centralise the operating point.
This may be achieved in the test apparatus shown in FIG. 1 of the drawing, by providing a pulse setting coil 13 around the centre limb 10 of the ferrite core 9 and by providing a further `W` shaped ferrite core 14 which is positioned above the ferrite core 9 so as to sandwich the device 1 therebetween, around the centre limb 15 of which is positioned a further pulse setting coil 16. By suitably energising the pulse setting coils 13 and 16 the magnetisation of the bias magnets 3 may be changed.
It is envisaged that when dual in-line packages are used the test apparatus shown in FIG. 1 of the drawing will be provided with electrical connectors 17 on both sides thereof as shown in the side view of FIG. 2, the electrical connectors 17 enabling electrical contact to be made to the connecting leads 18 of the magnetic bubble device 1 as the device is inserted in the test apparatus so enabling it to be operated whilst under test. It will be appreciated that various modifications may be made to the test apparatus shown without departing from the spirit of the invention which is to drive the shield of a magnetic domain device in a leakage mode in order to obtain the required test field superimposed on the normally provided bias magnetic field. For example, the pulse setting coils 13 and 16 of FIG. 1 and/or the electrical connectors 17 of FIG. 2 may be dispensed with.
Patent | Priority | Assignee | Title |
10052688, | Mar 15 2013 | Molten Metal Equipment Innovations, LLC | Transfer pump launder system |
10072891, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transferring molten metal using non-gravity assist launder |
10138892, | Jul 02 2014 | Molten Metal Equipment Innovations, LLC | Rotor and rotor shaft for molten metal |
10195664, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Multi-stage impeller for molten metal |
10267314, | Jan 13 2016 | Molten Metal Equipment Innovations, LLC | Tensioned support shaft and other molten metal devices |
10274256, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Vessel transfer systems and devices |
10307821, | Mar 15 2013 | Molten Metal Equipment Innovations, LLC | Transfer pump launder system |
10309725, | Sep 10 2009 | Molten Metal Equipment Innovations, LLC | Immersion heater for molten metal |
10322451, | Mar 15 2013 | Molten Metal Equipment Innovations, LLC | Transfer pump launder system |
10345045, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Vessel transfer insert and system |
10352620, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transferring molten metal from one structure to another |
10458708, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transferring molten metal from one structure to another |
10465688, | Jul 02 2014 | Molten Metal Equipment Innovations, LLC | Coupling and rotor shaft for molten metal devices |
10562097, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer system and rotor |
10570745, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Rotary degassers and components therefor |
10641270, | Jan 13 2016 | Molten Metal Equipment Innovations, LLC | Tensioned support shaft and other molten metal devices |
10641279, | Mar 13 2013 | Molten Metal Equipment Innovations, LLC | Molten metal rotor with hardened tip |
10947980, | Feb 02 2015 | Molten Metal Equipment Innovations, LLC | Molten metal rotor with hardened blade tips |
11020798, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Method of transferring molten metal |
11098719, | Jan 13 2016 | Molten Metal Equipment Innovations, LLC | Tensioned support shaft and other molten metal devices |
11098720, | Jan 13 2016 | Molten Metal Equipment Innovations, LLC | Tensioned rotor shaft for molten metal |
11103920, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transfer structure with molten metal pump support |
11130173, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC. | Transfer vessel with dividing wall |
11149747, | Nov 17 2017 | Molten Metal Equipment Innovations, LLC | Tensioned support post and other molten metal devices |
11167345, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Transfer system with dual-flow rotor |
11185916, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer vessel with pump |
11286939, | Jul 02 2014 | Molten Metal Equipment Innovations, LLC | Rotor and rotor shaft for molten metal |
11391293, | Mar 13 2013 | Molten Metal Equipment Innovations, LLC | Molten metal rotor with hardened top |
12163536, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Quick submergence molten metal pump |
4360775, | Jun 01 1979 | COMMISSARIAT A L ENERGIE ATOMIQUE | Machine for testing planar magnetic film with magnetic bubbles |
4414507, | Sep 29 1980 | Conexant Systems, Inc | Copper embedded ferrite coil arrangement for supplying uniform rotating field in full frequency range for testing magnetic bubble devices |
