ultrasonic images of flowing streams can provide important information regarding the streams. Herein, a plurality of microbubbles are provided in such streams to enhance such images, aid in tumor detection and treatment, provide mapping of vascularity of tissue masses and measure instantaneous blood flow rate. The preferred microbubbles have a coalescence resistant surface membrane encapsulating a gas of a selected composition, the membrane including non-toxic and non-antigenic organic molecules. Preferrably, the microbubbles have diameters in the 0.5 micron-300 micron range.
|
6. A method of detecting tumors in a living subject, comprising:
providing a substance in a blood stream of said test subject, said substance providing a plurality of microbubbles in said blood stream, substantially all of said microbubbles being of generally a uniform size; obtaining an enhanced ultrasonic echographic image of said bubbles at a possible tumor; and examining said image for evidence of neovascularization indicative of said possible tumor.
15. A method of detecting tumorous tissue in a living subject, comprising:
providing a substance in an afferent vasculature of said test subject upstream of a possible tumor, said substance providing a plurality of microbubbles in said blood stream substantially all of a diameter too large to pass through normal capillaries but small enough to pass through tumorous capillaries; and obtaining an enhanced ultrasonic echographic image of a corresponding efferent vasculature downstream of said possible tumor and noting if such microbubbles are present.
7. A method of detecting tumors in a living subject, comprising:
providing a substance, comprising a plurality of microbubbles each having a surface membrane encapsulating a gas of a selected composition, said membrane including a multiplicity of non-toxic and non-antigenic organic molecules, in a blood stream of said test subject, said substance providing a plurality of microbubbles in said blood stream; obtaining an enhanced ultrasonic echographic image of said bubbles; and examining said image for evidence of neovascularization indicative of a possible tumor.
1. A method of enhancing ultrasonic echographic imaging in a liquid enclosed in a vessel by increasing image contrast, comprising:
providing a plurality of microbubbles in said liquid, each of said microbubbles having a coalescence resistant surface membrane encapsulating a gas of a selected composition, said membrane including a multiplicity of non-toxic and non-antigenic organic molecules, said microbubbles having a diameter of no more than about 300 microns and no less than about 0.5 micron; and obtaining an enhanced ultrasonic echographic image of said liquid opposite a position therein containing said microbubbles by increasing the relative contrast between said liquid and said vessel.
11. A method of mapping the vascularity of a tissue mass, comprising:
injecting a plurality of microbubbles, substantially all of which fall in a selected narrow size range, into a blood stream of a test subject, each of said microbubbles having a coalescing resistant surface membrane encapsulating a gas of a selected composition, said membrane including a multiplicity of non-toxic and non-antigenic organic molecules, said molecules having a diameter of between about 0.5 micron and 300 microns; obtaining an enhanced ultrasonic echographic image of the tissue mass soon after the microbubbles have flowed thereto and lodged at a first bifurcation of a first vascular size corresponding to that of the injected microbubble size range; and obtaining an additional enhanced ultrasonic echographic image of the tissue mass after a selected period of time during which the microbubbles have generally uniformly shrunk, due to dissolution thereof, to a known reduced size, have flowed past said first bifurcation, and have lodged at a second bifurcation of a second vascular size corresponding to that of the reduced size microbubble size range.
3. A method as in
8. A method as in
12. A method as in
|
1. Technical Field
This invention relates to an ultrasonic image enhancement method, to diagnostic techniques and to treatment methods which are closely related thereto.
2. Background Art
Contrast agents are often employed medically to accentuate subtle differences between two structures in X-ray radiographic images. In X-ray diagnosis, for example, a radioopaque dye is routinely injected into an arterial bed to delineate the existing vasculature which otherwise could not be detected. Present ultrasonic diagnosis generally faces similar problems. The ultrasonographer has comparable difficulty in detecting certain structures, for example septal defects in small children, but no effective ultrasonic contrast agent has been available. An acceptable ultrasonic contrast agent which can be delivered into the blood stream therefore is greatly needed. A selective agent, i.e., one which can selectively emphasize particular parts of the vasculature (such as that of a tumor), would be especially valuable.
Measurement of cardiac output and other quantitative blood flow measurements are needed to monitor the health of many patients. Existing non-invasive measurement techniques are indirect and only approximate. Existing reliable and accurate measurement techniques involve catheterization, a difficult and hazardous procedure. Further, the prior art does not yield a measurement of instantaneous blood flow, but only an average value thereof. An accurate non-invasive method for measurement of cardiac output and blood flow in general is greatly needed.
Feigenbaum, et al, Circulation, Volume XLI, April 1970, in a report titled "Identification of Ultrasound Echoes From the Left Ventricle of the Heart Through the Use of Injections of Indocyanine Green" noted that injections of the indocyanine green produced a cloud of echoes that filled the left ventricle cavity. They speculated that this phenomenon might be due to the formation of tiny bubbles of air suspended in the dye. Gramiak, et al, Radiology 100:415-418, 1971, report similar effects.
Although some enchoing has been noted and presumed to be caused by microbubbles in the blood stream, the hypothesis that the microbubbles cause the echoing has never been conclusively proven. Further, the proir results in this area have been on a hit-or-miss basis, in that the bubbles introduced into the blood stream, if indeed they were bubbles, have been of generally uncontrolled and unstable size and concentration.
Still further, when the bubbles are simply air bubbles, they have a serious and deleterious tendency to stick to the vessel and cardiac walls and to coalesce and form larger bubbles. Hence, it has not been possible to introduce bubbles that are of relatively uniform size into blood vessels, which bubbles resist coalescence, flow freely with the blood and remain of a relatively uniform size as they dissolve. Thus, diagnostic techniques which might depend upon having freely flowing microbubbles of a controlled size in the blood stream, and in a controlled amount, have not been developed and do not form a part of the ultrasonic diagnostic art.
The production of freely flowing microbubbles of a controlled size and their injection into the blood stream for different diagnostic techniques is known. The present inventors, in a report entitled "Non-Invasive Assessment of Pulmonary Hypertension Using The Bubble Ultrasonic Resonance Pressure (BURP) Method" (Report No. HR-62917-1A), April, 1977 sponsored by the Division of Lung Diseases, National Heart, Lung and Blood Institute, report on the production and the attempt to use such bubbles for non-invasively measuring pulmonary artery blood pressure by sensing bubble ultrasonic resonance. Basically, microbubbles are injected into a peripheral vein and their ultrasonic resonance re-emission frequency is measured as they pass through the pulmonary artery. The re-emission resonance frequency (about 100 kHz or less) is determined by applying an ultrasonic probe to the chest of the subject. The bubbles are excited by transmission of continuous ultrasonic radiation (of about 100 kHz) into the body. The microbubbles are not, however, utilized by the prior art for enhancing ultrasonic images. That is, they are not used at mega-Hertz frequencies, e.g., 1 to 10 mega-Hertz, and are not used via applying short ultrasonic pulse and detecting timed echoes therefrom as with ultrasonic echograms, or via applying continuous waves and examining the changes in transmission characteristics as with existing ultrasonic holographic units.
It would be highly desirable to provide a method of controllably and uniformly enhancing ultrasonic images of the blood stream of a living subject. Such a method could be utilized, for example, for detecting tumors and other abnormalities, for measuring instantaneous cardiac output and flow velocities in other vessels, for delivering gaseous therapeutic agents selectively to tumors or other tissues, and the like.
The present invention is directed toward overcoming one or more of the shortcomings of the prior art as set forth above.
According to the present invention, a method is set out for enhancing ultrasonic images of the blood stream of a patient. The method comprises flowing a plurality of microbubbles, each having a surface membrane encapsulating a gas of a selected composition, the membrane including a multiplicity of non-toxic and non-antigenic organic molecules, the microbubbles each having a diameter of no more than about 300 microns and no less than about 0.5 microns, in the blood stream; obtaining ultrasonic images of the blood stream opposite a position therein through which the microbubbles are flowing, thereby rendering the blood-carrying vessel visible by virtue of the increased contrast of the blood stream from the surrounding tissue, and permitting detection of abnormalities in configuration or function of the vessel.
In another sense, the invention comprises a method of measuring instantaneous flow in blood vessels including cardiac output. The method comprises injecting a substance into a blood stream of a test subject, the substance providing an ensemble of microbubbles; measuring the instantaneous velocities of the microbubbles at a location in the blood stream by substantially simultaneously measuring the time dependent positions of the ensemble of microbubbles across the diameter of the vessel at said location; and determining therefrom the substantially instantaneous volumetric flow rate at the location in the blood stream.
