A thick film multilayer substrate using a green ceramic sheet is constructed such that at least three conductor layers and at least two dielectric layers are alternately arranged in turn on the green ceramic sheet substrate, a power supply line being formed in the second conductor layer and thus interposed between the first and third conductor layers in which grounded conductors are formed.

Patent
   4328531
Priority
Mar 30 1979
Filed
Mar 27 1980
Issued
May 04 1982
Expiry
Mar 27 2000
Assg.orig
Entity
unknown
166
10
EXPIRED
1. In a thick film multilayer wiring substrate comprising:
(1) a ceramic substrate having first and second surfaces opposite to one another;
(2) at least first and second layers of dielectrics formed on the first surface of said ceramic substrate, with said first layer being stacked on said substrate and said second layer being stacked on said first layer;
(3) a first conductor layer including at least a power supply line pattern, formed between the first and second layers of dielectrics;
(4) second and third conductor layers each including at least a grounded conductor pattern, said second conductor layer being formed on a surface adjacent to said ceramic substrate of the first dielectric layer and said third conductor layer being formed on a surface farthest from said ceramic substrate of the second dielectric layer; and
(5) a grounded conductor connection path formed to pass though the first and second layers of dielectrics to connect the grounded conductor patterns of said second and third conductor layers to each other,
wherein the improvements comprise:
the grounded conductor patterns of said second and third conductor layers being formed to extend to oppose each other via the two layers of dielectrics so that said power supply line pattern is located between the two layers of dielectrics where the grounded conductor patterns extend, whereby capacitance is established between the power supply line pattern and the grounded conductor patterns to reduce a characteristic impedance of the power supply line pattern, and
said thick film multilayer wiring substrate further comprising a fourth conductor layer including a plurality of connection wiring patterns, formed on the second surface of said ceramic substrate; at least one resistor layer being formed between said plurality of connection wiring patterns; and at least one conductor connection path passing through said ceramic substrate to connect said plurality of connection wiring patterns to at least one of said first, second and third conductor layers.

The present invention relates to circuit boards for electronic circuits, and particularly to a thick film multilayer substrate used for a hybrid integrated circuit of a tuner in television receivers.

FIG. 1 is a cross-sectional view of a conventional tuner which has been used in television receivers.

FIG. 2 is a perspective view of a main part thereof.

FIG. 3 is a cross-sectional view of a tuner utilizing a hybrid integrated circuit according to the invention.

FIG. 4 is a cross-sectional view of a thick film multilayer substrate according to the invention.

FIG. 5a is a plan view of an improved thick film multilayer substrate according to the invention.

FIG. 5b is a cross-sectional view thereof taken along line Vb--Vb in FIG. 5a.

FIG. 6 is a cross-sectional view of a second embodiment of the improved thick film multilayer substrate according to the invention.

FIG. 7 is a graph of signal attennation in the power supply conductor pattern of the improved thick film multilayer substrate according to the invention.

A conventional tuner, as illustrated in FIGS. 1 and 2, is composed of a printed wiring board 1 having arranged on one surface coils 2a to 2e, a capacitor 3 and a shielding plate 12 and on the other surface resistors 4a and 4b, capacitors 5a to 5c, a diode 6 and a transistor 7, these components being interconnected by copper foil conductors 8, 9a, 9b and 10. The conductor 8 is used for leading the power supply voltage to the circuits, the conductors 9a and 9b for grounding and the conductor 10 for transmission of signals. The printed wiring board 1 is supported by metal casings 11a and 11b. In such conventional tuner, the printed wiring board 1 has thickness of 1 to 6 mm, and specific dielectric constant of 2 to 4, and the copper foil conductors 8, 9a, 9b and 10 are about 0.5 to 1.0 mm thick, so that the characteristic impedances of the conductor lines range from 100 to 200 ohms. In addition, since the copper conductor patterns 8, 9a, 9b and 10 are formed in parallel on the printed circuit board 1, the same become long in length and leakage of signals occurs as will be described below. An image frequency signal which is received by, for example, an antenna of a television receiver and flowed through the signal line 10, and an intermediate frequency signal are leaked to the power supply conductor 8. A local oscillation signal generated from a local oscillation circuit of the tuner is also easily leaked to the power supply conductor 8. When leaking to the power supply conductor 8, the image frequency signal and the intermediate frequency signal readily arrive at the output of the tuner, to be superimposed upon the output signal from the tuner. This degrades the undesired-wave removing characteristic such as the image frequency interference removing characteristic and intermediate frequency signal interference removing characteristic. Moreover, if a local oscillation signal leaks to the power supply conductor 8, the same is further escaped to the external out of the tuner through the conductor 8. This also deteriorates the local oscillation signal leakage protection characteristic. In order to avoid this, a number of bypass capacitors 5a, 5b and so on are connected between the power supply conductor 8 and the grounding conductors 9a and 9b thereby to decrease the impedance of the conductor 8, or a high-frequency signal blocking choke coil 2a is connected in series with the conductor 8 thereby to jblock the local oscillation signal and intermediate frequency signal not to be transmitted to the power supply conductor 8.

