A diffractive subtractive filter is made tunable by controllably varying the index of refraction of a fluid medium in contact with a surface relief pattern of a solid diffractive phase medium. A liquid crystal is the preferred fluid.
|
1. A tunable diffractive subtractive color filter comprising a solid diffractive phase medium including a fixed, predetermined waveform profile surface relief pattern, an adjustable index-of-refraction, optically-transparent, fluid medium in which said surface relief pattern is immersed, and control means for selectively controlling the index of refraction of said fluid medium;
wherein said selectively controllable index of refraction of said fluid medium is within a continuous range of indices of refraction that extend from a certain maximum index of refraction to a certain minimum index of refraction, and said medium is a transmissive medium having a given index of refraction which is equal to or greater than said certain maximum or is equal to or less than said certain minimum, wherein said predetermined waveform profile is a rectangular waveform profile having a given physical amplitude and a given aspect ratio, and wherein said given physical amplitude is substantially equal to 260 nanometers divided by the difference between said certain maximum and said certain minimum indices of refraction.
2. A tunable diffractive subtractive color filter comprising a solid diffractive phase medium including a fixed, predetermined waveform profile surface relief pattern, an adjustable index-of-refraction, optically-transparent, fluid medium in which said surface relief pattern is immersed, and control means for selectively controlling the index of refraction of said fluid medium;
wherein said selectively controllable index of refraction of said fluid medium is within a continuous range of indices of refraction that extend from a certain maximum index of refraction to a certain minimum index of refraction, and said medium is a transmissive medium having a given index of refraction which is equal to or greater than said certain maximum or is equal to or less than said certain minimum, wherein said predetermined waveform profile is a rectangular waveform profile having a given physical amplitude and a given aspect ratio, wherein said fluid comprises a liquid crystal material which exhibits an index of refraction that is a function of an applied electric field and wherein said control means includes means for controllably applying an electric field to said fluid in the vicinity of said pattern, wherein said means for controllably applying said electric field comprises means for applying a binary field having a first state and a second state, and wherein said liquid crystal has said certain maximum index of refraction when said electric field has said first state and has said certain minimum index of refraction when said electric field has said second state, wherein said given index-of-refraction is substantially equal to a particular one of said certain maximum and minimum indices of refraction, and wherein the product of said given physical amplitude and the absolute value of the difference between said given index-of-refraction and the other one of said certain maximum and minimum indices of refraction is substantially equal to 280 nanometers.
|
This invention relates to diffractive-subtractive color filters and, more particularly, to tunable diffractive-substractive color filters.
U.S. Pat. No. 3,957,354, issued May 18, 1976 to Karl Knop (one of the present applicants) discloses diffractive-substrative color filtering techniques. These techniques make it possible to derive zero-diffraction order light of a specified color hue in response to the illumination of white light by a diffractive phase medium that includes a fixed, predetermined-waveform profile surface relief pattern. Preferably, the predetermined-waveform is a rectangular waveform of a specified amplitude. The color hue of the zero-order diffraction output light depends upon the value of the specified amplitude of the rectangular waveform. While the diffractive phase medium may be a reflecting medium, which returns incident light to its surroundings, the diffracting phase medium is preferably a transmissive medium exhibiting an index of refraction different from that of its surroundings.
In accordance with the principles of the present invention, a tunable diffractive-substractive color light filter comprises a solid diffractive phase medium (which can be either reflective or transmissive) including a fixed, predetermined-waveform profile surface relief pattern. This surface relief pattern is immersed in an adjustable index-of-refraction, optically-transparent fluid medium. The tunable diffractive-substractive color filter further includes control means for selectively controlling the index of refraction of the fluid medium.
In the Drawing:
FIG. 1 schematically illustrates a typical prior-art rectangular-waveform transmissive diffractive subtractive color filter;
FIG. 2 illustrates a CIE color chart of such a diffractive subtractive color filter;
FIGS. 3a and 3b illustrate a first example of tunable diffractive subtractive color filter;
FIG. 4 illustrates a second example of a tunable diffractive subtractive color filter, and FIGS. 5a and 5b illustrate first and second practical embodiments of a tunable diffractive subtractive color filter.
