An electronic insect killer has spaced electrodes adapted to be electrically contacted by bodies of insects, said electrodes surrounding fluorescent lamps which attract the insects toward the electrodes. Interconnected with the electrodes and the fluorescent lamps is a solid state inverter which provides a high ac voltage at high frequency across the electrodes, as well as lower ac voltage at high frequency for energizing the lamps without ballasting.

Patent
   4248005
Priority
May 29 1979
Filed
May 29 1979
Issued
Feb 03 1981
Expiry
May 29 1999
Assg.orig
Entity
unknown
25
14
EXPIRED
1. An electronic insect killer comprising a plurality of spaced electrodes adapted to be electrically contacted by the bodies of insects, means for attracting insects toward said electrodes, comprising at least one fluorescent lamp and a solid state inverter interconnected with said electrodes and also with said lamp for providing both a high voltage at high frequency and a lower ac voltage at said high frequency, said high ac voltage being supplied across said electrodes and said lower ac voltage being supplied to said lamp for ballast-free energization of said lamp.
15. An electronic insect killer comprising a plurality of closely spaced electrodes adapted to provide electrical contact with bodies of insects, at least one fluorescent lamp adapted for being energized to attract insects toward said electrodes, a transistorized push-pull inverter circuit operating at high frequency for providing both a high voltage at said high frequency and a lower voltage at said high frequency, means for connecting said high voltage across said electrodes for electrocution of insects contacting the electrodes, and means for connecting said lower voltage to said lamp for energizing said fluorescent lamp, said electrodes surrounding said lamp.
5. An electronic insect killer comprising a plurality of spaced electrodes adapted to be electrically contacted by the bodies of insects, means for attracting insects toward said electrodes, and a solid state inverter interconnected with said electrodes for providing a high ac voltage at high frequency across said electrodes, said means for attracting insects comprising at least one fluorescent lamp, said inverter being interconnected with said lamp for providing a lower ac voltage at high frequency to said lamp for energization thereof without ballasting, said inverter comprising a high frequency transformer, at least one primary winding, a plurality of semiconductor devices for providing periodic alternating energization of said winding at a high frequency, said transformer having a first secondary winding interconnected with said electrodes and a further secondary winding interconnected with said lamp.
2. An electronic insect killer according to claim 1, said electrodes comprising a first set of conductors configured for surrounding said lamps, and a second set of conductors surrounding and closely spaced from said first set of conductors.
3. An electronic insect killer according to claim 2, said first and second sets of conductors each comprising a metal grid.
4. An electronic insect killer according to claim 3, said grids constituting an inner electrode grid and an outer electrode grid, said outer grid concentrically surrounding said inner grid, said grids being closely spaced.
6. An electronic insect killer according to claim 5, said lamp having an elongate tube and filaments at opposite ends of said tube, said further secondary winding including first and second sections each interconnected with a respective one of said elements, and a third section bridging said first and second sections.
7. An electronic insect killer according to claim 5 and comprising first and second ones of said fluorescent lamp, each said lamp having an elongate tube and first and second filaments at opposite ends of said tube, said further secondary winding including first and second sections each interconnected with a respective first one of said filaments of each lamp, a third section bridging said first and second sections, and a further winding electrically isolated from said first, second, and third sections and interconnected with a second remaining filament of each of said lamps.
8. An electronic insect killer according to claim 6, said semiconductor devices comprising a push-pull connected pair of transistors, a source of DC voltage for being switched thereby, said primary winding having first and second sections respectively interconnected with said transistors for being energized by switching at said high frequency of said transistors with alternating opposite polarity current developed by said DC voltage.
9. An electronic insect killer according to claim 8 and comprising a further primary winding for generating a feedback voltage including first and second sections respectively interconnected with base electrodes of said transistors, said base electrodes being interconnected by a saturable reactor.
10. An electronic insect killer according to claim 9, said transformer comprising a toroidal ferrite core, said further primary winding developing ac voltage for normally providing base drive to cause alternate conduction of said transistors, said transformer operating in response to short circuiting of a secondary winding to reduce the ac voltage developed by said further primary winding for preventing further alternate conduction of said transistors.
11. An electronic insect killer according to claim 10, said high frequency being at least 4 kHz.
12. An electronic insect killer according to claim 10, said high frequency being about 20 kHz.
13. An electronic insect killer according to claim 12, said high ac voltage being approximately 5,000 VRMS.
14. An electronic insect killer according to claim 13, said electronic delivering said high ac voltage for electrocution of insects to a maximum current of substantially more than 10 mA while substantially precluding human physiological danger upon human contact of said electrodes.