It is an object of the invention to provide a circuit board, or circuit substrate having thereon a power supply conductor the characteristic impedance of which is low enough to attenuate the local oscillation signal, image frequency signal and intermediate frequency signal when they leak to the power supply conductor, and which circuit substrate is constructed so that the local oscillation signal and so on are difficult to leak to the power supply conductor.

To achieve this object, the circuit substrate of the invention is formed by a thick film multilayer substrate using a green ceramic sheet. In this thick film multilayer substrate, three conductor layers are separately formed through dielectric layers on the green ceramic sheet and a power supply conductor is formed in the second conductor layer thereof which lies between the first and third conductor layers thereof as grounding patterns.

The hybrid integrated circuit substrate according to the invention will be described with reference to the drawings. FIG. 3 is a cross-sectional view of a tuner using a hybrid integrated circuit substrate according to the invention. A substrate 15 supported by the metal casings 11a and 11b is a thick film multi-layer ceramic substrate having thereon a plurality of conducting layers and a plurality of dielectric layers interposed between the conducting layers as will be described in detail later. The diode 6, transistor 7, coupling capacitors 5c and 5d, coils 2c, and 2e and 2f, resistors 13a, 13b and 13c and a terminal 14 are electrically interconnected to each other through the multilayer conductors. The resistors 13a, 13b and 13c are printed in a film form on one surface of the ceramic substrate and then fired to be formed as thick film resistors.

The multilayer thick film substrate will be described which is formed of a ceramic substrate, electrodes, dielectrics, and resistors and used for a hybrid integrated circuit substrate. FIG. 4 is a cross-sectional view of a thick film multilayer substrate which is fabricated as described below. A ceramic substrate 21 is first prepared which is separated to have a definite size from an unfired ceramic sheet (green sheet) plate by cutting and has bored therein an aperture 22. On one surface of this ceramic substrate 21 are printed first conductor layers 23a and 23b which are a mixture of tungsten (W) as a main component, molybdenum (Mo), tantalum (Ta) and others. Then, a dielectric 24 of 90 to 94% alumina is printed or attached to the entire surface thereof, and on the dielectric 24 are printed second conductor layer 25a, 25b and 25c in the same way as in the first conductor layers 23a and 23b. Subsequently, third conductor layers 27a and 27b are printed on the other surface of the ceramic substrate 21. The ceramic substrate 21 is about 1 mm thick, the conductor layers 23a, 23b, 25a, 25b, 25c, 27a and 27b are about 8 to 12 μm thick and the dielectric 24 is about 30 to 40 μm thick. The conductors 25a and 25c are interconnected to each other by conductors 26a and 26b which are passed through holes and the conductor 23b. Then, the substrate with the printed layers is fired at about 1500°C for 10 to 20 hours, and subsequently plated on the conductor layers 27a and 27b with nickel (Ni) and gold (Au) of thickness ranging from 3 to 5 μm. Thereafter, on the ceramic between the conductors 27a and 27b there is printed a cermet (ceramic-metal) resistor or carbon-resin resistor material to form a resistor 28. If the cermet resistor material is printed for the resistor 28, the conductors or electrodes 27a and 27b are formed by a paste containing silver (Ag) and palladium (Pa). If a carbon resin resistor material is printed for the resistor 28, the printed resistor 28 is then cured at 150°C to 200°C for 2 to 4 hours. While, when the cermet resistor material is used, the printed cermet resistor 28 is fired at 500°C to 600°C The conductors 23a and 25a are opposed to each other to form a capacitor. The conductor 25b serves as a power supply line, and the capacitors 5c and 5d, diode 6, and transistor 7 are connected to the conductor layers 25a, 25b and 25c. The coils 2c, 2e and 2f are connected to the conductor layers 25c and 27b by passing their ends through the aperture 22.