Referring to FIG. 1, there is shown a transparent medium 100 (such as polyvinyl chloride) having a rectangular-waveform diffraction grating 102 embossed as a relief-pattern on a surface thereof. Medium 100, exhibiting an index of refraction n0, is surrounded by another medium 104, exhibiting an index of refraction n which is different from n0. The physical amplitude (depth) of rectangular grating 102 is a'; the line spacing of the rectangular grating 102 is d, and the aspect ratio of rectangular grating 102 is b. In FIG. 1, the aspect ratio b is shown as 50 percent; i.e., rectangular grating 102 is a symmetric square-wave grating. However, the aspect ratio b (which affects saturation of the color) may have any desired value between 0-100 percent.
Medium 100 is illuminated by a beam of white light 106, which includes wavelengths extending over the visible spectrum. As shown in FIG. 1, rectangular grating 102 diffracts the light passing through medium 100 into the zero diffraction order and higher diffraction orders, such as the +1 and the -1 diffraction orders. The color of the zero order output light (which is the desired output light) is not white, but depends on the zero order transfer function of rectangular grating 102, as more fully described in the aforesaid U.S. Pat. No. 3,957,354.
FIG. 2 is a CIE color chart showing the zero-order-transfer function of a diffractive subtractive color filter with b=0.5 in accordance with the value of the optical amplitude a of a rectangular-wave grating illuminated with white light having a source temperature of 3200 K. The optical amplitude a is equal to the physical amplitude a' of grating 102 multiplied by the absolute value of the difference between the respective indices of refraction n0 of medium 100 and n of surroundings 104. Thus, the functional relationship between the zero-order-filter transfer function of the diffractive subtractive color filter shown in FIG. 2 is independent of the grating parameter d (shown in FIG. 1). The reasons for this is that the functional relationship shown in FIG. 2 is determined in accordance with simple diffraction theory (i.e. the Kirchhoff-Huygens approximation). Because simple diffraction theory does not take into account the fact that light is actually an electro-magnetic wave (defined by the Maxwell equation), simple diffraction theory is valid only when the line spacing of the grating is substantially larger than any wave-length included within the spectrum of white light traveling through the grating. That is, any error introduced by the Kirchhoff-Huygens approximation becomes negligible for all visible wavelengths so long as the producet nd is equal to or greater than 5 μm. For substantially finer line gratings, (2 μm or less) it is necessary to employ rigorous diffraction theory, which take in to account that light is an electromagnetic wave defined by the Maxwell-equations.
Reference is made to the copending U.S. Pat. application Ser. No. 841,057, filed Oct. 11, 1977 (which issued as U.S. Pat. No. 4,130,347 on Dec. 19, 1978) by Knop and assigned to the same assignee as the present invention, which discusses in detail such fine-line diffractive substrative color filters. For the purposes of the present invention, it is sufficient to state that the color hue of the zero diffraction order of the fine line diffractive-subtractive color filter is a function of the aspect ratio b and the line spacing d, as well as the optical amplitude a. Using rigorous diffraction theory, solutions can be derived only numerically with the help of a computer because the result depends on all the grating parameters in a very complicated fashion. Regardless of this fact, any given diffractive subtractive color filter (whether fine-line or coarse-line) having a fixed physical amplitude a', a fixed line spacing d and a fixed aspect ratio b, exhibits a zero-order-filter transfer function which may be tuned by varying the absolute value of the difference between the respective indices of refraction n0 of medium 100 and n of surroundings 104.
Referring now to FIG. 3a, there is shown a solid diffracting phase medium 300, similar to medium 100, which includes a rectangular waveform surface relief pattern 302. Surface relief pattern 302 is immersed in a "twisted-nematic" type liquid crystal material 304. In FIG. 3a, no electric field is applied (i.e., the intensity of the electric field E is zero). In this case, the liquid-crystal molecules naturally orient themselves with their long axis parallel to the grating lines (i.e., perpendicular to the plane of the paper, as indicated by the dots in FIG. 3a). This makes the liquid crystal within the grating lines optically very anisotropic. In particular, the refractive index of the liquid crystal of FIG. 3a for illuminating white light that is polarized parallel to the grating line grooves was found to be in the range of 1.70-1.80. However, when illuminated with light polarized perpendicular to the grating line grooves of FIG. 3a the liquid crystal exhibited a refractive index in the range of 1.45-1.55. Since both the physical amplitude a' and the index of refraction n0 of medium 300 of FIG. 3a are fixed, the optical amplitude a, and hence the color hue of the zero order diffraction light, is materially different for illuminating light polarized parallel to the grating line grooves than it is for illuminating light polarized perpendicular to the grating line grooves.