In still another sense, the invention relates to a method of detecting tumors in a living subject. The method comprises injecting a substance into a blood stream of the subject, the substance providing a plurality of controlled size microbubbles in the blood stream; obtaining an ultrasonic image of the bubbles; and examining the image for evidences of neovascularization, with or without a necrotic core, indicative of a possible tumor.
Still further, in another embodiment of the invention, a method is provided of delivering a gaseous therapeutic agent selectively to tumorous tissue. The method comprises injecting such microbubbles as have been previously discussed, wherein the gas therein comprises a therapeutic agent.
In yet another sense, the invention comprises a method of measuring the afferent vascularity of a certain tissue mass. The method comprises injecting or infusing a substance providing a plurality of precision microbubbles. The bubble diameter is preselected for the dimension of concern. The microbubbles flow into the general area for ultrasonic examination and lodge at a bifurcation whose discharge branches are all smaller than the bubble. The ultrasonic images thereby show areas of similar bifurcation sizes. As the bubbles dissolve, they become free and flow downstream and lodge at another bifurcation. Coupled with knowledge of bubble dissolving rates, time-sequenced images can delineate the afferent vascularity of the test section.
To summarize, the present invention concerns an injectable stable dispersion of microbubbles of precisely controllable size and quantity for use as an effective and safe contrast agent for ultrasonic imaging, and for direct non-invasive measurement of cardiac output and blood flow in general. The size control is important in that it adds a dimension of diagnostic uses not available with X-ray contrast agents. The invention also concerns delivery of a gaseous therapeutic agent selectively to tumorous tissue.
In accordance with the present invention ultrasonic images of a blood stream of a subject are enhanced. Either via catheterization injection or through hypodermic injection, a plurality of microbubbles of a very particular nature are inserted into the blood stream of the test subject. The microbubbles must each have a surface membrane which encapsulates a gas of a selected composition.
The structure of the membrane is of extreme importance. It should be selected to reduce coalescence and must include a multiplicity of non-toxic and non-antigenic organic molecules. Gelatin is particularly preferred as the membrane material. The organic molecules which form a gelatin membrane are believed to have both a hydrophilic portion and a hydrophobic portion. When the membrane-covered microbubbles are in the blood stream, the hydrophilic portions are believed to be aligned radially outwardly or away from the centers of the respective microbubbles. As a result, the microbubbles tend to repel one another thus significantly reducing the tendency of the microbubbles to coalesce with one another and form larger microbubbles.
Membranes other than gelatin and having resistance to coalescing, as well as non-toxic and non-antigenic properties, are also suitable whether the resistance to coalescing is due to the presence of such hydrophilic and hydrophobic portions, to particularly strong membranes, or whatever. This resistance to coalescing is important in ensuring that the sizes of the microbubbles in the blood stream are substantially the same for microbubbles which are originally of the same size and have been in the blood stream an equal length of time. With time, of course, the gas or gases contained within the membranes will dissolve into the blood stream and the microbubbles will be gradually reduced in size until they disappear.
It is essential that the organic molecules which form the membrane be non-toxic and non-antigenic, since it is clear that either a toxic or antigenic reaction within the blood stream is highly undesirable.
With respect to the gas within the membrane, for straightforward ultrasonic image enhancement, a chemically inert and somewhat slowly dissolving gas such as nitrogen or one of the slower dissolving noble gases is very suitable. However, in certain instances it may be desirable to utilize a gas which is far from inert. For example, it may be desirable to utilize a gas within the bubble which is toxic to tissue, if the bubble is designed to be absorbed by tumorous tissue but to not be absorbed by the normal tissue of the blood stream. In other instances, it may be desirable to employ a gas which dissolves in blood quickly, such as carbon dioxide.
Another important result of utilizing microbubbles having the particular membrane described above is that they will have a reduced tendency to stick to the walls of the blood vessel, particularly the walls of normal blood vessels. With tumorous tissue, the walls of the blood vessels are considerably rougher and otherwise abnormal, thus providing a more ready accepting surface for holding such microbubbles, even with their reduced tendency to stick to normal blood vessel walls.
The size of such microbubbles is also important. Generally they will be, at most, about 300 microns, and at least about 0.5 micron, in diameter. More preferably, the microbubbles will have a diameter below about 150 microns and above about 1.0 micron. In some instances, all of the microbubbles injected will be of about the same size so that they congregate in a particular area of the body or in a particular type or size of blood vessel. Microbubbles between 5 and 10 microns are particularly useful in that they can pass through normal capillaries.
Such microbubbles as have just been described are produced by gradually flowing a gas through a small orifice, for example through a capillary tube, and into a liquid. A force is generally exerted upon the microbubble being formed at the orifice, with the force being sufficient to remove the microbubble prior to its attaining the full size it would attain in the absence of such force. For example, the orifice may lie generally in a vertical plane (the capillary may be horizontal) and the force may simply comprise the buoyancy of the microbubble in the liquid and the surface tension attachment to the orifice. Alternatively, and preferably, the orifice may lie in any orientation with flow past the orifice, and the force consists of fluid drag on the bubble and the surface tension force. In both situations the microbubbles may flow into a storage container such as a hypodermic syringe. The aforementioned report "Non-Invasive Assessment of Pulmonary Hypertension Using The Bubble Ultrasonic Resonance Pressure (BURP) Method" describes production of such microbubbles in more detail.
Other methods of producing the described microbubbles have been successfully employed. For example, microbubbles have been created by supersaturation of a liquid; air or liquid jet impingment upon a free liquid surface; and addition of NaHCO3 particles to a liquid. These latter methods permit production of large quantities of microbubbles but of a much broader spectrum of sizes than the highly uniform diameter of microbubbles produced by a submerged orifice.
It is preferred that the microbubbles be formed and dispersed in a medium having a chemical composition substantially identical to that of the membrane. It is further preferred that the medium be gellable. As previously mentioned, a particularly preferred membrane material is gelatin itself, because it is well known to be non-toxic, non-antigenic and non-allergenic. Utilizing a gellable medium allows the microbubble dispersion to be stored for extended periods of time by simply lowering the temperature of the medium sufficiently so that gelling occurs. In practice, the gelled microbubble dispersion is stored in hypodermic syringes. When needed, the gelatin is melted by warming the syringes, and the dispersion is injected into a blood vessel. The bulk of the gelatin dissolves in the blood, leaving the required gelatin stabilizing membrane around each microbubble.
As the microbubbles flow through the blood stream, ultrasonic images are obtained of the blood stream opposite a location therein through which the microbubbles are flowing. Most modern clinical ultrasonic units employ pulsed ultrasound to obtain images within the body. A short burst of ultrasound is emitted from the exciter/receiver transducer into the test media. Slight changes in acoustical impedance cause some reflection of the incident pulse train. The intensity of the reflection received by the transducer is a function of the difference between the acoustical impedance of the two media forming the interface. The time to acquire the return signal depends upon the distance travelled. Signal and video processing leads to an echogram of the test media, and the brightness of an interface depends upon the strength of the reflection. Use of the ultrasonic echogram technique along with a microbubble contrast medium is identical to that normally utilized. That is, no variations in the ultrasonic imaging device itself are necessary.
It should be noted that the particular size of the microbubbles may be optimized in relation to the frequency of the ultrasound being utilized to obtain the image. That is, for a highly reflecting dispersion, the size of the microbubbles can be chosen so that they resonate at the particular ultrasonic frequency utilized, although at the most used imaging frequencies, 2 to 10 mHz, this may require microbubbles having very small (1 to 5 micron) diameters. The reflection power of the bubbles at resonance can be more than 100 times that at non-resonance frequencies.