On one surface of the thick film multilayer substrate arranged are the resistors 13a, 13b and 13c, and coils 2c, 2e and 2f, while on the other surface thereof there are disposed the capacitors 5c and 5d, diode 6 and transistor 7. The multilayer construction enables the running conductors to be shortened and the specific dielectric constant of the alumina dielectric is around 10 which is larger than that of the conventional printed wiring board, thus reducing the characteristic impedance. This results in the fact that the local oscillation signal, and intermediate frequency signal are difficult to leak into the conductor 25b and so on. However, in this thick film multilayer substrate, the local oscillation signal and so on flowing through the conductors 25a, 23b and 23c may still leak into the conductor 25b via, for example, the stray capacitance between the conductor 25b and conductors 25a, 23b and 25c. Therefore, this thick film multilayer substrate is unable to provide satisfactory intermediate-frequency and image-frequency signal interference removing characteristics.

An improved thick film multilayer substrate with the drawbacks of the above-mentioned substrate obviated will next be described. FIG. 5a is a partial plan view of the improved thick film multilayer substrate, and FIG. 5b is a cross-sectional view taken along a line Vb--Vb in FIG. 5a. As illustrated in FIGS. 5a and 5b, on the ceramic substrate 21 there are printed first conductor layers 31a and 31b, over which a first dielectric layer 32 is then printed or attached. Second conductor layers 33a and 33b are formed on the first dielectric layer 32. Then, on the second conductor layers 33a and 33b is formed a second dielectric layer 34, on which third conductor layers 35a and 35b are formed. The first conductor layers 31a and 31b are connected to the third conductor layer 35a by connection conductors 36a and 36b. In FIGS. 5a and 5b there are not shown apertures through which are passed the ends of the resistors and coils disposed on the rear side of the ceramic substrate 21.

In this improved printed multilayer substrate, the conductors 35b, 35c and 35d serve as connection electrodes for connecting the transistors and diodes, and the conductor 33b is also a connection conductor for connecting the conductors 35b and 35d. The conductor 33a serves as a power supply line, and the conductors 31a, 31b and 35a as grounded conductors. It will be seen from FIG. 5b that in this improved substrate, the power supply line 33a is disposed between the grounded conductors 31a and 35a. This construction is the feature of the invention. The disposition of the power supply line 33a between the conductors 31a and 35a enables the power supply line 33a to be shielded by the grounded conductors 31a and 35a. Thus, the local oscillation signal and intermediate frequency signal are difficult to leak into the power supply line 33a. In addition, capacitors are formed between the power supply lines 33a and the conductors 31a and 35a, thereby reducing the characteristic impedance. If, for example, the power supply line 33a is selected 0.5 mm wide and 15 μm thick, and the dielectrics 32 and 34 are chosen 30 to 40 μm thick and a dielectric constant of 9 to 10, the characteristic impedance becomes 3 to 4 ohms which is 1/30 to 1/50 of that of the conventional printed wiring board. Even though the local oscillation signal leaks into the power supply line 33a, the leaked signal is rapidly attenuated due to the low characteristic impedance. Therefore, this improved substrate provides a feature of an undesired wave removing characteristic and an excellent local oscillation signal leak prevention characteristic.

A second embodiment of the improved thick film multilayer substrate will be described with reference to FIG. 6. In this second embodiment, five layers of conductors are formed between which four dielectric layers 41a and 41d are respectively interposed. The first conductor layer 42a, third conductor layer 42b and fifth conductors 42c and 42d are interconnected to each other and serve as grounded conductors. The second conductors 43a and 43b serve as power supply lines, and the conductor 43a is connected to the resistor 28 through a conductor path in the alumina substrate 21. The fourth conductor layer 44a is also a power supply line. The fourth conductor layer 44b forms capacitors together with the conductors 42b and 42d. The fifth conductor layer 45 is a connection electrode to which diodes and transistors are connected. The aperture 22 is provided through which the end of a coil is inserted similarly as in FIG. 4. The connection conductor 25c is connected with the coil. Also in this embodiment, on both sides of the power supply lines 43a and 43b are arranged the grounded conductors 42a and 42b and on both sides of the power supply line 44a are disposed the grounded conductors 42b and 42c. Therefore, the characteristic impedances of the power supply lines 43a, 43b and 44a are low and these lines are never coupled to the other signal lines.