The arrangement shown in FIG. 3b is identical to that shown in FIG. 3a except for the application of an appreciable electric field E directed perpendicular to the grating line grooves, as indicated by the arrow in FIG. 3b. The result is that the molecules of liquid crystal 304 now orient themselves with their long axis parallel to the electric field (i.e., perpendicular to the grating line grooves as indicated in FIG. 3b by the short lines in plane of the paper). Under these conditions, the diffractive subtractive color filter shown in FIG. 3b operates isotropically, exhibiting substantially the same index of refraction for both polarizations of light. Furthermore, the isotropic refraction index with the electric field applied turns out to be approximately equal to the perpendicular polarization index (1.45-1.55) when no electric field is applied.
Thus, due to the anisotropy when no electric field is applied, the application of an electric field results in a large change optical amplitude for illuminating light polarized parallel to the grating line grooves, but results in very little change in the optical amplitude for illuminating light polarized perpendicular to the grating line grooves. Since illuminating white light is normally non-polarized light, this anisotropy presents a problem. The simplest solution to this problem of anisotropy of a liquid crystal grating cell is to add a sheet of polarizer to the device which produces light polarized parallel to the grating line grooves. This, however, results in the loss of at least half of the light, which is undesirable. A second solution to the problem of anisotropy is choose the respective values of n0 of medium 300 and the physical depth a' of grating 302 such that an optical amplitude a corresponding to a dark color results. For instance, as indicated in the CIE color chart of FIG. 2, an optical amplitude for a of 280 nanometers (nm) corresponds to a dark blue. Now, if the index of refraction n0 of medium 300 is selected to be substantially equal to n of liquid crystal 304 for parallel-polarized of illuminating light in FIG. 3a, while the physical amplitude a' is selected so that the product of the absolute value of the difference in index of refraction n for perpendicular polarized illuminating light of FIG. 3a and n0 multiplied by the physical amplitude a' equals 280 nm, dark blue zero diffraction order output light is produced with the electric field on and half-intensity white zero diffraction order light, polarized parallel to the grating line grooves, is produced with the electric field off.
The best solution presently known to the applicants to the problem of anisotropy of liquid crystals is shown in FIG. 4. The arrangement of FIG. 4 comprises a sandwich of spaced first and second grating structures 400 and 402 with liquid crystal material 404 filling the space therebetween. First grating structure structure 400 incorporates first rectangular waveform surface relief pattern 406 in contact with liquid crystal 404 and second grating structure 402 incorporates second rectangular waveform surface relief pattern 408 in contact with liquid crystal 404. As shown, the respective grating line grooves of relief patterns 406 and 408 are oriented substantially perpendicularly to each other. In FIG. 4, the index of refraction n0 of structures 400 and 402 may be selected to be substantially equal to the index of refraction n of liquid crystal 404 with an applied electric field (i.e., about the same as the index of refraction n for perpendicular polarized light). At the same time, the physical amplitude a' of gratings 406 and 408 may be selected to be substantially equal to the quotient of 280 nm divided by the absolute value of the difference between the index of refraction n for parallel polarized light and n0. In this case, a dark blue display is produced with the field off and a full-intensity white display is produced with the field on. This provides maximum contrast.
The aforesaid U.S. Pat. No. 3,957,354 teaches that the zero diffraction order transmittance of a single rectangular waveform grating structure is a cosine-squared (cos2)function of wavelength, so that the transmittance of the two-grating structure shown in FIG. 4 is a product of two cos2 functions of wavelength.
Specifically, ##EQU1## where, Toff and Ton are the respective transmittances with the electric field off and on; n∥ and n⊥ are the respective values of n for light polarized parallel to the grating with the electric field off, and light polarized perpendicular to the grating with the electric field off; non is the value n with the electric field on for either light polarization, and λ is the wavelength. As said before, n⊥ is closed to the value of non. It can be seen from equations 1 and 2 that various tunable color filters can be designed using the arrangement of FIG. 4 by choosing the respective values for index of refraction n0 and the physical amplitude a' to provide any desired a. These choices include, but are not limited to, the choice which provides maximum contrast, discussed above.