Instantaneous cardiac output can be measured utilizing microbubbles injected into the blood stream. The blood flow velocity distribution in a blood vessel or heart chamber can be quantitatively determined by the use of injected microbubbles, provided that the bubbles which reach the observed location are of suitable number and size for discrete and accurate measurement of their position in the ultrasonic image. The velocity distribution is obtainable by either one of two methods. The first method is to observe the local displacement of the bubbles throughout the vessel or chamber over a short increment of time. This is conveniently accomplished in the usual ultrasonic image by measuring the bubble "streak length", i.e., the change in position of each bubble between successive ultrasonic scans. The second method is to detect the Doppler shift frequency from the backscattered signal from each bubble. A three-dimensional velocity field can be determined stereoscopically using images from different aspects (angles). Such instantaneous distributions can reveal the presence and quantitative severity of flow abnormalities such as septal defects and valvular disfunctions in the heart, and obstructions or aneurysms in the coronary, aorta, carotid and other vital blood vessels. Furthermore, by integrating the velocity profile across the diameter of a great vessel of the heart such as the pulmonary artery or the ascending aorta, a direct measurement of instantaneous cardiac output can be obtained non-invasively. This important measurement previously could be obtained only by catheterization, a difficult and hazardous procedure, or by inaccurate and ambiguous indirect methods, and as averages over the cardiac cycle rather than instantaneous values.
Tumors can be detected in a living test subject via ultrasonic images by observing the abnormal concentration of microbubbles in an area where a tumor is suspected. Basically, the vasculature of a tumor grows at a rapid rate and becomes erratic and larger than that of normal tissue. Because the neovascularized vessels are larger than normal vessels, increased blood flow exists and a much higher concentration of microbubbles will be present. In particular, if microbubbles of a particularly appropriate size are chosen, it is possible to selectively collect such microbubbles within the tumor neovasculature and to thus delineate the extent of the neovascularity with a quantitative image. Alternatively, by using microbubbles of a uniform size larger than the normal capillary diameter, i.e., 7 to 10 microns, but well within the range of abnormal tumor capillary diameter, i.e., 20 to 100 microns, the local presence of the tumor is unambiguously identified by microbubbles which pass through the afferent vasculature and appear in the efferent (venous) vasculature.
The following example illustrates the use of microbubbles as ultrasonic contrast agents.
Nitrogen microbubbles (38, 80 and 140 microns in diameter) dispersed in gelatin, were injected via a catheter into test subjects. Static (5 mHz transducer) and real time (7.5 mHz transducer) images were recorded on Polaroid film and on videotape. Rabbits with unilateral thigh V2 carcinomas were used in the in vivo studies. Base-line ultrasound images of normal muscle and V2 carcinoma were obtained. Five milliliter syringes containing a gelatin dispersion of 80 micron nitrogen microbubbles were warmed and injected through a catheter placed in the V2 ipsilateral iliac artery via the right carotid artery. Static and real time images of normal muscle, blood vessels, and the V2 carcinoma, which was located by palpation, were recorded for at least 2 minutes following each injection. The gelation-encapsulated nitrogen bubbles were also readily demonstrated in an in vitro phantom. The 80 and 140 micron bubbles were more echogenic than the 38 micron bubbles, although this may be a result of the instrumentation and geometry of the test. In vivo, the 80 micron microbubbles could be identified for several minutes after the initial bolus of bubbles. The central anechoic portions of the V2 carcinoma did not become echogenic following injection of microbubbles but the periphery of the tumor became increasingly echogenic. The gelatin-encapsulated nitrogen microbubbles are thus demonstrated as being an effective ultrasonic contrast agent. The ultrasonic tumor rim enchancement about a necrotic core was found to be a useful diagnostic observation.
The tumor detection technique just discussed and exemplified can be modified to serve as a tumor treatment technique. That is, the gas encapsulated within the membrane can be changed to one which will deliver radioactive or chemotherapeutic agents to the tumor neovascularization. It is noted that such is in conformance with the exemplified concentrating of microbubbles in the neovascularized tumor tissue and with the selectively large dissolution rate of the bubbles in the capillary bed.
The aforementioned and described methods are useful diagnostically for a number of purposes, including but not limited to the detection of cardiovascular abnormalities and tumors in living beings, and the selective local delivery of therapeutic agents. Still further, the method is useful in providing a direct and non-invasive measurement of instantaneous cardiac output and blood flow in general, whereas it was previously not possible to make such an instantaneous measurement, but rather only to measure average cardiac output or blood flow by invasive or indirect procedures.
Other aspects, objects, and advantages of this invention can be obtained from a study of the drawings, disclosure and the appended claims.
Rasor, Ned S., Tickner, Ernest G.
Patent | Priority | Assignee | Title |
10045832, | May 23 2003 | SenoRx, Inc. | Marker or filler forming fluid |
10064609, | Aug 05 2005 | SenoRx, Inc. | Method of collecting one or more tissue specimens |
10076580, | Aug 18 2004 | Bracco Suisse S.A. | Gas-filled microvesicles composition for contrast imaging |
10105125, | Dec 16 2004 | SenoRx, Inc. | Biopsy device with aperture orientation and improved tip |
10172674, | Feb 02 1999 | SenoRx, Inc. | Intracorporeal marker and marker delivery device |
10219887, | Mar 14 2013 | Volcano Corporation | Filters with echogenic characteristics |
10220122, | Dec 22 2010 | Ulthera, Inc. | System for tissue dissection and aspiration |
10258428, | Dec 30 2008 | C. R. Bard, Inc. | Marker delivery device for tissue marker placement |
10258563, | Apr 20 2009 | Drexel University | Encapsulation of microbubbles within the aqueous core of microcapsules |
10271866, | Aug 07 2009 | Ulthera, Inc. | Modular systems for treating tissue |
10292677, | Mar 14 2013 | Volcano Corporation | Endoluminal filter having enhanced echogenic properties |
10299881, | May 23 2003 | Senorx, Inc | Marker or filler forming fluid |
10342635, | Apr 20 2005 | Bard Peripheral Vascular, Inc.; Bard Shannon Limited | Marking device with retractable cannula |
10357328, | Apr 20 2005 | Bard Peripheral Vascular, Inc; Bard Shannon Limited | Marking device with retractable cannula |
10357450, | Apr 06 2012 | CHILDREN S MEDICAL CENTER CORPORATION | Process for forming microbubbles with high oxygen content and uses thereof |
10363123, | Mar 15 2013 | Volcano Corporation | Distal protection systems and methods with pressure and ultrasound features |
10426590, | Mar 14 2013 | Volcano Corporation | Filters with echogenic characteristics |
10463446, | Jun 17 1999 | Bard Peripheral Vascular, Inc; Bard Shannon Limited | Apparatus for the percutaneous marking of a lesion |
10478161, | May 23 2005 | SenoRx, Inc. | Tissue cutting member for a biopsy device |
10485573, | Aug 07 2009 | Ulthera, Inc. | Handpieces for tissue treatment |
10531888, | Aug 07 2009 | Ulthera, Inc. | Methods for efficiently reducing the appearance of cellulite |
10548659, | Jan 07 2006 | ULTHERA, INC | High pressure pre-burst for improved fluid delivery |
10577554, | Mar 15 2013 | CHILDREN S MEDICAL CENTER CORPORATION | Gas-filled stabilized particles and methods of use |