The present invention relates to devices for killing insects by electrocution and, more particularly, to a device of electronic character for killing insects by electrocution.

It has heretofore been known to utilize AC voltage for killing insects by applying the voltage across spaced electrodes and with the insects being attracted toward the electrodes by fluorescent lighting.

For this purpose, devices have been sold commercially which employ simple step-up transformers for stepping up conventional 60 Hertz AC line voltage to a level suitable for electrocuting insects which come into contact or close proximity to electrodes across which the 60 Hertz higher voltage is present. To provide sufficient current for this, the transformer is required to be large, bulky, clumsy and expensive.

Moreover, in practice a very high failure rate has occurred with such transformers. The failure mode resulting in a failure rate is not well understood but is believed to result in part from high temperature causing dielectric breakdown and in part because of the transmigration of the winding elements (e.g., copper) to the opposite ends of the transformer core, possibly the result of corona which is characteristic of such transformers. The transmigration of elemental constituents eventually causes shorting of the turns. But regardless of the reasons for such frequent failure, it is undesirable and has caused conventional insect electrocuters to be less commercially successful than would otherwise be the case.

A further disadvantage of the use of such simple transformers for stepping up the 60 Hertz AC line voltage is that voltage regulating devices must be connected across the secondary winding to prevent extensive voltage variations which could cause arcing between electrodes and which can result from poor transformer voltage tolerances. Also, high voltage variations could preclude obtaining safety certification of such devices by testing and certification agencies such as Underwriter's Laboratories, Inc.

A related shortcoming of these prior art electrocuters is that, due to size limitations and current output restrictions at 60 Hertz which are necessitated by such certification, the electrocuter may be electrically overloaded or shorted by insect carcasses clinging to the electrodes since typically electrocuters have lacked sufficient power to carbonize the carcasses. Hence, these prior art devices sometimes clog with dead insects. Short circuit protection is required in prior art devices to protect against damage to the transformer from such shorting of the electrodes.

As noted, fluorescent lighting has been used in prior art electrocuters to attract insects. The fluorescent lamps have required the use of lamp ballasts which are known to be space-consuming, heavy, and expensive. The ballasts also generate heat which may contribute to the failure of other components in the electrocuters, such as the above-mentioned step-up transformers.

Such problems of the prior art have been long outstanding and have remained unsolved.

An object of the invention is the provision of a device for killing of insects by electrocution, which device is electronic.

A further object of the invention is the provision of such an electronic insect killer which utilizes a high efficiency, compact, low cost, high power, reliable, and lightweight solid state circuit.

Another object of the invention is the provision of such an electronic insect killer which is not prone to electrical failure, clogging by insects or self-destruction by short circuiting.

Yet another object of the invention is the provision of such an electronic insect killer including such a solid state circuit which not only develops high voltage for insect electrocution but also produces lower voltage for energizing fluorescent lamp means to attract insects toward the electrodes.

Yet another object of the invention is the provision of such an electronic insect killer including solid state circuitry for energizing such fluorescent lamp means without ballasting.

A still further object of the invention is the provision of such an electronic insect killer which develops sufficient electrical energy for carbonizing insects to avoid clogging, overloading, short circuiting of electrodes, etc. by insect carcasses.

A further object of the invention is the provision of such an electronic insect killer which develops such high electrical energy without compromising safety.

Yet another object of the invention is the provision of such an electronic insect killer which is self-regulating and is by design self-protected against short circuiting.

Still another object of the invention is the provision of such an electronic insect killer which utilizes electrically efficient components which develop relatively little heat.

Among still other objects of the invention may be noted the provision of such an electronic insect killer which conduces to economical mass production, simple assembly, facile repair, which is simple and effective in design, and which kills flies, mosquitos and myriad other species of various flying insects.

FIG. 1 is a perspective view of an electronic insect killer constructed in accordance with and embodying the present invention.

FIG. 2 is a front vertical elevation of the electronic insect killer of FIG. 1 with a top of the device being broken away in part to show electronic circuit components.

FIG. 3 is a front vertical elevation with certain grid-like cover and electrode elements removed.

FIG. 4 is a horizontal transverse cross-sectional view taken generally along line 4--4 of FIG. 2.

FIG. 5 is a schematic circuit diagram of electronic circuitry of the new electronic insect killer.

Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.