FIG. 7 are attenuation characteristic curves of local oscillation signal in the power supply lines of the tuner, in which the ordinate shows the signal attenuation and the abscissa the frequency. A solid curve A indicates the characteristic of the improved thick film multilayer of the invention and a broken curve B shows the characteristic of the case where a 2200 pF chip capacitor is used. The power supply lines on the improved substrate of the invention are about 3 cm long and about 3 mm wide and capacitance values range from 300 to 500 pF. It will be understood from FIG. 7 the attenuation characteristic of the improved thick film multilayer substrate is not always satisfactory at VHF band but is more excellent than in the case using the chip capacitor at the frequencies higher than about 300 MHz, thus decrease of the number of bypass capacitors being possible.

While three or five conductor layers are formed in the embodiment of the invention as shown in FIGS. 5 and 6, seven conductor layers may be formed with similar effect. Moreover, in the embodiments of FIGS. 5 and 6, it is possible to coat the conductors 35a, and the conductors 42c and 42d by a dielectric for insulation.

In accordance with the present invention as described above, use is made of a thick film multilayer substrate which is a green ceramic sheet having a plurality of conductor layers and dielectric layers alternately formed thereon, and in this thick film multilayer substrate the power supply line is interposed between two grounded conductors, so that the characteristic impedance of the power supply line becomes low and high-frequency AC signals are prevented from being transmitted to the power supply line because the power supply line is shielded by the grounded conductors. In addition, if high frequency AC current flows into the power supply line, the same is rapidly attenuated.

Accordingly, use of the thick film multilayer substrate of the invention in the tuner of a television receiver or the like will be effective to remarkably improve the undesired wave remove characteristic and local oscillation signal leak prevention characteristic of the tuner. Thus, the tuner using such thick film multilayer substrate of the invention does not almost require bypass capacitors and choke coils.