10603066, | May 25 2010 | Ulthera, Inc. | Fluid-jet dissection system and method for reducing the appearance of cellulite |
10682200, | Dec 12 2006 | C. R. Bard, Inc. | Multiple imaging mode tissue marker |
10688040, | Apr 20 2009 | Drexel University | Encapsulation of microbubbles within the aqueous core of microcapsules |
10786604, | Sep 23 2008 | SenoRx, Inc. | Porous bioabsorbable implant |
10813716, | Nov 18 2002 | Bard Peripheral Vascular, Inc.; Bard Shannon Limited | Self-contained, self-piercing, side-expelling marking apparatus |
10874381, | Aug 05 2005 | SenoRx, Inc. | Biopsy device with fluid delivery to tissue specimens |
10912848, | Mar 19 2014 | IMGT CO, LTD | Dual-purpose PAT/ultrasound contrast agent bound with nanoparticles containing drug and method for preparing same |
11096708, | Aug 07 2009 | Ulthera, Inc. | Devices and methods for performing subcutaneous surgery |
11147890, | Feb 28 2017 | CHILDREN S MEDICAL CENTER CORPORATION | Stimuli-responsive particles encapsulating a gas and methods of use |
11213618, | Dec 22 2010 | Ulthera, Inc. | System for tissue dissection and aspiration |
11246574, | Dec 16 2004 | SenoRx, Inc. | Biopsy device with aperture orientation and improved tip |
11278370, | Apr 20 2005 | Bard Peripheral Vascular, Inc. | Marking device with retractable cannula |
11337725, | Aug 07 2009 | Ulthera, Inc. | Handpieces for tissue treatment |
11370826, | Feb 09 2016 | Bracco Suisse SA | Recombinant chimeric protein for selectins targeting |
11389395, | Apr 20 2009 | Drexel University | Encapsulation of microbubbles within the aqueous core of microcapsules |
11426149, | May 23 2005 | SenoRx., Inc. | Tissue cutting member for a biopsy device |
11471244, | Dec 12 2006 | C.R. Bard, Inc. | Multiple imaging mode tissue marker |
11779431, | Dec 30 2008 | C. R. Bard, Inc. | Marker delivery device for tissue marker placement |
11833275, | Sep 23 2008 | SenoRx, Inc. | Porous bioabsorbable implant |
11905323, | Feb 09 2016 | Bracco Suisse | Recombinant chimeric protein for selectins targeting |
4386612, | Oct 04 1980 | Gesellschaft fur Strahlen-und Umweltforschung mbH Munchen | Ultrasonic transmitter |
4442843, | Nov 17 1980 | Schering, AG | Microbubble precursors and methods for their production and use |
4572203, | Jan 27 1983 | SLF LIMITED PARTNERSHIP | Contact agents for ultrasonic imaging |
4718433, | Jan 27 1983 | SLF LIMITED PARTNERSHIP | Contrast agents for ultrasonic imaging |
4774958, | Jan 27 1983 | SLF LIMITED PARTNERSHIP | Ultrasonic imaging agent and method of preparation |
4805628, | Dec 06 1982 | Indianapolis Center For Advanced Research, Inc. | Ultrasound contrast media for medically implantable and insertable devices |
4844882, | Dec 29 1987 | GE HEALTHCARE AS | Concentrated stabilized microbubble-type ultrasonic imaging agent |
4888694, | Oct 28 1987 | SIEMENS QUANTUM, INC | Ultrasound imaging system for relatively low-velocity blood flow at relatively high frame rates |
4957656, | Sep 14 1988 | Molecular Biosystems, Inc.; MOLECULAR BIOSYSTEMS, INC , SAN DIEGO, CA A CORP OF CA | Continuous sonication method for preparing protein encapsulated microbubbles |
5040537, | Nov 24 1987 | Hitachi, Ltd. | Method and apparatus for the measurement and medical treatment using an ultrasonic wave |
5088499, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
5123414, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
5137928, | Apr 26 1990 | DR F KOHLER CHEMIE GMBH | Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents |
5179955, | Feb 22 1991 | MOLECULAR BIOSYSTEMS, INC A CORPORATION OF CA | Method of abdominal ultrasound imaging |
5190982, | Apr 26 1990 | DR F KOHLER CHEMIE GMBH | Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents |
5205287, | Apr 26 1990 | Hoechst Aktiengesellschaft | Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents |
5215680, | Jul 10 1990 | Cavitation-Control Technology, Inc. | Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles |
5230882, | Dec 22 1989 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
5255683, | Dec 30 1991 | University of Pittsburgh - Of the Commonwealth System of Higher Education | Methods of and systems for examining tissue perfusion using ultrasonic contrast agents |
5333613, | Mar 23 1993 | Delineate | Microparticles as ultrasonic contrast media |
5334381, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
5352435, | Dec 22 1989 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Ionophore containing liposomes for ultrasound imaging |
5380411, | Dec 02 1987 | REINHARD SCHLIEF | Ultrasound or shock wave work process and preparation for carrying out same |
5390677, | May 31 1994 | The Regents of the University of California; Regents of the University of California, The | Method for assessing and displaying the true three dimensional magnitude of blood velocity |
5393524, | Sep 17 1991 | GE HEALTHCARE AS | Methods for selecting and using gases as ultrasound contrast media |
5409688, | Sep 17 1991 | GE HEALTHCARE AS | Gaseous ultrasound contrast media |
5413774, | Jan 23 1992 | Bracco Suisse SA | Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof |
5425366, | Feb 05 1988 | ACUSPHERE, INC | Ultrasonic contrast agents for color Doppler imaging |
5456901, | Dec 22 1989 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Liposomes as contrast agents for ultrasonic imaging |
5462059, | May 25 1994 | Regents of the University of California, The | Method for assessing and displaying vascular architecture using ultrasound |
5469854, | Dec 22 1989 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Methods of preparing gas-filled liposomes |
5487390, | Oct 05 1990 | Massachusetts Institute of Technology | Gas-filled polymeric microbubbles for ultrasound imaging |
5501863, | Feb 09 1990 | Schering Aktiengesellschaft | Contrast media synthesized from polyaldehydes |
5518709, | Apr 10 1991 | Quadrant Drug Delivery Limited | Preparation of diagnostic agents |
5527521, | Apr 05 1991 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Low density microspheres and suspensions and their use as contrast agents for computed tomography and in other applications |
5536489, | Jun 04 1993 | Molecular Biosystems, Inc. | Emulsions as contrast agents and method of use |
5540909, | Sep 28 1994 | TARGESON, INC ; TARGESON INC | Harmonic ultrasound imaging with microbubbles |
5542935, | Dec 22 1989 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Therapeutic delivery systems related applications |
5547656, | Apr 05 1991 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Low density microspheres and their use as contrast agents for computed tomography, and in other applications |
5558094, | Sep 17 1991 | GE HEALTHCARE AS | Methods for using persistent gases as ultrasound contrast media |
5558853, | Nov 08 1993 | GE HEALTHCARE AS | Phase shift colloids as ultrasound contrast agents |
5558854, | Sep 17 1991 | GE HEALTHCARE AS | Ultrasound contrast media comprising perfluoropentane and perfluorohexane gas |
5558855, | Jan 25 1993 | GE HEALTHCARE AS | Phase shift colloids as ultrasound contrast agents |
5562099, | Oct 05 1990 | PENN STATE RESEARCH FOUNDATION, THE | Polymeric microparticles containing agents for imaging |
5567414, | Apr 02 1990 | Bracco International B.V. | Stable microbubbles suspensions injectable into living organisms |
5571497, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Liposomes as contrast agents for ultrasonic imaging and apparatus and methods for preparing the same |
5573751, | Sep 17 1991 | GE HEALTHCARE AS | Persistent gaseous bubbles as ultrasound contrast media |
5578292, | Nov 20 1991 | Bracco International B.V. | Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof |
5580575, | Dec 22 1989 | CEREVAST THERAPEUTICS, INC | Therapeutic drug delivery systems |
5585112, | Dec 22 1989 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Method of preparing gas and gaseous precursor-filled microspheres |
5595723, | Jan 25 1993 | GE HEALTHCARE AS | Method for preparing storage stable colloids |