Referring now to FIGS. 1-4, a new insect killer of the invention is designated generally 11. The new device comprises a metal base 13, e.g., of formed sheet metal. Secured to and extending upwardly from base 13 is an upstanding protective housing 15. Housing 15 is of rectangular tubular configuration and constructed of perforated sheet metal to provide grid-like front and rear panels 17,19 and side panels 21,23. The perforations may each typically be about one-half inch square.

Referring to FIG. 2, extending across the top of housing 15 is an inner cover 25 for closing the upper end of housing 15 and which cover may simply be a single rectangular piece of sheet metal having a downwardly turned flange 27 extending around its periphery.

Secured, as by sheet metal screws 29 threaded to flange 27, is an outer cover 31 of truncated pyramidic configuration and also formed of sheet metal. A flat upper surface 33 of the cover is provided with a metal ring 35 for permitting the new insect killer to be suspended, as in a stable or commercial establishment, above ground level. Alternatively, it may be supported by its base 13 upon any suitable surface.

Referring to FIGS. 3 and 4, there is contained within cover closely spaced, concentric outer and inner grid-like electrodes 37,39, respectively, which may be referred as grids. Each has mesh-like character and is of rectangular form, with the mesh spacing being preferably about one-half inch in both vertical and horizontal directions, the outer and inner grids having also about one-half inch spacing between them. Grids 37,39 are supported top and bottom by electrically insulating stand-offs or supports 41 in spaced relation to base 13 and inner cover 25. Said grids 37,39 are adapted to establish high-voltage electrical contact with the bodies of insects for electrocution of such insects. It should be understood that the insects may not actually contact either of grids 37,39 but instead may simply induce an arc from one grid and through the insect body toward the other grid.

Insects are attracted toward grids 37,39 and fly through the perforate openings of housing 15 in response to UV (ultraviolet) or so-called "black" light produced by a pair 43,45 of fluorescent lamps of tubular U-configuration and located centrally within inner grid 37. Lamps 43,45 are each of U-shaped configuration with each having its ends terminating side-by-side, and plugged into respective sockets 47,49 on the under surface of the inner cover 25. A metal support 51 extending downwardly from cover 25 includes spring clips as shown at 53 which secure the bend portions of each of lamps 43,45.

Referring now to FIG. 5, circuitry of the new electronic insect killer is illustrated, being generally designated 55. Said circuitry is mounted upon a circuit board 57 (FIG. 2) which is mounted upon inner cover 25 by standoffs 59.

AC line voltage at typically 120 VRMS powers the new circuitry, being provided by a plug PL1 to a full wave diode rectifier bridge comprising diodes D1-D4. Pulsating DC output of the bridge is filtered by a capacitor C1. A further capacitor C4 filters high frequency components from the power supply to prevent introducing noise to the AC line. The lower side of capacitor C1 is connected to the junction of commonly connected emitters of a pair of NPN transistors Q1,Q2, each having its collector connected to one end of a transformer primary winding section PR1,PR2. The center tap between the latter is connected to the upper side of capacitor C1.

Said primary windings form part of a transformer T1 having a toroidal core 61 of a ferrite material. Also wound upon said core are further primary windings in the form of two sections PR3,PR4 with a center tap between them connected also to the commonly connected emitters of transistors Q1,Q2. The ends of the upper sections are connected through respective resistors R1,R2, each shunted by respective capacitors C2,C3, to the bases of transistors Q1,Q2. Connected between the base of these two transistors is a small saturating inductor SR1 having a toroidal core 63. A diode D5 between the commonly connected emitters of the transistors and one side of primary winding center tap is provided for circuit starting purposes. Also a thermistor R3 is provided for providing a bias voltage to the bases of the transistors to initiate conductions of either Q1 or Q2. Said thermistor is of the type having a positive temperature coefficient of resistivity. Thus, bias current will fall off rapidly upon heating. Diodes D6,D7 are connected across the emitter-collector terminals of the transistors to prevent excessive reverse bias voltages at the collectors of the transistors.

Sections PR1,PR2 are adapted to be alternately energized current developed from the DC voltage across capacitor C1 in response to high frequencies alternate conduction of transistors Q1,Q2, which are seen to be connected by push-pull, inverter configuration.

Primary winding sections PR3,PR4 generate feedback voltages, in response to the alternating field generated by energization of winding sections PR1,PR2, which are provided through resistors R1,R2. The latter limit the current which may flow in response to said feedback voltages but provide sufficient current for base drive for alternate conduction of transistors Q1,Q2. Capacitors C2,C3 are preferably utilized for providing more rapid switching of the conductive state of the respective transistors Q1,Q2.