Saitoh, Takeshi, Nagashima, Toshio, Hatashita, Hiroshi, Shinagawa, Mitsuhisa

Patent Priority Assignee Title
10063100, Aug 07 2015 NUCURRENT, INC Electrical system incorporating a single structure multimode antenna for wireless power transmission using magnetic field coupling
10118981, Apr 28 2011 ISP Investments LLC Lactamic polymer containing an acetoacetate moiety
10424969, Dec 09 2016 NUCURRENT, INC Substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
10432031, Dec 09 2016 NUCURRENT, INC Antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
10432032, Dec 09 2016 NUCURRENT, INC Wireless system having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
10432033, Dec 09 2016 NUCURRENT, INC Electronic device having a sidewall configured to facilitate through-metal energy transfer via near field magnetic coupling
10636563, Aug 07 2015 NUCURRENT, INC Method of fabricating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
10658847, Aug 07 2015 NUCURRENT, INC Method of providing a single structure multi mode antenna for wireless power transmission using magnetic field coupling
10868444, Dec 09 2016 NUCURRENT, INC Method of operating a system having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
10879704, Aug 26 2016 NUCURRENT, INC Wireless connector receiver module
10879705, Aug 26 2016 NUCURRENT, INC Wireless connector receiver module with an electrical connector
10886616, Aug 19 2015 NUCURRENT, INC Multi-mode wireless antenna configurations
10886751, Aug 26 2016 NUCURRENT, INC Wireless connector transmitter module
10892646, Dec 09 2016 NUCURRENT, INC Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
10897140, Aug 26 2016 NUCURRENT, INC Method of operating a wireless connector system
10903660, Aug 26 2016 NUCURRENT, INC Wireless connector system circuit
10903688, Feb 13 2017 NUCURRENT, INC Wireless electrical energy transmission system with repeater
10916950, Aug 26 2016 NUCURRENT, INC Method of making a wireless connector receiver module
10923821, Aug 19 2015 NUCURRENT, INC. Multi-mode wireless antenna configurations
10931118, Aug 26 2016 NUCURRENT, INC Wireless connector transmitter module with an electrical connector
10938220, Aug 26 2016 NUCURRENT, INC Wireless connector system
10958105, Feb 13 2017 NUCURRENT, INC Transmitting base with repeater
10985465, Aug 19 2015 NUCURRENT, INC Multi-mode wireless antenna configurations
11011915, Aug 26 2016 NUCURRENT, INC Method of making a wireless connector transmitter module
11025070, Aug 07 2015 NUCURRENT, INC. Device having a multimode antenna with at least one conductive wire with a plurality of turns
11056922, Jan 03 2020 NUCURRENT, INC Wireless power transfer system for simultaneous transfer to multiple devices
11152151, May 26 2017 NUCURRENT, INC Crossover coil structure for wireless transmission
11165259, Aug 07 2015 NUCURRENT, INC. Device having a multimode antenna with conductive wire width
11177695, Feb 13 2017 NUCURRENT, INC Transmitting base with magnetic shielding and flexible transmitting antenna
11190048, Feb 13 2017 NUCURRENT, INC Method of operating a wireless electrical energy transmission base
11190049, Feb 13 2017 NUCURRENT, INC Wireless electrical energy transmission system
11196266, Aug 07 2015 NUCURRENT, INC. Device having a multimode antenna with conductive wire width
11196297, Feb 13 2017 NUCURRENT, INC Transmitting base with antenna having magnetic shielding panes
11205848, Aug 07 2015 NUCURRENT, INC Method of providing a single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
11205849, Aug 07 2015 NUCURRENT, INC. Multi-coil antenna structure with tunable inductance
11223234, Feb 13 2017 NUCURRENT, INC Method of operating a wireless electrical energy transmission base
11223235, Feb 13 2017 NUCURRENT, INC Wireless electrical energy transmission system
11227712, Jul 19 2019 NUCURRENT, INC Preemptive thermal mitigation for wireless power systems
11228208, Feb 13 2017 NUCURRENT, INC Transmitting base with antenna having magnetic shielding panes
11264837, Feb 13 2017 NUCURRENT, INC Transmitting base with antenna having magnetic shielding panes
11271430, Jul 19 2019 NUCURRENT, INC Wireless power transfer system with extended wireless charging range
11277028, May 26 2017 NUCURRENT, INC Wireless electrical energy transmission system for flexible device orientation
11277029, May 26 2017 NUCURRENT, INC Multi coil array for wireless energy transfer with flexible device orientation
11282638, May 26 2017 NUCURRENT, INC Inductor coil structures to influence wireless transmission performance
11283295, May 26 2017 NUCURRENT, INC Device orientation independent wireless transmission system
11283296, May 26 2017 NUCURRENT, INC Crossover inductor coil and assembly for wireless transmission