Examples of practical liquid crystal cells are shown in FIGS. 5a and 5b. Specifically, the cells of both FIGS. 5a and 5b comprises liquid crystal 500 filling a space of about 5-10 μm separating upper glass plate 502 and lower glass plate 504. An electric field is applied across liquid crystal 500 by means of transparent tin-oxide upper electrode 506, coating the inner surface of upper glass plate 502, and transparent tin-oxide lower electrode 508 coating the inner surface of lower glass plate 504. The cell of FIG. 5a has deposited, on lower electrode 508, grating 510, composed of a material such as zinc sulfide (having a value of n0 of about 2.36) or titanium oxide (having a value of n0 of about 2.6). The cell of FIG. 5b contains a grating structure 512 which is embossed in a thermoplastic material 514. An example of thermoplastic material is FEP (a Teflon-like thermoplastic material manufactured and sold by Dupont) which has a value n0 of about 1.37. Grating lines spacings of about 5 μm provide good results that agree with the CIE color chart shown in FIG. 2. Finer line spacing grating may be employed, such as 1.4 μm, but, in this case, an aspect ratio b other than 50 percent is generally used to obtain saturated colors because of the invalidity of the simplified diffraction theory, discussed above, for these finer line spacing gratings.
The cells of FIGS. 5a and 5b can be built to display graphical information (e.g., 7-segment digits) by restricting one or both electrodes to certain areas. (This technique is well-known from standard liquid crystal displays). In addition, gratings can be restricted to given areas, so that areas without grating display white and show no color change. Also, gratings of different depths can be used with one single cell to provide a multi-colored display.
Liquid crystals are usually used in a binary fashion with the electric field either on or off. However, it is possible to employ an electrical field which varies continuously from zero to a value giving full orientation of the liquid crystal molecules. In this case, a whole series of colors is generated. With a suitable thickness of the grating (typically 2 μm), a whole circle on CIE of FIG. 2 may be described. Alternatively, two or more cells may be used in a series with the grating lines crossed at a certain angle and operate individually from different electrical signals. Further, if the index of refraction of the liquid crystal with a first-magnitude electric field is n1, and with a second-magnitude electric is n2 and the physical amplitude is selected to be equal to 260 nm divided by the difference between n2 and n1, the colors respectively obtained with the first-magnitude and with the second magnitude electric field will be roughly complimentary (as indicated by the spiral curve 200 of FIG. 2).
The principles of the present invention, that provide a tunable diffractive color filter, can be implemented by other approaches than the use of a liquid crystal. The simplest method is to merely change the value of the refractive index by exchanging the liquid in the cell. Such a device can be used as a monitor for indicating the refractive index of a fluid by observing the transmitted color. One can also change the liquid employed to ones of different values of n0, by using pumps, to provide a display in different colors as would be useful, for example, for advertising or other purposes. Another approach is to provide a large change of refractive index by evaporating a liquid. Various techniques to realize this idea are possible. A simple one would be to heat the grating by a current pulse through a transparent electrode underneath it. The liquid in the cell can then be changed to a gas with a significantly different refractive index. A thin layer of gas formed above and within the grating lines will collapse when the current is switched off and thereby reform the liquid. Other means for heating could include radiation energy, ultrasonic energy, etc. A still other approach would be to employ electro-chemical reactions which lead to a change in refractive index in the fluid (liquid or gas) in the cell. For instance, the state of charge of a voltaic cell manifests itself in the value of the refractive index of the cell solution. Such a cell, incorporating a refraction grating in contact with the solution would form a non-volatile display. Further, a number of electro-optical effects exist, other than that manifested by a liquid crystal, in which the refractive index of a fluid changes or becomes anisotropic under the action of an electric field which is applied on two electrodes located on opposite sides of the grating structure containing the fluid. One such effect is that manifested by certain liquid ionic solutions, which in response to an electric field, applied capacitively through an insulating layer to prevent electrolysis, produces a depletion layer on both electrodes which can be thick enough to cause a substantial change in the observed index of refraction n0.
From the foregoing discussion it is clear that there are many physical effects which vary the index of refraction of a fluid and which may be employed to provide a tunable diffractive subtractive filter, in accordance with the principles of the present invention.