Saturating inductor SR1 is utilized to control the base voltage for transistors Q1,Q2. More specifically, transistor Q1 is initially rendered conductive by a base current Ib=[(PR4)-Vbe]/R2, where (PR4) is the voltage developed across primary winding section PR4, transistor Q2 being biased off by the reverse voltage developed across winding PR3 applied by resistor R1. Voltage across the saturating inductor SR1 is initially of a value Vab=(PR3)+Vbe, where (PR3) is the voltage developed across primary winding section PR3. As the saturable reactor reaches core saturation, Vab collapses robbing transistor Q1 of its base drive. The field of transformer T1 thereafter collapses, reversing the voltage across the feedback windings PR3,PR4 and driving transistor Q2 into conduction as soon as saturable reactor SR1 comes out of saturation, such process repeating at a frequency which preferably is at least 4 kHz and more preferably about 20 kHz.

A secondary winding X1 of transformer T1, which may be numerous turns of conductor, which is pyramid wound and impregnated, is adapted to provide high voltage, e.g., about 5,000 VRMS at a current of 20 mA. This high AC voltage is provided by leads 65,65' to the respective outer and inner grid-form electrodes 37,39, there being no fusing, voltage regulating devices or the like connected across such leads 65,65' as the same are not necessary in the new circuit.

Transformer T1 is also provided with a plurality of high reactance, i.e., relatively loosely coupled secondary windings, including a secondary winding having three sections X2, X3, and X4, as well as a further winding X5, with the latter two winding sections X2 and X5 each adapted to develop about three and one-half VRMS at approximately one-half ampere, and with section X4 developing about twice the latter voltage. Winding section X3 preferably provides a potential of about 200 VRMS at nearly one-half ampere under load conditions for energization of fluorescent lamps 43,45 with approximately 100 VRMS across each.

Lamp 43 is seen to have a filament 67 at one end which is connected across winding section X2. A filament 69 is connected at the other end in series with a filament 71 of the other lamp 45 across a winding section X4. Lamp 45 has a filament 73 at the other end which is connected across winding section X5. A capacitor C4 is connected between the upper side of winding section X4 and the upper end of winding section X3, being provided for causing lamp 45 to ionize before lamp 43. In operation, it will be seen that the new circuitry 55 provides not only high voltage across electrodes 37,39 at high frequency, but also provides high frequency AC energization at lower voltage for energization of lamps 43,45, again at the high operating frequency of the circuit.

Such high frequency energization of the grids 37,39 and lamps 43,45 provides numerous advantages in the new electronic insect killer.

Typically, as noted, insect electrocution devices utilizing high voltage must have the high voltage supply limited to a relatively low maximum current, such as 10 mA, for safety purposes and specifically to ensure against electrocution of persons or animals. It will be understood, for example, that the human body represents a discrete resistance (which may be assumed to be 1.5 kilo-ohm), shunted by an extrinsic capacitance which may be assumed to be 0.15 microfarad. Therefore, the effective impedance of the human body is complex, being frequency dependent.

But because of the capacitive effect of the human body, thoracic current distribution at high frequencies is far more favorable. Accordingly, a much higher current may be utilized at the high frequency typically of the new circuit 55, in contrast with the usual line voltage frequency of 60 Hertz upon which certification standards have been based. As a consequence, the new circuit allows a load current of 20 mA to flow from the high voltage winding X1 without compromising human safety. Accordingly, the new circuit makes available much more electrical power for carbonizing insects, thereby avoiding clogging, overloading, etc., than prior art electrocution devices.

Further, the intrinsic efficiency of the new circuitry may approach about 90 percent under full load conditions, in contrast with prior art electrocution devices which may be able to obtain efficiencies of only about 60-70 percent.

It is also manifest that no ballast transformers or other ballasting devices are needed for fluorescent lamps 43,45, the high reactance secondary windings interconnected with such lamps obviating such ballasting. Additionally, fluroscent lamps of the present character, each of which may have a 40 watt rating, operate much more efficiently at higher frequencies, being typically 20-30 percent more efficient at operating frequencies of 4 kHz and decidedly more efficient at the nominal preferred operating frequency of the new circuit, namely 20 kHz.

Further advantages of the circuit result from the self-regulating character of the new inverter circuit wherein feedback voltages are developed by primary winding sections PR3,PR4 for driving transistors Q1,Q2 alternately into conduction, as well as resulting from the intrinsic precision of voltages developed across the secondary winding. Therefore, high voltage regulating devices, such as expensive varistors typically used in prior art devices, are dispensed with.