11283303, Jul 24 2020 NUCURRENT, INC Area-apportioned wireless power antenna for maximized charging volume
11296402, Mar 09 2009 NUCURRENT, INC. Multi-layer, multi-turn inductor structure for wireless transfer of power
11316271, Aug 19 2015 NUCURRENT, INC Multi-mode wireless antenna configurations
11335999, Mar 09 2009 NUCURRENT, INC. Device having a multi-layer-multi-turn antenna with frequency
11336003, Mar 09 2009 NUCURRENT, INC. Multi-layer, multi-turn inductor structure for wireless transfer of power
11418063, Dec 09 2016 NUCURRENT, INC. Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
11431200, Feb 13 2017 NUCURRENT, INC Method of operating a wireless electrical energy transmission system
11469598, Aug 07 2015 NUCURRENT, INC. Device having a multimode antenna with variable width of conductive wire
11476566, Mar 09 2009 NUCURRENT, INC. Multi-layer-multi-turn structure for high efficiency wireless communication
11502547, Feb 13 2017 NUCURRENT, INC Wireless electrical energy transmission system with transmitting antenna having magnetic field shielding panes
11637457, Jan 03 2020 NUCURRENT, INC. Wireless power transfer system for simultaneous transfer to multiple devices
11652511, May 26 2017 NUCURRENT, INC. Inductor coil structures to influence wireless transmission performance
11658517, Jul 24 2020 NUCURRENT, INC. Area-apportioned wireless power antenna for maximized charging volume
11670856, Aug 19 2015 NUCURRENT, INC. Multi-mode wireless antenna configurations
11695302, Feb 01 2021 NUCURRENT, INC Segmented shielding for wide area wireless power transmitter
11705760, Feb 13 2017 NUCURRENT, INC. Method of operating a wireless electrical energy transmission system
11756728, Jul 19 2019 NUCURRENT, INC. Wireless power transfer system with extended wireless charging range
11764614, Dec 09 2016 NUCURRENT, INC. Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
11769629, Aug 07 2015 NUCURRENT, INC. Device having a multimode antenna with variable width of conductive wire
11811223, Jan 03 2020 NUCURRENT, INC. Wireless power transfer system for simultaneous transfer to multiple devices
11831174, Mar 01 2022 NUCURRENT, INC Cross talk and interference mitigation in dual wireless power transmitter
11843255, Dec 22 2020 Ruggedized communication for wireless power systems in multi-device environments
11876386, Dec 22 2020 NUCURRENT, INC Detection of foreign objects in large charging volume applications
11881716, Dec 22 2020 NUCURRENT, INC Ruggedized communication for wireless power systems in multi-device environments
11916400, Mar 09 2009 NUCURRENT, INC. Multi-layer-multi-turn structure for high efficiency wireless communication
4495479, Oct 22 1982 International Business Machines Corporation Selective wiring for multilayer printed circuit board
4498046, Oct 18 1982 International Business Machines Corporation Room temperature cryogenic test interface
4536328, May 30 1984 HERAEUS, INC , A CORP OF PA Electrical resistance compositions and methods of making the same
4597029, Mar 19 1984 INTEL CORPORATION, A DE CORP Signal connection system for semiconductor chip
4685033, Aug 28 1984 NEC Corporation Multilayer wiring substrate
4724283, Sep 27 1985 NEC Corporation Multi-layer circuit board having a large heat dissipation
4744008, Nov 18 1986 International Business Machines Corporation Flexible film chip carrier with decoupling capacitors
4754371, Apr 27 1984 NEC Corporation Large scale integrated circuit package
4795670, May 14 1986 MURATA MANUFACTURING CO , LTD Multilayer ceramic substrate with circuit patterns
4860166, Sep 06 1983 Raytheon Company Integrated circuit termination device
4945399, Sep 30 1986 International Business Machines Corporation Electronic package with integrated distributed decoupling capacitors
4967314, Mar 28 1988 Bankers Trust Company Circuit board construction
5016085, Mar 04 1988 Hughes Aircraft Company Hermetic package for integrated circuit chips
5027253, Apr 09 1990 IBM Corporation Printed circuit boards and cards having buried thin film capacitors and processing techniques for fabricating said boards and cards
5219639, Mar 07 1990 Fujitsu Limited Multilayer structure and its fabrication method
5225969, Dec 15 1989 TDK Corporation Multilayer hybrid circuit
5371029, Jan 22 1991 National Semiconductor Corporation Process for making a leadless chip resistor capacitor carrier using thick and thin film printing
5396397, Sep 24 1992 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Field control and stability enhancement in multi-layer, 3-dimensional structures
5428885, Jan 14 1989 TDK Corporation Method of making a multilayer hybrid circuit
5473120, Apr 27 1992 Tokuyama Corporation Multilayer board and fabrication method thereof
5737035, Apr 21 1995 CSR TECHNOLOGY INC Highly integrated television tuner on a single microcircuit