In the claims which follow, the expression; "control means for selectively controlling the index of refraction of said fluid medium" is intended to be generic to both electrically controlling the index of refraction of one (or more) materials making up the medium or physically controlling the index of refraction of the one (or more) materials making up the medium as, for example, by replacing one material with another.
Patent | Priority | Assignee | Title |
10089516, | Jul 31 2013 | DigiLens, Inc. | Method and apparatus for contact image sensing |
10145533, | Nov 11 2005 | SBG LABS, INC | Compact holographic illumination device |
10156681, | Feb 12 2015 | Digilens Inc.; Rockwell Collins Inc. | Waveguide grating device |
10185154, | Apr 07 2011 | DIGILENS INC | Laser despeckler based on angular diversity |
10209517, | May 20 2013 | DIGILENS INC | Holographic waveguide eye tracker |
10216061, | Jan 06 2012 | DIGILENS INC | Contact image sensor using switchable bragg gratings |
10234696, | Jul 26 2007 | DigiLens, Inc. | Optical apparatus for recording a holographic device and method of recording |
10241330, | Sep 19 2014 | DIGILENS INC | Method and apparatus for generating input images for holographic waveguide displays |
10330777, | Jan 20 2015 | DIGILENS INC | Holographic waveguide lidar |
10359573, | Nov 05 1999 | Board of Regents, The University of Texas System | Resonant waveguide-granting devices and methods for using same |
10359641, | Aug 24 2011 | DIGILENS, INC ; ROCKWELL COLLINS INC | Wearable data display |
10359736, | Aug 08 2014 | DIGILENS INC | Method for holographic mastering and replication |
10423222, | Sep 26 2014 | DIGILENS INC | Holographic waveguide optical tracker |
10423813, | Jul 31 2013 | DIGILENS INC | Method and apparatus for contact image sensing |
10437051, | May 11 2012 | Digilens Inc. | Apparatus for eye tracking |
10437064, | Jan 12 2015 | DIGILENS INC | Environmentally isolated waveguide display |
10459145, | Mar 16 2015 | DIGILENS INC | Waveguide device incorporating a light pipe |
10459311, | Jan 06 2012 | DIGILENS INC | Contact image sensor using switchable Bragg gratings |
10527797, | Feb 12 2015 | Digilens Inc.; Rockwell Collins Inc. | Waveguide grating device |
10545346, | Jan 05 2017 | DIGILENS INC | Wearable heads up displays |
10591756, | Mar 31 2015 | DIGILENS INC | Method and apparatus for contact image sensing |
10642058, | Aug 24 2011 | DIGILENS INC | Wearable data display |
10670876, | Aug 08 2014 | DIGILENS INC | Waveguide laser illuminator incorporating a despeckler |
10678053, | Apr 27 2009 | DIGILENS INC | Diffractive projection apparatus |
10690851, | Mar 16 2018 | DIGILENS INC | Holographic waveguides incorporating birefringence control and methods for their fabrication |
10690916, | Oct 05 2015 | DIGILENS INC | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
10725312, | Jul 26 2007 | SBG LABS, INC | Laser illumination device |
10732569, | Jan 08 2018 | DIGILENS INC | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
10859768, | Mar 24 2016 | DIGILENS INC | Method and apparatus for providing a polarization selective holographic waveguide device |
10877193, | Sep 22 2015 | Polarization independent wideband reflectors and methods for their manufacture | |
10890707, | Apr 11 2016 | DIGILENS INC | Holographic waveguide apparatus for structured light projection |
10914950, | Jan 08 2018 | DIGILENS INC | Waveguide architectures and related methods of manufacturing |
10942430, | Oct 16 2017 | DIGILENS INC | Systems and methods for multiplying the image resolution of a pixelated display |
10983340, | Feb 04 2016 | DIGILENS INC | Holographic waveguide optical tracker |
11150408, | Mar 16 2018 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
11175512, | Apr 27 2009 | Digilens Inc.; Rockwell Collins, Inc. | Diffractive projection apparatus |
11194162, | Jan 05 2017 | Digilens Inc. | Wearable heads up displays |
11281013, | Oct 05 2015 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
11287666, | Aug 24 2011 | DigiLens, Inc.; Rockwell Collins, Inc. | Wearable data display |
11307432, | Aug 08 2014 | Digilens Inc. | Waveguide laser illuminator incorporating a Despeckler |