5618514, | Dec 21 1983 | GE HEALTHCARE AS | Diagnostic and contrast agent |
5626833, | Aug 01 1994 | TARGESON, INC ; TARGESON INC | Ultrasound imaging method using microbubbles |
5639443, | Jul 30 1993 | TARGESON, INC ; TARGESON INC | Stabilized microbubble compositions |
5656211, | Dec 22 1989 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Apparatus and method for making gas-filled vesicles of optimal size |
5670135, | Dec 21 1983 | GE HEALTHCARE AS | Ultrasonic contrast agent comprising carbohydrate particles |
5695741, | Jul 30 1993 | TARGESON, INC ; TARGESON INC | Stable microbubble precursors |
5705187, | Dec 22 1989 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Compositions of lipids and stabilizing materials |
5707606, | Jan 25 1993 | GE HEALTHCARE AS | Phase shift colloids as ultrasound contrast agents |
5707607, | Jan 25 1993 | GE HEALTHCARE AS | Phase shift colloids as ultrasound contrast agents |
5711933, | May 18 1990 | Bracco International B.V. | Method of making polymeric gas or air filled microballoons for ultrasonic echography |
5715824, | Aug 20 1990 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Methods of preparing gas-filled liposomes |
5716597, | Jun 04 1993 | MOLECULAR BIOSYSTEMS, INC | Emulsions as contrast agents and method of use |
5720938, | Jul 30 1993 | TARGESON, INC | Systems for the formation of microbubbles |
5730954, | Aug 23 1988 | Schering Aktiengesellschaft | Preparation comprising cavitate- or clathrate-forming host/guest complexes as contrast agent |
5732705, | Sep 12 1995 | Kabushiki Kaisha Toshiba | Ultrasound diagnostic apparatus |
5733527, | Sep 28 1994 | TARGESON, INC ; TARGESON INC | Methods for harmonic imaging with ultrasound |
5733572, | Dec 22 1989 | IMARX THERAPEUTICS, INC | Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles |
5736121, | May 23 1994 | IMARX THERAPEUTICS, INC | Stabilized homogenous suspensions as computed tomography contrast agents |
5741478, | Nov 19 1994 | Quadrant Drug Delivery Limited | Preparation of hollow microcapsules by spray-drying an aqueous solution of a wall-forming material and a water-miscible solvent |
5769080, | Dec 22 1989 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Gas filled liposomes and stabilized gas bubbles and their use as ultrasonic contrast agents |
5770222, | Dec 22 1989 | CEREVAST THERAPEUTICS, INC | Therapeutic drug delivery systems |
5773024, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Container with multi-phase composition for use in diagnostic and therapeutic applications |
5776429, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Method of preparing gas-filled microspheres using a lyophilized lipids |
5776496, | Jul 05 1991 | University of Rochester | Ultrasmall porous particles for enhancing ultrasound back scatter |
5798091, | Jul 30 1993 | TARGESON, INC ; TARGESON INC | Stabilized gas emulsion containing phospholipid for ultrasound contrast enhancement |
5804162, | Jun 07 1995 | TARGESON, INC | Gas emulsions stabilized with fluorinated ethers having low Ostwald coefficients |
5817291, | Dec 21 1983 | AMERHSAM HEALTH AS | Method of ultrasonic imaging comprising administering biocompatible spheres or particles |
5827504, | Dec 16 1994 | Bracco Research S.A. | Method of echographic imaging using frozen gasbubble suspensions |
5830430, | Feb 21 1995 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Cationic lipids and the use thereof |
5830435, | Dec 16 1994 | Bracco Research S.A. | Method of storing frozen microbubble suspensions |
5833615, | May 09 1997 | Thomas Jefferson University | Excitation enhanced ultrasound system |
5837221, | Jul 29 1996 | ACUSPHERE, INC | Polymer-lipid microencapsulated gases for use as imaging agents |
5840275, | May 18 1990 | Bracco International B.V. | Ultrasonic contrast agent with polymeric gas or air filled microballoons |
5846517, | Sep 11 1996 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Methods for diagnostic imaging using a renal contrast agent and a vasodilator |
5846518, | Dec 16 1992 | Bracco Suisse SA | Gas mixtures useful as ultrasound contrast media contrast agents containing the media and method |
5848968, | Jun 19 1996 | GE Yokogawa Medical Systems, Limited | Ultrasonic imaging method and apparatus |
5853698, | Mar 05 1996 | Acusphere, Inc. | Method for making porous microparticles by spray drying |
5853752, | Dec 22 1989 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Methods of preparing gas and gaseous precursor-filled microspheres |
5863520, | May 18 1990 | Bracco International B.V. | Method of echographic imaging using polymeric gas or air filled microballoons |
5874062, | Apr 05 1991 | IMARX THERAPEUTICS, INC | Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents |
5876696, | Jan 25 1993 | SONUS PHARMACEUTICALS, INC | Composition comprising a fluorine containing surfactant and perfluoropentane for ultrasound |
5897851, | Jun 07 1995 | AMERSHAM HEALTH A S; Amersham PLC | Nucleation and activation of a liquid-in-liquid emulsion for use in ultrasound imaging |
5908610, | Nov 02 1992 | Bracco Suisse SA | Stable microbubble suspensions comprising saturated phospholipios for ultrasonic echography |
5911972, | Apr 02 1990 | Bracco International B.V. | Stable microbubbles suspensions injectable into living organisms |
5922304, | Dec 22 1989 | CEREVAST MEDICAL, INC | Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents |
5935553, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Methods of preparing gas-filled liposomes |
5957848, | Oct 10 1992 | Quadrant Drug Delivery Limited | Preparation of further diagnostic agents |
5961956, | Dec 16 1994 | Bracco Research S.A. | Frozen ultrasonic gas suspensions |
5985246, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Contrast agents for ultrasonic imaging and methods for preparing the same |
5993805, | Apr 10 1991 | Quadrant Drug Delivery Limited | Spray-dried microparticles and their use as therapeutic vehicles |
5997898, | Jun 06 1995 | IMARX THERAPEUTICS, INC | Stabilized compositions of fluorinated amphiphiles for methods of therapeutic delivery |
6001335, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Contrasting agents for ultrasonic imaging and methods for preparing the same |
6015546, | Oct 10 1992 | Quadrant Drug Delivery Limited | Preparation of further diagnostic agents |
6017310, | Oct 04 1996 | QUADRANT HEALTHCARE UK LIMITED | Use of hollow microcapsules |
6019960, | Sep 28 1994 | TARGESON, INC ; TARGESON INC | Systems for harmonic ultrasound imaging |
6022525, | Apr 10 1991 | Quadrant Drug Delivery Limited | Preparation of diagnostic agents |
6028066, | May 06 1997 | IMARX THERAPEUTICS, INC | Prodrugs comprising fluorinated amphiphiles |
6030603, | Jun 04 1993 | Molecular Biosystems, Inc. | Emulsions as contrast agents and method of use |
6033645, | Jun 19 1996 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Methods for diagnostic imaging by regulating the administration rate of a contrast agent |
6033646, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Method of preparing fluorinated gas microspheres |
6034922, | Sep 01 1988 | Bayer Schering Pharma Aktiengesellschaft | Ultrasonic processes and circuits for performing them |
6036644, | Sep 28 1994 | TARGESON, INC ; TARGESON INC | Enhanced methods of ultrasound imaging using multiple frequencies |
6039557, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Apparatus for making gas-filled vesicles of optimal size |
6056938, | Feb 21 1995 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Cationic lipids and the use thereof |
6056943, | Sep 28 1994 | TARGESON, INC ; TARGESON INC | Methods of ultrasound imaging using phospholipid stabilized microbubbles |
6068600, | Dec 06 1996 | QUADRANT HEALTHCARE UK LIMITED | Use of hollow microcapsules |
6071494, | Sep 11 1996 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Methods for diagnostic imaging using a contrast agent and a renal vasodilator |
6071495, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Targeted gas and gaseous precursor-filled liposomes |
