A display unit for a head up display wherein the combiner (9), which serves to reflect light from a display surface (3) towards an observer to provide the observer with an image of the display superimposed on his view through the combiner, comprises first, second and third tuned reflective optical films (13c, 15c, 17c) disposed in such angular relationship with one another and the display surface that narrow waveband light from the display surface reaches the observer after being, successively, reflected at the first film, transmitted through the second film, reflected at the third film, reflected at the second film and transmitted through the third film.

Patent
   4407564
Priority
Jan 22 1980
Filed
Jan 21 1981
Issued
Oct 04 1983
Expiry
Jan 21 2001
Assg.orig
Entity
Large
107
3
EXPIRED
1. A display unit for a head up display comprising a combiner through which an observer can view a scene and a projector unit having a display surface from which light representing a display is projected onto the combiner for reflection to the observer thereby to provide the observer with an image of the display superimposed on his view through the combiner, characterised in that the combiner has first, second and third tuned reflective optical films which converge towards one another so as to define a pair of tapering spaces; the reflection/transmission characteristics of the films and the angles of convergence of the films and their angular relationship with the display surface being such that light within a narrow waveband from the display surface is, in turn, reflected at the first film towards the second film, transmitted through the second film towards the third film, reflected at the third film back towards the second film, reflected at the second film towards the third film, and transmitted through the third film to the observer's viewing position.
2. A display unit according to claim 1 wherein said second film is between said first and third films and said first and second films converge towards one edge of the second film and said second and third films converge towards the opposite edge of the second film.
3. A display unit according to claim 2 wherein light from said projector unit is directed onto said first film by a reflector disposed adjacent said opposite edge of the second film.
4. A display unit according to claim 3 wherein light from the projector unit is directed onto said reflector through a relay lens system disposed on the side of the combiner remote from the observer's viewing position and extending generally parallel to the observer's line of sight through the combiner.
5. A display unit according to claim 1 wherein said first and third films are substantially flat and said second film is substantially spherical.
6. A display unit according to claim 1 wherein each said film is sandwiched between a pair of supporting light transparent elements.

This invention relates to head up displays and, more especially, to display units for such displays.

Such units comprise a combiner through which an observer can view a scene and a projector unit having a display surface from which light representing a display is projected onto the combiner for reflection to the observer thereby to provide the observer with an image of the display superimposed on his view through the combiner.

U.S. Pat. No. 3,940,204 discloses a display unit for a head up display which comprises a combiner in the form of a tuned reflective optical film lens of the holographic type; a projector unit comprising a generally planar narrow waveband light emitting display surface such, for example, as a cathode ray tube screen; a folding prism; and between the display surface and the prism a relay lens optical system.

Narrow waveband, e.g. green light from the display surface is transmitted by the optical system to the prism. The prism is located below the line of sight of the observer to the lower edge of the holographic lens. Light incident on the prism is reflected upwardly to the holographic lens from whence it is reflected to the observer's eye position.

Collimation of the image of the display is effected substantially wholly by the holographic lens which transmits without significant attenuation light incident thereon from the distant scene upon which the virtual display image appears superimposed.

The presence of axial coma and astigmatism, particularly pronounced in an off-axis system such as that mentioned, dictates the provision of coma and astigmatism correcting means and optical power correction means in the optical relay system and this in turn gives rise to severe packaging problems, especially with units for use in a confined space such as an aircraft cockpit.

It is an object of the present invention to provide a head up display unit using tuned reflective films wherein the problems associated with providing such correcting means are alleviated.

The present invention provides a display unit for a head up display wherein the combiner has first, second and third tuned reflective optical films which converge towards one another so as to define a pair of tapering spaces; the reflection/transmission characteristics of the films and the angles of convergence of the films and their angular relationship with the display surface being such that light within a narrow waveband from the display surface is, in turn, reflected at the first film towards the second film, transmitted through the second film towards the third film, reflected at the third film back towards the second film, reflected at the second film towards the third film, and transmitted through the third film to the observer's viewing position.