11378732, | Mar 12 2019 | DIGILENS INC | Holographic waveguide backlight and related methods of manufacturing |
11402801, | Jul 25 2018 | DIGILENS INC | Systems and methods for fabricating a multilayer optical structure |
11442222, | Aug 29 2019 | DIGILENS INC | Evacuated gratings and methods of manufacturing |
11448937, | Nov 16 2012 | Digilens Inc.; Rockwell Collins, Inc | Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles |
11460621, | Apr 25 2012 | Rockwell Collins, Inc.; Digilens Inc. | Holographic wide angle display |
11480788, | Jan 12 2015 | Digilens Inc. | Light field displays incorporating holographic waveguides |
11487131, | Apr 07 2011 | Digilens Inc. | Laser despeckler based on angular diversity |
11513350, | Dec 02 2016 | DIGILENS INC | Waveguide device with uniform output illumination |
11543594, | Feb 15 2019 | DIGILENS INC | Methods and apparatuses for providing a holographic waveguide display using integrated gratings |
11586046, | Jan 05 2017 | Digilens Inc. | Wearable heads up displays |
11592614, | Aug 29 2019 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
11604314, | Mar 24 2016 | Digilens Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
11609480, | Nov 18 2016 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
11662590, | May 20 2013 | Digilens Inc. | Holographic waveguide eye tracker |
11681143, | Jul 29 2019 | DIGILENS INC | Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display |
11703645, | Feb 12 2015 | Digilens Inc.; Rockwell Collins, Inc. | Waveguide grating device |
11709373, | Aug 08 2014 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
11726261, | Mar 16 2018 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
11726323, | Sep 19 2014 | Digilens Inc.; Rockwell Collins, Inc. | Method and apparatus for generating input images for holographic waveguide displays |
11726329, | Jan 12 2015 | Digilens Inc. | Environmentally isolated waveguide display |
11726332, | Apr 27 2009 | Digilens Inc.; Rockwell Collins, Inc. | Diffractive projection apparatus |
11740472, | Jan 12 2015 | Digilens Inc. | Environmentally isolated waveguide display |
11747568, | Jun 07 2019 | DIGILENS INC | Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing |
11754842, | Oct 05 2015 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
11815781, | Nov 16 2012 | Rockwell Collins, Inc.; Digilens Inc. | Transparent waveguide display |
11899238, | Aug 29 2019 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
4576485, | Apr 29 1983 | Westinghouse Electric Corp. | Method and apparatus for measuring temperature profile with a single optical fiber |
4729640, | Oct 03 1984 | Canon Kabushiki Kaisha | Liquid crystal light modulation device |
4729641, | Jun 10 1983 | Canon Kabushiki Kaisha | Functional optical element having a non-flat planar interface with variable-index medium |
4763995, | Apr 28 1983 | Canon Kabushiki Kaisha | Spacers with alignment effect and substrates having a weak alignment effect |
4820025, | Mar 06 1986 | ALPS Electric Co., Ltd. | Liquid crystal cell |
4822146, | Apr 07 1986 | Canon Kabushiki Kaisha | Optical modulation element |
4834500, | Jul 12 1983 | SECRETARY OF STATE FOR DEFENCE IN HER BRITANNIC MAJESTY S GOVERNMENT OF THE UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND, WHITEHALL, LONDON SW1A 2HB, ENGLAND, THE, | Thermochromic liquid crystal displays |
4850681, | Apr 07 1986 | Canon Kabushiki Kaisha | Optical modulation device |
4856869, | Apr 08 1986 | Canon Kabushiki Kaisha | Display element and observation apparatus having the same |
4913531, | Sep 07 1988 | Victor Company of Japan, LTD | Liquid crystal light valve with grooved microgrid and method of forming the same |
5013141, | Feb 21 1985 | Canon Kabushiki Kaisha | Liquid crystal light modulation device |
5046827, | Jul 20 1989 | Honeywell Inc. | Optical reconstruction filter for color mosaic displays |
5089810, | Jul 21 1988 | Proxima Corporation | Stacked display panel construction and method of making same |
5096282, | Jan 05 1988 | BROWN UNIVERSITY RESEARCH FOUNDATION, INC | Polymer dispersed liquid crystal film devices |
5107357, | Jan 18 1991 | Lockheed Martin Corporation | Low insertion loss optical beam steerer |