Moreover, the new circuit is inherently self-protected against the possibility of a short circuit. For example, if a conductive object should bridge electrodes 37,39, the same will merely cause the magnetic field in core 61 of transformer T1 to collapse, preventing base drive from being developed by the feeback winding PR3,PR4. Therefore, both of the transistors Q1,Q2 cease alternate conduction upon any short circuiting of the secondary winding.

Accordingly, it will be seen that several objects of the invention are attained and various other advantages also result.

Although the foregoing includes a description of the best mode contemplated for carrying out the invention, various modifications are contempleted.

As various modifications could be made in the constructions herein described and illustrated without departing from the scope of the invention, it is intended that all matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative rather than limiting.

Hedstrom, Mark D.

Patent Priority Assignee Title
10980224, Oct 12 2017 STERLING INTERNATIONAL INC Pillar device for adhesive insect capture with bird guards
11002417, Apr 26 2019 PIC Corporation Solar powered lighting element with simulated flame and electrical insect eliminator
11293610, Apr 26 2019 PIC Corporation Solar powered lighting element with simulated flame and electrical insect eliminator
11608979, Jun 30 2020 XIAMEN LEEDARSON LIGHTING CO. LTD LED tube apparatus
11639778, Apr 26 2019 PIC Corporation Solar powered lighting element with simulated flame and electrical insect eliminator
11906117, Apr 26 2019 PIC Corporation Solar powered lighting element with simulated flame and electrical insect eliminator
4387529, May 29 1979 Delta Promotions, Inc. Electronic insect killer
4422015, Mar 20 1981 Electric insect trap power supply
4471561, Jul 23 1982 Insect eradicator
4603505, May 26 1983 Portable electronic insect controller
4785573, May 26 1983 Portable electronic insect controller
4807390, Mar 04 1988 Armatron Internation, Inc. Insect electrocution apparatus and method of operation
5021710, May 02 1990 Insect attraction lamp
5272831, Sep 02 1992 REGENT ACQUISITION CORP , A CORP OF DELAWARE Insect extermination and illumination device and operating circuit therefor
6688035, Oct 25 2002 Method and device for producing carbon dioxide and water vapor near an insect killing field
7757432, Jul 11 2005 Electronic carpenter bee trap
8424239, Oct 12 2010 Codling moth trap
D323015, May 25 1989 Donald S., Showalter Insect electrocutor
D335910, Jun 11 1991 BUGVAC U S A , INC Combined insect attracting and capturing lantern
D587780, May 02 2008 Flying insect trap
D678457, Jun 12 2012 Insect extermination lamp
D854116, Mar 07 2018 JOBAR INTERNATIONAL, INC Wasp trap
D914128, Mar 03 2020 Sterling International Inc. End cap for an insect trap
D915544, Mar 03 2020 Sterling International Inc. Bird guard for an insect trap
D919744, Sep 03 2020 SHENZHEN YIQIMAI TECHNOLOGY CO , LTD Mosquito lamp
Patent Priority Assignee Title
2982881,
3192464,
3321862,
3371244,
3579026,
3619713,
3691450,
3729857,
3889852,
3935662, Oct 25 1974 Alladin Enterprises Ltd. Electronic insect trap
3986292, May 05 1975 Harold, Payne Insect killing device
4042852, Jun 28 1976 Unitron Corporation Fluorescent lamps with high frequency power supply with inductive coupling and SCR starter
4103356, Nov 23 1976 Northern Telecom Limited Synchronized push-pull inverter
4121371, Oct 07 1976 Sunbeam Products, Inc Electrical insect killing apparatus
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 29 1979Delta Promotions, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Feb 03 19844 years fee payment window open
Aug 03 19846 months grace period start (w surcharge)
Feb 03 1985patent expiry (for year 4)
Feb 03 19872 years to revive unintentionally abandoned end. (for year 4)
Feb 03 19888 years fee payment window open
Aug 03 19886 months grace period start (w surcharge)
Feb 03 1989patent expiry (for year 8)
Feb 03 19912 years to revive unintentionally abandoned end. (for year 8)
Feb 03 199212 years fee payment window open
Aug 03 19926 months grace period start (w surcharge)
Feb 03 1993patent expiry (for year 12)
Feb 03 19952 years to revive unintentionally abandoned end. (for year 12)