The films are suitably of the holographic type, but multilayer films or indeed any film construction which exhibits the required transmission/reflection characteristics may be employed.

The unit provided by the invention is, as is the prior art arrangement referred to previously, an off-axis optical system, but as a result of the configuration of the films and the display surface, the angle of departure from an axial system can be significantly less than that which obtains in the prior art. Accordingly the amount of correction needed to avoid displayed image defects is substantially less than in the prior art unit.

By a tuned reflective optical film is meant an optical film or similar optical element having the property of reflecting efficiently light at particular combinations of wavelength and incidence angle. The film is described as tuned to these combinations of wavelength and incidence angle. Light which does not satisfy the tuned condition is transmitted by the film with little reflection loss.

One display unit in accordance with the invention will now be described, by way of example, with reference to the accompanying drawings in which:

FIG. 1 is a diagrammatic representation of the display unit, illustrating its operation;

FIG. 2 is a side sectional view of a practical embodiment of the display unit of FIG. 1;

FIG. 3 is an end elevational view of the unit of FIG. 2; and

FIG. 4 illustrates the field of view obtainable with the unit of FIGS. 2 and 3.

Referring to FIG. 1, the display unit comprises a cathode ray tube (CRT) 1 whose screen 3 is coated with a narrow waveband `green` light emitting phosphor. Light rays emitted by the CRT screen pass through a relay lens system 5 to be reflected by a reflector 7 to a combiner 9, a single light ray 11 only being shown in FIG. 1, for clarity. The relay lens system 5 is disposed on the side of the combiner 9 remote from the observer's viewing position and extends generally parallel to the observer's line of sight through the combiner 9.

The combiner 9 comprises a first member 13 provided with a first holographic film 13c, a second member 15 provided with a second holographic film 15c and a third member 17 provided with a third holographic film 17c. The member 15 is between the members 13 and 17 with its top edge adjacent the member 13 and its bottom edge adjacent the member 17, and the reflector 7, the members 13 and 15 converging towards the top edge of the member 15 to define a tapering space and the members 15 and 17 converging towards the bottom edge of the member 15 to define a tapering space. As may be seen the members 13, 15 and 17 each consist of two glass elements 13a, 13b, 15a, 15b, or 17a, 17b; between which is sandwiched the associated holographic film 13c, 15c or 17c.

The spatial relationship between the members 13, 15 and 17 and, in particular, their films 13c, 15c and 17c and the spatial relationship between the films 13c, 15c, 17c, the relay lens system 5, the reflector 7 and the screen 3 of the CRT 1 is such that the narrow waveband `green` light from the CRT screen 3 is in turn reflected at the film 13c, transmitted through the film 15c, reflected at the film 17c back to the film 15c, reflected at the film 15c and transmitted through the film 17c to the observer's viewing position.

Of the rays incident on the film 13c from each point on the CRT screen 3, only these rays which fall within a narrow conical ray bundle whose rays make with the film 13c an angle which falls within the reflective angular range of that film are reflected at film 13c. Rays outside each such conical bundle are transmitted by the film 13c, but are not received by the observer's eyes because they pass outside the range of head movement permitted to the observer.

The rays selectively reflected at the film 13c through film 15c are incident on the holographic film 17c. Once again, only the rays from each reflection point of the film 13c which fall within a narrow conical ray bundle whose rays make an angle with the coating 17c falling within the reflective angle range of that film, are reflected, and this similarly occurs at film 15c to which such rays are reflected. The rays reflected at film 15c are incident on the film 17c; but this time their angles of incidence fall outside the reflective range of the film 17c and, as a result, the rays reflected by the film 15c are transmitted by the film 17c to a small range of positions around the observer's design eye position.

The observer is thus provided with an image of the display presented on the CRT screen 3 superimposed on his view through the members 13, 15 and 17 of the combiner.