5122888, | Jul 10 1987 | Canon Kabushiki Kaisha | Focusing plate having phase grating formed by using liquid crystal |
5148302, | Apr 10 1986 | Optical modulation element having two-dimensional phase type diffraction grating | |
5198912, | Jan 12 1990 | Senshin Capital, LLC | Volume phase hologram with liquid crystal in microvoids between fringes |
5299037, | Aug 07 1985 | Canon Kabushiki Kaisha | Diffraction grating type liquid crystal display device in viewfinder |
5302946, | Jul 21 1988 | PROXIMA CORPORATION, A DELAWARE CORPORATION | Stacked display panel construction and method of making same |
5414546, | Aug 10 1988 | Dynamic optical notch filter | |
5473448, | Mar 18 1992 | Canon Kabushiki Kaisha | Display device having a mesomorphic diffraction grating layer adjacent a polymer dispersed layer |
5686975, | Oct 18 1993 | RealD Inc | Polarel panel for stereoscopic displays |
5949503, | Jun 22 1995 | Nikon Corporation | Reflective liquid crystal spatial light modulator and projection apparatus comprising same |
6014197, | Feb 28 1995 | U.S. Philips Corporation | Electro-optical device wherein orientation layers have grating structure and comprises birefringent material with refractive indices equal to electro-optic medium |
6118586, | Oct 03 1995 | Asahi Glass Company Ltd | Optical head device including an optically anisotropic diffraction grating and production method thereof |
6215928, | May 19 1996 | Yeda Research and Development Co. Ltd. | Active wavelength selection with resonant devices |
6271966, | Oct 03 1995 | Asahi Glass Company Ltd. | Optical head device including an optically anisotropic diffraction grating and process for its production |
6618116, | Oct 02 1997 | Asahi Glass Company, Limited | Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device |
6639648, | May 25 2000 | Optical wavelength tuning method and Fabry-Perot type optical tuner | |
6654086, | Jan 04 2000 | AU Optronics Corporation | Reflection-type liquid crystal display apparatus comprising a light interference reflector and manufacturing method of the same |
6707518, | Jul 12 1999 | Coho Holdings, LLC | Electro-optic device allowing wavelength tuning |
6762880, | Feb 21 2001 | IBSEN PHOTONICS A S | Grating structures and methods of making the grating structures |
7209212, | Sep 15 2004 | China Institute of Technology | Tunable optical integrated element using liquid crystal as active layer |
7623291, | Jul 29 2004 | AGC INC | Polarized diffractive filter and layered polarized diffractive filter |
7679826, | Jan 19 2004 | DE Technologies Limited | Diffractive, polarization modulating optical devices |
8133638, | May 30 2006 | Brady Worldwide, Inc.; BRADY WORLDWIDE, INC | All-polymer grating microstructure |
8259201, | Jun 30 2005 | CSEM Centre Suisse d'Electronique et de Microtechnique SA | Color image sensor |
8582115, | Oct 07 2010 | OmniVision Technologies, Inc.; OmniVision Technologies, Inc | Tunable and switchable multilayer optical devices |
RE36654, | Mar 28 1989 | Seiko Epson Corporation | Stacked LCD color display |
Patent | Priority | Assignee | Title |
3787110, | |||
3957354, | Feb 03 1975 | RCA Corporation | Diffractive subtractive color filtering technique |
4037929, | Sep 03 1975 | Thomson-Brandt | Optical projection device and an optical reader incorporating this device |
4130347, | Sep 16 1977 | RCA Corporation | Fine-line diffractive subtractive color filters |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 14 1978 | RCA Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Feb 17 1984 | 4 years fee payment window open |
Aug 17 1984 | 6 months grace period start (w surcharge) |
Feb 17 1985 | patent expiry (for year 4) |
Feb 17 1987 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 17 1988 | 8 years fee payment window open |
Aug 17 1988 | 6 months grace period start (w surcharge) |
Feb 17 1989 | patent expiry (for year 8) |
Feb 17 1991 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 17 1992 | 12 years fee payment window open |
Aug 17 1992 | 6 months grace period start (w surcharge) |
Feb 17 1993 | patent expiry (for year 12) |
Feb 17 1995 | 2 years to revive unintentionally abandoned end. (for year 12) |