5889462, Apr 08 1996 BOURNS, INC. Multilayer thick film surge resistor network
6140585, Nov 04 1996 Fihem Wire telecommunication equipment with protection against electromagnetic interference
6177964, Aug 01 1997 CSR TECHNOLOGY INC Broadband integrated television tuner
6229098, Jun 05 1998 MOTOROLA SOLUTIONS, INC Method for forming a thick-film resistor and thick-film resistor formed thereby
6331680, Aug 07 1996 Visteon Global Technologies, Inc Multilayer electrical interconnection device and method of making same
6353540, Jan 10 1995 Hitachi, Ltd. Low-EMI electronic apparatus, low-EMI circuit board, and method of manufacturing the low-EMI circuit board.
6377315, Nov 12 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED System and method for providing a low power receiver design
6495912, Sep 17 2001 Qualcomm Incorporated Structure of ceramic package with integrated passive devices
6504111, May 29 2001 International Business Machines Corporation Solid via layer to layer interconnect
6707682, Jan 10 1995 Sumitomo Rubber Industries, LTD Low-EMI electronic apparatus, low-EMI circuit board, and method of manufacturing the low-EMI circuit board
6740975, Apr 24 2001 NGK Spark Plug Company, Limited Wiring substrate having no through holes formed in wiring correspondence regions
6879816, Nov 12 1998 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Integrated switchless programmable attenuator and low noise amplifier
6982387, Jun 19 2001 GLOBALFOUNDRIES Inc Method and apparatus to establish circuit layers interconnections
7092043, Nov 12 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Fully integrated tuner architecture
7199664, Nov 12 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Integrated switchless programmable attenuator and low noise amplifier
7236212, Nov 12 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED System and method for providing a low power receiver design
7274410, Aug 01 1997 CSR TECHNOLOGY INC Broadband integrated tuner
7423699, Nov 12 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Fully integrated tuner architecture
7453527, Apr 21 1995 CSR TECHNOLOGY INC Highly integrated television tuner on a single microcircuit
7504731, Nov 09 2004 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure to reduce stress induced voiding effect
7538621, Aug 01 1997 CSR TECHNOLOGY INC Broadband integrated tuner
7586756, Sep 29 2004 Intel Corporation Split thin film capacitor for multiple voltages
7729676, Nov 12 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Integrated switchless programmable attenuator and low noise amplifier
7746412, Apr 21 1995 CSR TECHNOLOGY INC Highly integrated television tuner on a single microcircuit
7810234, Sep 29 2004 Intel Corporation Method of forming a thin film capacitor
7821581, Nov 12 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Fully integrated tuner architecture
7868704, Apr 21 1995 CSR TECHNOLOGY INC Broadband integrated television tuner
7982504, Jan 29 2010 Hewlett Packard Enterprise Development LP Interconnection architecture for multilayer circuits
7986532, Sep 29 2004 Intel Corporation Split thin film capacitor for multiple voltages
8013451, Nov 09 2004 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure to reduce stress induced voiding effect
8045066, Nov 12 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Fully integrated tuner architecture
8139161, Apr 21 1995 CSR TECHNOLOGY INC Broadband integrated tuner
8195117, Nov 12 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Integrated switchless programmable attenuator and low noise amplifier
8227923, Nov 09 2004 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure to reduce stress induced voiding effect
8513115, Nov 09 2004 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming an interconnect structure having an enlarged region
8547677, Mar 01 2005 X2Y Attenuators, LLC Method for making internally overlapped conditioners
8567048, Sep 15 2011 NUCURRENT, INC Method of manufacture of multi-layer wire structure
8587915, Apr 08 1997 X2Y Attenuators, LLC Arrangement for energy conditioning
8610530, Mar 09 2009 NUCURRENT, INC Multi-layer-multi-turn structure for tunable high efficiency inductors
8653927, Sep 15 2011 NUCURRENT, INC System comprising a multi-layer-multi-turn structure for high efficiency wireless communication
8680960, Mar 09 2009 NUCURRENT, INC Multi-layer-multi-turn structure for high efficiency inductors
8692641, Mar 09 2009 NUCURRENT, INC Multi-layer-multi-turn high efficiency inductors with cavity structures
8692642, Mar 09 2009 NUCURRENT, INC Method for manufacture of multi-layer-multi-turn high efficiency inductors with cavity
8698590, Mar 09 2009 NUCURRENT, INC Method for operation of multi-layer-multi-turn high efficiency inductors with cavity structure