As shown in FIG. 1 the film 15c is spherical and the members 13 and 17 and their films 13c and 17c are flat. The observer views the scene on which the display appears superimposed by way of the two films 15c and 17c or all three films 13c, 15c and 17c.

In either case it is the function of the film 15c to produce a virtual image at infinity of the display presented on the CRT screen 3 so that such display may be viewed while the observer's eyes are focussed on the distant scene through the films 15c and 17c or 13c, 15c and 17c. It will be appreciated that the films 13c, 15c and 17c all transmit light from the distant scene without any significant attenuation, except of light in the narrow `green` waveband of the CRT screen phosphor.

The possibility of the film 15c being spherical arises as a result of the relatively small departure of the optical system at the film 15c from an on-axis system. The necessary corrections to compensate for defects arising in the unit from the off-axis configuration of the optical system are, of course, effected by the relay lens system 5, but since the unit has a more nearly on-axis optical configuration than comparable prior art display units, the system 5 is relatively simple and compact.

Referring now to FIGS. 2 and 3 there is shown a practical embodiment of a head up display unit utilising the optical system described with reference to FIG. 1.

In this embodiment the CRT 1, relay lens system 5 and reflector 7 are all located in a longitudinally extending casing 19. The members 15 and 17 are located at each side of an elliptical housing 21 attached to casing 19 at its lowermost position and additionally supported by adjustable length struts 23 at each side thereof. The member 13 is carried by a support member 25 attached at the top rear of housing 21.

As indicated in FIGS. 1, 2 and 3 of the drawings, the head up display unit described by way of example is adapted for use by a pilot in an aircraft cockpit with the unit supported between the aircraft canopy 27 and an ejection line 29.

A typical field of view available to the observer at the design eye position using the display unit of FIGS. 2 and 3 is shown in 4B, FIG. 4A showing by way of comparison the maximum field of view obtainable using conventional head up display unit techniques.

It will be appreciated that in particular cases the angular relationships between the several active components of a display unit according to the invention may differ from those shown by way of example. The specific example illustrated is optimized for a particular set of spatial constraints; and, as may be gathered, these constraints will vary within certain limits from case to case, in particular in respect of tolerance to pilot's eye position.

Ellis, Stafford M.