4456974, | Dec 07 1979 | Radstone Technology PLC | Magnetic bubble device |
4816761, | Jun 22 1987 | Apparatus for measuring the hysteresis loop of hard magnetic films on large magnetic recording disk | |
4922200, | Aug 25 1989 | LDJ Electronics, Inc.; LDJ ELECTRONICS, INC | Apparatus for measuring the hysteresis loop of magnetic film |
5629620, | Mar 02 1995 | Eastman Kodak Company | Apparatus and method for measurement of magnetic remanence-thickness product of thin magnetic layers |
7402276, | Jul 14 2003 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Pump with rotating inlet |
7470392, | Jul 14 2003 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Molten metal pump components |
7507367, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Protective coatings for molten metal devices |
7731891, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Couplings for molten metal devices |
7906068, | Jul 14 2003 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Support post system for molten metal pump |
8075837, | Jul 14 2003 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Pump with rotating inlet |
8110141, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Pump with rotating inlet |
8178037, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | System for releasing gas into molten metal |
8337746, | Jun 21 2007 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Transferring molten metal from one structure to another |
8361379, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Gas transfer foot |
8440135, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | System for releasing gas into molten metal |
8529828, | Jul 12 2002 | MOLTEN METAL EQUIPMENT INNOVATIONS, INC ; Molten Metal Equipment Innovations, LLC | Molten metal pump components |
9377028, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Tensioning device extending beyond component |
9422942, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Tension device with internal passage |
9435343, | Jul 12 2002 | Molten Metal Equipment Innovations, LLC | Gas-transfer foot |
9464636, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Tension device graphite component used in molten metal |
9470239, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Threaded tensioning device |
9482469, | May 12 2011 | Molten Metal Equipment Innovations, LLC | Vessel transfer insert and system |
9506129, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Rotary degasser and rotor therefor |
9566645, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer system and rotor |
9581388, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Vessel transfer insert and system |
9587883, | Mar 14 2013 | Molten Metal Equipment Innovations, LLC | Ladle with transfer conduit |
9657578, | Aug 07 2009 | Molten Metal Equipment Innovations, LLC | Rotary degassers and components therefor |
9855600, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Molten metal transfer system and rotor |
9862026, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Method of forming transfer well |
9909808, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | System and method for degassing molten metal |
9925587, | Jun 21 2007 | Molten Metal Equipment Innovations, LLC | Method of transferring molten metal from a vessel |
Patent | Priority | Assignee | Title |
3836896, | |||
3931618, | Nov 14 1973 | Hewlett-Packard Company | Housing structure and magnetic biasing for bubble memories |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 16 1978 | Plessey Handel und Investments AG | (assignment on the face of the patent) | / | |||
Sep 04 1980 | PLESSEY HANDEL UND INVESTMENTS AG, GARTENSTRASSE 2, ZUG, SWITZERLAND | Plessey Overseas Limited | ASSIGNMENT OF ASSIGNORS INTEREST | 003813 | /0489 | |
May 26 1988 | Plessey Overseas Limited | Radstone Technology Limited | ASSIGNMENT OF ASSIGNORS INTEREST | 004985 | /0644 | |
Oct 24 1989 | Radstone Technology Limited | Radstone Technology PLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS JULY 20, 1988 CARDIFF | 005418 | /0642 |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Jul 15 1983 | 4 years fee payment window open |
Jan 15 1984 | 6 months grace period start (w surcharge) |
Jul 15 1984 | patent expiry (for year 4) |
Jul 15 1986 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 15 1987 | 8 years fee payment window open |
Jan 15 1988 | 6 months grace period start (w surcharge) |
Jul 15 1988 | patent expiry (for year 8) |
Jul 15 1990 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 15 1991 | 12 years fee payment window open |
Jan 15 1992 | 6 months grace period start (w surcharge) |
Jul 15 1992 | patent expiry (for year 12) |
Jul 15 1994 | 2 years to revive unintentionally abandoned end. (for year 12) |