6074348, | Mar 31 1998 | General Electric Company | Method and apparatus for enhanced flow imaging in B-mode ultrasound |
6088613, | Dec 22 1989 | CEREVAST THERAPEUTICS, INC | Method of magnetic resonance focused surgical and therapeutic ultrasound |
6090800, | May 06 1997 | IMARX THERAPEUTICS, INC | Lipid soluble steroid prodrugs |
6102858, | Apr 23 1998 | General Electric Company | Method and apparatus for three-dimensional ultrasound imaging using contrast agents and harmonic echoes |
6117414, | Apr 05 1991 | IMARX THERAPEUTICS, INC | Method of computed tomography using fluorinated gas-filled lipid microspheres as contract agents |
6120751, | Mar 21 1997 | IMARX THERAPEUTICS, INC | Charged lipids and uses for the same |
6123922, | May 18 1990 | Bracco International B.V. | Resilient deformable microballoons for echographic imaging |
6123923, | Dec 18 1997 | CEREVAST THERAPEUTICS, INC | Optoacoustic contrast agents and methods for their use |
6132699, | Mar 05 1996 | Acusphere, Inc. | Microencapsulated fluorinated gases for use as imaging agents |
6136293, | Apr 02 1990 | BRACCO INTERNATIONAL B V | Stable microbubbles suspensions containing saturated lamellar phospholipids |
6139818, | May 18 1990 | Bracco International B.V. | Method of making ultrasonic contrast agent |
6139819, | Jun 07 1995 | CEREVAST MEDICAL, INC | Targeted contrast agents for diagnostic and therapeutic use |
6143276, | Mar 21 1997 | IMARX THERAPEUTICS, INC | Methods for delivering bioactive agents to regions of elevated temperatures |
6146657, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Gas-filled lipid spheres for use in diagnostic and therapeutic applications |
6153172, | Dec 21 1983 | AMERHSAM HEALTH AS; Amersham Health AS | Reflective microspheres for ultrasonic imaging |
6177062, | Feb 05 1988 | ACUSPHERE, INC | Agents and methods for enhancing contrast in ultrasound imaging |
6183725, | Dec 16 1992 | Bracco Research S.A. | Gas mixtures useful as ultrasound contrast media, contrast agents containing the media and method |
6186949, | Mar 31 1998 | General Electric Company | Method and apparatus for three-dimensional flow imaging using coded excitation |
6187288, | Feb 11 1992 | Bracco International B.V. | Stable microbubble suspensions as enhancement agents for ultrasonic echography |
6193952, | Jun 07 1995 | TARGESON, INC | Stabilized gas emulsions containing phospholipid for ultrasound contrast enhancement |
6200548, | May 18 1990 | Bracco International B.V. | Gas or air filled polymeric microballoons |
6203777, | Dec 21 1983 | AMERHSAM HEALTH AS | Method of contrast enhanced magnetic resonance imaging using carbohydrate particles |
6210332, | Apr 23 1998 | General Electric Company | Method and apparatus for flow imaging using coded excitation |
6221017, | Sep 01 1988 | Bayer Schering Pharma Aktiengesellschaft | Ultrasonic processes and circuits for performing them |
6231834, | Jun 07 1995 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same |
6245027, | Apr 10 1998 | Method of measuring intracranial pressure | |
6245319, | Jan 25 1993 | SONUS PHARMACEUTICALS, INC | Colloidal dispersions of perfluoropentane |
6258339, | Jul 30 1993 | TARGESON, INC ; TARGESON INC | Osmotically stabilized microbubble preparations |
6280704, | Jul 30 1993 | TARGESON, INC ; TARGESON INC | Ultrasonic imaging system utilizing a long-persistence contrast agent |
6280705, | Jul 30 1993 | TARGESON, INC ; TARGESON INC | Kits & systems for ultrasonic imaging |
6287539, | Jul 30 1993 | TARGESON, INC ; TARGESON INC | Methods of imaging using osmotically stabilized microbubble preparations |
6312384, | Mar 31 1998 | General Electric Company | Method and apparatus for flow imaging using golay codes |
6315729, | Oct 10 1995 | Advanced Technologies Laboratories, Inc. | Ultrasonic diagnostic imaging with contrast agents |
6315981, | Dec 22 1989 | CEREVAST THERAPEUTICS, INC | Gas filled microspheres as magnetic resonance imaging contrast agents |
6344182, | Oct 10 1992 | Quadrant Drug Delivery Limited | Preparation of diagnostic agents by spray drying |
6347241, | Feb 02 1999 | SenoRx, Inc. | Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it |
6348186, | Oct 10 1992 | Quadrant Drug Delivery Limited | Preparation of further diagnostic agents |
6383470, | Sep 26 1992 | ACUSPHERE, INC | Microparticle preparations made of biodegradable copolymers |
6403056, | Mar 21 1997 | CEREVAST MEDICAL, INC | Method for delivering bioactive agents using cochleates |
6414139, | Sep 03 1996 | IMARX THERAPEUTICS, INC | Silicon amphiphilic compounds and the use thereof |
6416740, | May 13 1997 | BRISTOL-MYERS SQUIBB MEDICAL IMAGING, INC | Acoustically active drug delivery systems |
6416741, | Oct 10 1992 | Quadrant Drug Delivery Limited | Preparation of further diagnostic agents |
6443898, | Dec 22 1989 | CEREVAST MEDICAL, INC | Therapeutic delivery systems |
6443899, | Sep 01 1988 | Bayer Schering Pharma Aktiengesellschaft | Ultrasonic processes and circuits for performing them |
6444660, | May 06 1997 | CEREVAST THERAPEUTICS, INC | Lipid soluble steroid prodrugs |
6461586, | Dec 22 1989 | CEREVAST THERAPEUTICS, INC | Method of magnetic resonance focused surgical and therapeutic ultrasound |
6479034, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Method of preparing gas and gaseous precursor-filled microspheres |
6485705, | Apr 02 1990 | Bracco International B.V. | Mixable combination for generating a suspension of stable microbubbles for ultrasonic imaging |
6497706, | Mar 03 1998 | Senorx, Inc | Biopsy device and method of use |
6521211, | Jun 07 1995 | BRISTOL-MYERS SQUIBB MEDICAL IMAGING, INC | Methods of imaging and treatment with targeted compositions |
6528039, | Apr 05 1991 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Low density microspheres and their use as contrast agents for computed tomography and in other applications |
6537246, | Jun 18 1997 | CEREVAST THERAPEUTICS, INC | Oxygen delivery agents and uses for the same |
6540684, | Oct 10 1995 | Koninklijke Philips Electronics N.V. | Ultrasonic perfusion measurement using contrast agents |
6540695, | Apr 08 1998 | Senorx, Inc | Biopsy anchor device with cutter |
6544496, | Dec 21 1983 | GE HEALTHCARE AS | Diagnostic and contrast agent |
6548047, | Sep 15 1997 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Thermal preactivation of gaseous precursor filled compositions |
6551576, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Container with multi-phase composition for use in diagnostic and therapeutic applications |
6565513, | Jun 24 1998 | USCOM LIMITED | Ultrasonic cardiac output monitor |
6569404, | Jan 25 1993 | GE HEALTHCARE AS | Phase shift colloids as ultrasound contrast agents |
6569405, | Apr 10 1991 | Quadrant Drug Delivery Limited | Preparation of diagnostic agents |
6585955, | Apr 02 1990 | Bracco International B.V. | Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof |
6592846, | Mar 02 1991 | Bracco International B.V. | Long-lasting aqueous dispersions or suspensions of pressure resistant gas-filled microvesicles and methods for thereof preparation thereof |
6610016, | Nov 06 1996 | SURGICAL SPECIALTIES CORPORATION LIMITED | Echogenic coatings |
6613306, | Apr 02 1990 | BRACCO SUISSE S A | Ultrasound contrast agents and methods of making and using them |
6620404, | Sep 17 1991 | GE HEALTHCARE AS | Gaseous ultrasound contrast media and method for selecting gases for use as ultrasound contrast media |
6623722, | Nov 19 1994 | Quadrant Drug Delivery Limited | Spray-drying microcapsules using an aqueous liquid containing a volatile liquid |
6638234, | Mar 03 1998 | SenoRx, Inc. | Sentinel node location and biopsy |
6638767, | May 01 1996 | CEREVAST THERAPEUTICS, INC | Methods for delivering compounds into a cell |
6662041, | Feb 02 1999 | SenoRx, Inc. | Imageable biopsy site marker |
6679851, | Sep 01 1998 | Senorx, Inc | Tissue accessing and anchoring device and method |
6706253, | Jul 30 1993 | TARGESON, INC ; TARGESON INC | Osmotically stabilized microbubble preparations |