Patent Priority Assignee Title
10163137, Feb 05 2003 HOFFBERG FAMILY TRUST 2 System and method for incentivizing participation in a market transaction
10341403, Mar 28 2000 Affinity Labs of Texas, LLC System to communicate media
10482667, May 13 2016 Visteon Global Technologies, Inc Display unit and method of controlling the display unit
10567975, Oct 04 2005 HOFFBERG FAMILY TRUST 2 Multifactorial optimization system and method
10943273, Feb 05 2003 HOFFBERG FAMILY TRUST 2 System and method for determining contingent relevance
11790413, Feb 05 2003 HOFFBERG FAMILY TRUST 2 System and method for communication
4560233, Feb 09 1983 Qinetiq Limited Color head up display system
4582389, Feb 18 1982 Flight Dynamics Holographic device
4669810, Feb 03 1984 Flight Dynamics Head up display system
4735473, May 03 1985 Thomson-CSF Device for optical-cable transport and combination of light images
4795223, Jan 06 1987 Delphi Technologies, Inc Segmented 3-D hologram display
4826287, Jan 20 1987 DAI NIPPON PRINTING CO , LTD Display system having coma-control plate in relay lens
4830464, Feb 04 1986 Thomson CSF Wide field high optical efficiency display device
4832427, Feb 06 1987 Nippondenso Co., Ltd. Holographic display system
4859030, Jul 29 1987 Honeywell, Inc. Helmet mounted display with improved brightness
4874214, Apr 22 1987 Thomson-CSF Clear holographic helmet visor and process of producing same
4900133, Oct 27 1988 Kaiser Electronics Heads-up display combiner utilizing a cholesteric liquid crystal element
4927234, Aug 21 1987 The Secretary of State for Defence in Her Britannic Majesty's Government Optical system for head-up displays
5007711, Nov 30 1988 Flight Dynamics Compact arrangement for head-up display components
5071210, Dec 28 1989 APA OPTICS, INC Sandwich reflection hologram
5162928, Nov 02 1988 Canon Kabushiki Kaisha Head-up display apparatus
5210624, Sep 19 1989 Fujitsu Limited Heads-up display
5379132, Sep 27 1989 Canon Kabushiki Kaisha Display apparatus for a head-up display system
5640275, Feb 27 1987 THOMSOPN-CSF Head-up display device of holographic type
5682255, Feb 26 1993 Yeda Research & Development Co. Ltd. Holographic optical devices for the transmission of optical signals of a plurality of channels
5684634, Mar 11 1993 Qioptiq Limited Head-up displays
5912700, Jan 10 1996 SPORTSMEDIA TECHNOLOGY CORPORATION System for enhancing the television presentation of an object at a sporting event
5953077, Jan 17 1997 SPORTSMEDIA TECHNOLOGY CORPORATION System for displaying an object that is not visible to a camera
5966223, Feb 26 1993 Yeda Research & Development Co., Ltd. Planar holographic optical device
6009355, Jan 28 1997 AMERICAN CALCAR, INC Multimedia information and control system for automobiles
6131060, Jan 28 1997 TALKING QUICK TIPS, INC Method and system for adjusting settings of vehicle functions
6169613, Feb 26 1993 Yeda Research & Devel Co., Ltd. Planar holographic optical device for beam expansion and display
6175782, Jan 28 1997 TALKING QUICK TIPS, INC System and method for adjusting climate control in vehicles
6233506, Jan 28 1997 TALKING QUICK TIPS, INC Technique for effectively locating an object
6275231, Aug 01 1997 AUTO DIRECTOR TECHNOLOGIES, INC Centralized control and management system for automobiles
6282464, Jan 28 1997 TALKING QUICK TIPS, INC Technique for effectively providing audio information in a vehicle
6330497, Jan 28 1997 American Calcar Inc. Multimedia technique for operating devices in a vehicle
6438465, Jan 28 1997 American Calcar, Inc. Technique for effectively searching for information in a vehicle
6449535, Jan 28 1997 TALKING QUICK TIPS, INC Method and system for adjusting a function in a vehicle
6459961, Jan 28 1997 American Calcar, Inc. Technique for providing information upon a notable condition in a vehicle
6542794, Jan 28 1997 TALKING QUICK TIPS, INC Technique for effectively communicating information concerning vehicle service providers to a user
6542795, Jan 28 1997 American Calcar Inc. Technique for providing information and control responsive to a request in a vehicle
6577928, Jan 28 1997 TALKING QUICK TIPS, INC Multimedia information and control system for automobiles
6587758, Jan 28 1997 TALKING QUICK TIPS, INC Technique for adopting an adjustment of a vehicle function