8698591, Mar 09 2009 NUCURRENT, INC Method for operation of multi-layer-multi-turn high efficiency tunable inductors
8707546, Mar 09 2009 NUCURRENT, INC Method of manufacture of multi-layer-multi-turn high efficiency tunable inductors
8710948, Mar 03 2009 NUCURRENT, INC Method for operation of multi-layer-multi-turn high efficiency inductors
8785323, Nov 09 2004 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming an interconnect structure having an enlarged region
8803649, Mar 09 2009 NUCURRENT, INC Multi-layer-multi-turn high efficiency inductors for an induction heating system
8823481, Mar 09 2009 NUCURRENT, INC Multi-layer-multi-turn high efficiency inductors for electrical circuits
8823482, Mar 09 2009 NUCURRENT, INC Systems using multi-layer-multi-turn high efficiency inductors
8855786, Mar 09 2009 NUCURRENT, INC System and method for wireless power transfer in implantable medical devices
8860545, Sep 15 2011 NUCURRENT, INC System using multi-layer wire structure for high efficiency wireless communication
8898885, Mar 09 2009 NUCURRENT, INC Method for manufacture of multi-layer-multi-turn structure for high efficiency wireless communication
9001486, Mar 01 2005 X2Y Attenuators, LLC Internally overlapped conditioners
9019679, Apr 08 1997 X2Y Attenuators, LLC Arrangement for energy conditioning
9036319, Apr 08 1997 X2Y Attenuators, LLC Arrangement for energy conditioning
9054094, Apr 08 1997 X2Y Attenuators, LLC Energy conditioning circuit arrangement for integrated circuit
9208942, Mar 09 2009 NUCURRENT, INC Multi-layer-multi-turn structure for high efficiency wireless communication
9232893, Mar 09 2009 NUCURRENT, INC Method of operation of a multi-layer-multi-turn structure for high efficiency wireless communication
9300046, Mar 09 2009 NUCURRENT, INC Method for manufacture of multi-layer-multi-turn high efficiency inductors
9305709, Nov 28 2003 NXP USA, INC Method of forming a multi-level thin film capacitor
9306358, Mar 09 2009 NUCURRENT, INC Method for manufacture of multi-layer wire structure for high efficiency wireless communication
9324718, Jan 29 2010 Hewlett Packard Enterprise Development LP Three dimensional multilayer circuit
9373592, Apr 08 1997 X2Y Attenuators, LLC Arrangement for energy conditioning
9439287, Mar 09 2009 NUCURRENT, INC Multi-layer wire structure for high efficiency wireless communication
9444213, Mar 09 2009 NUCURRENT, INC Method for manufacture of multi-layer wire structure for high efficiency wireless communication
9941590, Aug 07 2015 NUCURRENT, INC Single structure multi mode antenna for wireless power transmission using magnetic field coupling having magnetic shielding
9941729, Aug 07 2015 NUCURRENT, INC Single layer multi mode antenna for wireless power transmission using magnetic field coupling
9941743, Aug 07 2015 NUCURRENT, INC Single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
9948129, Aug 07 2015 NUCURRENT, INC Single structure multi mode antenna for wireless power transmission using magnetic field coupling having an internal switch circuit
9960628, Aug 07 2015 NUCURRENT, INC Single structure multi mode antenna having a single layer structure with coils on opposing sides for wireless power transmission using magnetic field coupling
9960629, Aug 07 2015 NUCURRENT, INC Method of operating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
9985480, Aug 07 2015 NUCURRENT, INC Electrical system incorporating a single structure multimode antenna for wireless power transmission using magnetic field coupling
Patent Priority Assignee Title
3561110,
3680005,
3726002,
3838204,
3875479,
3895435,
3916514,
4030190, Mar 30 1976 International Business Machines Corporation Method for forming a multilayer printed circuit board
4202007, Jun 23 1978 International Business Machines Corporation Multi-layer dielectric planar structure having an internal conductor pattern characterized with opposite terminations disposed at a common edge surface of the layers
4237606, Aug 13 1976 Fujitsu Limited Method of manufacturing multilayer ceramic board
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 27 1980Hitachi, Ltd.(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
May 04 19854 years fee payment window open
Nov 04 19856 months grace period start (w surcharge)
May 04 1986patent expiry (for year 4)
May 04 19882 years to revive unintentionally abandoned end. (for year 4)
May 04 19898 years fee payment window open
Nov 04 19896 months grace period start (w surcharge)
May 04 1990patent expiry (for year 8)
May 04 19922 years to revive unintentionally abandoned end. (for year 8)
May 04 199312 years fee payment window open
Nov 04 19936 months grace period start (w surcharge)
May 04 1994patent expiry (for year 12)
May 04 19962 years to revive unintentionally abandoned end. (for year 12)