6709650, | Apr 10 1991 | Quadrant Drug Delivery Limited | Spray-dried microparticles and their use as therapeutic vehicles |
6716179, | Mar 03 1998 | SenoRx, Inc. | Sentinel node location and biopsy |
6716412, | Sep 15 1997 | CEREVAST MEDICAL, INC | Methods of ultrasound treatment using gas or gaseous precursor-filled compositions |
6723303, | Sep 17 1991 | GE HEALTHCARE AS | Ultrasound contrast agents including protein stabilized microspheres of perfluoropropane, perfluorobutane or perfluoropentane |
6725083, | Feb 02 1999 | Senorx, Inc | Tissue site markers for in VIVO imaging |
6743779, | Nov 29 1994 | CEREVAST THERAPEUTICS, INC | Methods for delivering compounds into a cell |
6758848, | Mar 03 1998 | Senorx, Inc | Apparatus and method for accessing a body site |
6773696, | Apr 05 1991 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Contrast agent comprising low density microspheres |
6808720, | Mar 21 1997 | CEREVAST THERAPEUTICS, INC | Charged lipids and uses for the same |
6862470, | Feb 02 1999 | Senorx, Inc | Cavity-filling biopsy site markers |
6875182, | Apr 08 1998 | SenoRx, Inc. | Electrosurgical specimen-collection system |
6881397, | Apr 02 1990 | CADDI, INC | Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof |
6884407, | Sep 11 1996 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Methods for diagnostic imaging involving the use of a contrast agent and a coronary vasodilator |
6896875, | Apr 02 1990 | Bracco International B.V. | Mixable combination for generating a suspension of stable microbubbles for ultrasonic imaging |
6939530, | Oct 10 1992 | Quadrant Drug Delivery Limited | Preparation of further diagnostic agents |
6939531, | Jul 30 1993 | TARGESON, INC ; TARGESON INC | Ultrasonic imaging system utilizing a long-persistence contrast agent |
6953569, | Jul 30 1993 | TARGESON, INC ; TARGESON INC | Mixed gas microbubble compositions |
6989141, | May 18 1990 | Bracco International B.V. | Ultrasound contrast agents and methods of making and using them |
6993375, | Feb 02 1999 | Senorx, Inc | Tissue site markers for in vivo imaging |
6996433, | Feb 02 1999 | SenoRx, Inc. | Imageable biopsy site marker |
6998107, | Apr 05 1991 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Composition comprising low density microspheres |
7005120, | Jul 30 1993 | TARGESON, INC | Osmotically stabilized microbubble preparations |
7025290, | May 26 1999 | BTG International Ltd | Generation of therapeutic microfoam |
7033574, | Apr 02 1990 | Bracco International B.V. | Stable microbubbles suspensions injectable into living organisms |
7047063, | Feb 02 1999 | Senorx, Inc | Tissue site markers for in vivo imaging |
7078015, | Dec 22 1989 | ImaRx Therapeutics, Inc. | Ultrasound imaging and treatment |
7083572, | Nov 30 1993 | Bristol-Myers Squibb Medical Imaging, Inc. | Therapeutic delivery systems |
7083778, | May 03 1991 | Bracco International B.V. | Ultrasound contrast agents and methods of making and using them |
7105151, | Jun 18 1997 | CEREVAST THERAPEUTICS, INC | Oxygen delivery agents and uses for the same |
7141235, | Jul 30 1993 | TARGESON, INC | Stabilized gas emulsion containing phospholipid for ultrasound contrast enhancement |
7229413, | Nov 06 1996 | SURGICAL SPECIALTIES CORPORATION LIMITED | Echogenic coatings with overcoat |
7229439, | Nov 16 2000 | Senorx, Inc | Apparatus and method for accessing a body site |
7282034, | Sep 01 1998 | Senorx, Inc | Tissue accessing and anchoring device and method |
7329402, | Jun 07 1995 | ImaRx Pharmaceutical Corp. | Methods of imaging and treatment |
7344705, | Apr 05 1991 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Composition comprising low density microspheres |
7357336, | May 26 1999 | BTG International Limited | Generation of therapeutic microfoam |
7374744, | Sep 28 1994 | TARGESON, INC ; TARGESON INC | Harmonic ultrasound imaging with microbubbles |
7377902, | Apr 08 1998 | Senorx, Inc | Biopsy anchor device with cutter |
7452551, | Oct 30 2000 | CEREVAST MEDICAL, INC | Targeted compositions for diagnostic and therapeutic use |
7565191, | Feb 02 1999 | Senorx, Inc | Tissue site markers for in vivo imaging |
7572236, | Aug 05 2005 | Senorx, Inc | Biopsy device with fluid delivery to tissue specimens |
7588547, | Sep 07 2005 | ULTHERA, INC | Methods and system for treating subcutaneous tissues |
7601128, | Sep 07 2005 | ULTHERA, INC | Apparatus for treating subcutaneous tissues |
7604185, | Nov 21 2002 | BTG International Ltd. | Generation of therapeutic microfoam |
7612033, | Nov 29 1994 | CEREVAST THERAPEUTICS, INC | Methods for delivering compounds into a cell |
7651505, | Jun 17 2002 | Senorx, Inc | Plugged tip delivery for marker placement |
7731986, | Nov 17 2003 | Boston Scientific Medical Device Limited | Therapeutic foam |
7763269, | Nov 17 2003 | Boston Scientific Medical Device Limited | Therapeutic foam |
7792569, | Feb 02 1999 | Senorx, Inc | Cavity-filling biopsy site markers |
7842282, | Nov 24 2000 | Boston Scientific Medical Device Limited | Generation of therapeutic microfoam |
7842283, | Nov 24 2000 | Boston Scientific Medical Device Limited | Generation of therapeutic microfoam |
7877133, | May 23 2003 | Senorx, Inc | Marker or filler forming fluid |
7967763, | Sep 07 2005 | ULTHERA, INC | Method for treating subcutaneous tissues |
7970454, | May 23 2003 | Senorx, Inc | Marker delivery device with releasable plug |
7981051, | Aug 05 2005 | Senorx, Inc | Biopsy device with fluid delivery to tissue specimens |
7983734, | May 23 2003 | Vascular Control Systems, Inc | Fibrous marker and intracorporeal delivery thereof |
8012457, | Jun 04 2004 | ACUSPHERE, INC | Ultrasound contrast agent dosage formulation |
8048439, | Nov 17 2003 | Boston Scientific Medical Device Limited | Therapeutic foam |
8084056, | Jan 14 1998 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
8091801, | May 26 1999 | BTG International Limited | Generation of therapeutic microfoam |
8147487, | Nov 16 2000 | Senorx, Inc | Apparatus and method for accessing a body site |
8157862, | Oct 10 1997 | SenoRx, Inc. | Tissue marking implant |
8177792, | Jun 17 2002 | Senorx, Inc | Plugged tip delivery tube for marker placement |
8219182, | Feb 02 1999 | Senorx, Inc | Cavity-filling biopsy site markers |
8224424, | Feb 02 1999 | Senorx, Inc | Tissue site markers for in vivo imaging |
8293214, | Dec 19 2006 | Bracco Suisse SA | Targeting and therapeutic compounds and gas-filled microvesicles comprising said compounds |
8311610, | Jan 31 2008 | C. R. Bard, Inc.; C R BARD, INC | Biopsy tissue marker |
8317725, | Aug 05 2005 | Senorx, Inc | Biopsy device with fluid delivery to tissue specimens |
8323677, | Nov 17 2003 | BTG International Ltd. | Therapeutic foam |
8343071, | Dec 16 2004 | Senorx, Inc | Biopsy device with aperture orientation and improved tip |
8360990, | Dec 16 2004 | Senorx, Inc | Biopsy device with aperture orientation and improved tip |
8361082, | Feb 02 1999 | Senorx, Inc | Marker delivery device with releasable plug |
8366643, | Sep 07 2005 | ULTHERA, INC | System and method for treating subcutaneous tissues |
8401622, | Dec 18 2006 | C R BARD, INC | Biopsy marker with in situ-generated imaging properties |
8437834, | Oct 23 2006 | C. R. Bard, Inc. | Breast marker |
8439940, | Dec 22 2010 | ULTHERA, INC | Dissection handpiece with aspiration means for reducing the appearance of cellulite |
8447386, | May 23 2003 | SenoRx, Inc. | Marker or filler forming fluid |
8486028, | Oct 07 2005 | Bard Peripheral Vascular, Inc. | Tissue marking apparatus having drug-eluting tissue marker |
8498693, | Feb 02 1999 | SenoRx, Inc. | Intracorporeal marker and marker delivery device |
8512680, | Aug 08 2001 | Biocompatibles UK Limited | Injectables in foam, new pharmaceutical applications |
8579931, | Jun 17 1999 | Bard Peripheral Vascular, Inc. | Apparatus for the percutaneous marking of a lesion |
8586005, | Jun 04 2004 | Acusphere, Inc. | Ultrasound contrast agent dosage formulation |
8626269, | May 23 2003 | SenoRx, Inc. | Fibrous marker and intracorporeal delivery thereof |
8626270, | Feb 02 1999 | SenoRx, Inc. | Cavity-filling biopsy site markers |
8634899, | Nov 17 2003 | Bard Peripheral Vascular, Inc; Bard Shannon Limited | Multi mode imaging marker |
8639315, | May 23 2003 | SenoRx, Inc. | Marker or filler forming fluid |
8641640, | May 23 2005 | Senorx, Inc | Tissue cutting member for a biopsy device |
8658205, | Jan 14 1998 | Lantheus Medical Imaging, Inc. | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
8668737, | Oct 10 1997 | SenoRx, Inc. | Tissue marking implant |
8670818, | Dec 30 2008 | C. R. Bard, Inc.; C R BARD, INC | Marker delivery device for tissue marker placement |
8685441, | Jan 14 1998 | Lantheus Medical Imaging, Inc. | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
8703827, | May 13 2005 | Boston Scientific Medical Device Limited | Therapeutic foam |
8718745, | Nov 20 2000 | Senorx, Inc | Tissue site markers for in vivo imaging |
8747892, | Jan 14 1998 | Lantheus Medical Imaging, Inc. | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
8784433, | Jun 17 2002 | SenoRx, Inc. | Plugged tip delivery tube for marker placement |
8880154, | May 23 2003 | SenoRx, Inc. | Fibrous marker and intracorporeal delivery thereof |
8894678, | Aug 07 2009 | Ulthera, Inc. | Cellulite treatment methods |
8900261, | Aug 07 2009 | Ulthera, Inc. | Tissue treatment system for reducing the appearance of cellulite |
8900262, | Aug 07 2009 | Ulthera, Inc. | Device for dissection of subcutaneous tissue |
8906054, | Aug 07 2009 | Ulthera, Inc. | Apparatus for reducing the appearance of cellulite |
8915864, | Aug 05 2005 | SenoRx, Inc. | Biopsy device with fluid delivery to tissue specimens |
8920452, | Aug 07 2009 | Ulthera, Inc. | Methods of tissue release to reduce the appearance of cellulite |
8965486, | Feb 02 1999 | SenoRx, Inc. | Cavity filling biopsy site markers |
8979881, | Aug 07 2009 | Ulthera, Inc. | Methods and handpiece for use in tissue dissection |
9005229, | Aug 07 2009 | ULTHERA, INC | Dissection handpiece and method for reducing the appearance of cellulite |
9011473, | Aug 07 2009 | ULTHERA, INC | Dissection handpiece and method for reducing the appearance of cellulite |
9039722, | Dec 22 2010 | ULTHERA, INC | Dissection handpiece with aspiration means for reducing the appearance of cellulite |
9039763, | Oct 10 1997 | SenoRx, Inc. | Tissue marking implant |
9042965, | Dec 18 2006 | C. R. Bard, Inc. | Biopsy marker with in situ-generated imaging properties |
9044162, | Feb 02 1999 | SenoRx, Inc. | Marker delivery device with releasable plug |
9044259, | Aug 07 2009 | Ulthera, Inc. | Methods for dissection of subcutaneous tissue |
9078688, | Aug 07 2009 | Ulthera, Inc. | Handpiece for use in tissue dissection |
9095325, | May 23 2005 | Senorx, Inc | Tissue cutting member for a biopsy device |
9149341, | Feb 02 1999 | Senorx, Inc | Deployment of polysaccharide markers for treating a site within a patient |
9179928, | Aug 07 2009 | ULTHERA, INC | Dissection handpiece and method for reducing the appearance of cellulite |
9186329, | Jun 18 2009 | Abbott Cadiovascular Systems Inc. | Method of treating malignant solid tumors |
9192685, | Oct 07 2008 | BRACCO SUISSE S A | Targeting construct comprising anti-polymer antibody and contrast/therapeutic agents binding to the same |
9211348, | Aug 09 2010 | Bracco Suisse SA | Targeted gas-filled microvesicles |
9237937, | Feb 02 1999 | SenoRx, Inc. | Cavity-filling biopsy site markers |
9248204, | Aug 18 2004 | BRACCO SUISSE S A | Gas-filled microvesicles composition for contrast imaging |
9248317, | Dec 02 2005 | ULTHERA, INC | Devices and methods for selectively lysing cells |
9272124, | Dec 02 2005 | Ulthera, Inc. | Systems and devices for selective cell lysis and methods of using same |
9327061, | Sep 23 2008 | Senorx, Inc | Porous bioabsorbable implant |
9333273, | Aug 09 2010 | Bracco Suisse S.A. | Targeting constructs |
9358033, | May 25 2010 | ULTHERA, INC | Fluid-jet dissection system and method for reducing the appearance of cellulite |
9358064, | Aug 07 2009 | CABOCHON AESTHETICS, INC | Handpiece and methods for performing subcutaneous surgery |
9364246, | Aug 07 2009 | ULTHERA, INC | Dissection handpiece and method for reducing the appearance of cellulite |
9364569, | Feb 04 2003 | Bracco Suisse SA | Ultrasound contrast agents and process for the preparation thereof |
9375397, | Apr 18 2005 | BRACCO SUISSE S A | Composition comprising gas-filled microcapsules for ultrasound mediated delivery |
9408592, | Dec 16 2004 | Senorx, Inc | Biopsy device with aperture orientation and improved tip |
9486274, | Aug 07 2009 | ULTHERA, INC | Dissection handpiece and method for reducing the appearance of cellulite |
9510849, | Aug 07 2009 | Ulthera, Inc. | Devices and methods for performing subcutaneous surgery |
9545457, | Jan 14 1998 | Lantheus Medical Imaging, Inc. | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
9579077, | Dec 12 2006 | C R BARD, INC | Multiple imaging mode tissue marker |
9579159, | Jun 17 1999 | Bard Peripheral Vascular, Inc.; Bard Shannon Limited | Apparatus for the percutaneous marking of a lesion |
9649093, | Feb 02 1999 | SenoRx, Inc. | Cavity-filling biopsy site markers |
9750487, | May 23 2005 | SenoRx, Inc. | Tissue cutting member for a biopsy device |
9750821, | Dec 22 2003 | BRACCO SUISSE S A | Gas-filled microvesicle assembly for contrast imaging |
9757145, | Aug 07 2009 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
9770411, | Dec 24 2010 | Bracco Suisse SA | Methods of using gas-filled microvesicles covalently bound to an antigen |
9801688, | May 23 2003 | SenoRx, Inc. | Fibrous marker and intracorporeal delivery thereof |
9820824, | Feb 02 1999 | SenoRx, Inc. | Deployment of polysaccharide markers for treating a site within a patent |
9848956, | Nov 18 2002 | Bard Peripheral Vascular, Inc.; Bard Shannon Limited | Self-contained, self-piercing, side-expelling marking apparatus |
9861294, | Feb 02 1999 | SenoRx, Inc. | Marker delivery device with releasable plug |
9901415, | Dec 12 2006 | C. R. Bard, Inc. | Multiple imaging mode tissue marker |
D715442, | Sep 24 2013 | C. R. Bard, Inc.; C R BARD, INC | Tissue marker for intracorporeal site identification |
D715942, | Sep 24 2013 | C. R. Bard, Inc.; C R BARD, INC | Tissue marker for intracorporeal site identification |
D716450, | Sep 24 2013 | C. R. Bard, Inc.; C R BARD, INC | Tissue marker for intracorporeal site identification |
D716451, | Sep 24 2013 | C. R. Bard, Inc.; C R BARD, INC | Tissue marker for intracorporeal site identification |
RE38919, | Jun 21 1994 | BTG International Limited | Injectable microfoam containing a sclerosing agent |
RE39146, | Apr 02 1990 | BRACCO SUISSE S A | Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof |
RE40640, | Jun 23 1993 | BTG International Ltd. | Injectable microfoam containing a sclerosing agent |
Patent | Priority | Assignee | Title |
3640271, | |||
4182173, | Aug 23 1978 | General Electric Company | Duplex ultrasonic imaging system with repetitive excitation of common transducer in doppler modality |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 04 1979 | Rasor Associates, Inc | (assignment on the face of the patent) | / | |||
May 13 1981 | RASOR ASSOCIATES, INC , A CORP OF CA | ULTRA MED, INC , A CORP OF CA | ASSIGNMENT OF ASSIGNORS INTEREST | 003859 | /0495 | |
Nov 22 1982 | ULTRA MED, INC | Schering, AG | ASSIGNMENT OF ASSIGNORS INTEREST | 004065 | /0280 |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Jul 07 1984 | 4 years fee payment window open |
Jan 07 1985 | 6 months grace period start (w surcharge) |
Jul 07 1985 | patent expiry (for year 4) |
Jul 07 1987 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 07 1988 | 8 years fee payment window open |
Jan 07 1989 | 6 months grace period start (w surcharge) |
Jul 07 1989 | patent expiry (for year 8) |
Jul 07 1991 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 07 1992 | 12 years fee payment window open |
Jan 07 1993 | 6 months grace period start (w surcharge) |
Jul 07 1993 | patent expiry (for year 12) |
Jul 07 1995 | 2 years to revive unintentionally abandoned end. (for year 12) |