6587759, Jan 28 1999 American Calcar Inc. Technique for effectively providing information responsive to a notable condition in a vehicle
6703944, Aug 01 1997 AUTO DIRECTOR TECHNOLOGIES, INC Technique for effectively maintaining a safe distance between a vehicle and an object
6844980, Apr 23 2001 Reveo, Inc Image display system and electrically actuatable image combiner therefor
6859687, Jan 28 1997 TALKING QUICK TIPS, INC Technique for temporal climate control in a vehicle
6922616, Jan 28 1997 American Calcar Inc. Technique for effectively maintaining components of a vehicle
6971070, Aug 01 1997 AUTO DIRECTOR TECHNOLOGIES, INC Technique for automatic parking of a vehicle
6975932, Aug 01 1997 AUTO DIRECTOR TECHNOLOGIES, INC Technique for maintaining a separation between a vehicle and a detectable object
6982635, Sep 21 2000 AUTO DIRECTOR TECHNOLOGIES, INC Technique for assisting a vehicle user to make a turn
7023592, Nov 26 2001 Minolta Co., Ltd. Band-pass filter and image display apparatus
7043699, Aug 01 1997 AUTO DIRECTOR TECHNOLOGIES, INC Technique for effectively selecting entertainment programs in a vehicle
7062362, Jan 28 1997 TALKING QUICK TIPS, INC Technique for preconditioning climate control in a vehicle
7095538, Nov 26 2001 Minolta Co., Ltd. Band-pass filter and image display apparatus
7124004, Jan 28 1997 TALKING QUICK TIPS, INC Technique for suggesting a service provider to service a vehicle
7162370, Aug 01 1997 AUTO DIRECTOR TECHNOLOGIES, INC Centralized control and management system for automobiles
7171291, Jan 28 1997 TALKING QUICK TIPS, INC Technique for selecting a service provider to service a vehicle
7251789, Aug 01 1997 AUTO DIRECTOR TECHNOLOGIES, INC Technique for accessing location-dependent information sources in a vehicle
7417531, Sep 21 2000 AUTO DIRECTOR TECHNOLOGIES, INC Technique for monitoring a tire condition of a vehicle
7486926, Mar 28 2000 RPX Corporation Content delivery system and method
7499778, Jan 28 1997 TALKING QUICK TIPS, INC Technique for informing a user of a service provider for servicing a vehicle
7512495, Aug 01 1997 AUTO DIRECTOR TECHNOLOGIES, INC Centralized control and management system for automobiles
7519922, Aug 01 1997 AUTO DIRECTOR TECHNOLOGIES, INC Technique for effectively aiding a user to park a vehicle
7535344, Sep 21 2000 AUTO DIRECTOR TECHNOLOGIES, INC Technique for operating a vehicle effectively and safely
7634228, Mar 28 2000 RPX Corporation Content delivery system and method
7656310, Aug 01 1997 AUTO DIRECTOR TECHNOLOGIES, INC Technique for operating a vehicle safely in a lane
7702455, Jun 20 1997 SILVER STATE INTELLECTUAL TECHNOLOGIES, INC Personal communication system to send and receive voice data positioning information
7741959, Aug 01 1997 AUTO DIRECTOR TECHNOLOGIES, INC Centralized control and management system for automobiles
7778595, Mar 28 2000 RPX Corporation Method for managing media
7802198, Aug 01 1997 AUTO DIRECTOR TECHNOLOGIES, INC Centralized control and management system for automobiles
7902969, Sep 21 2000 AUTO DIRECTOR TECHNOLOGIES, INC Technique for operating a vehicle effectively and safely
7953390, Mar 28 2000 RPX Corporation Method for content delivery
7970379, Mar 28 2000 RPX Corporation Providing broadcast content
8359007, Mar 28 2000 RPX Corporation System and method for communicating media center
8521140, Mar 28 2000 RPX Corporation System and method for communicating media content
8532641, Mar 28 2000 RPX Corporation System and method for managing media
8554191, Mar 28 2000 RPX Corporation System and method for managing media
8600830, Feb 05 2003 HOFFBERG FAMILY TRUST 2 System and method for providing a payment to a non-winning auction participant
8626382, Sep 21 2000 AUTO DIRECTOR TECHNOLOGIES, INC Technique for operating a vehicle effectively and safely
8688085, Mar 28 2000 RPX Corporation System and method to communicate targeted information
8892465, Jun 27 2001 Skky, LLC Media delivery platform
8908567, Jun 27 2001 Skky, LLC Media delivery platform
8972289, Jun 27 2001 Skky, LLC Media delivery platform
8982472, May 21 2013 Method of widening of angular field of view of collimating optical systems
9002549, Jan 28 1997 TALKING QUICK TIPS, INC Multimedia information and control system for automobiles
9037502, Jun 27 2001 Skky, LLC Media delivery platform
9094802, Mar 28 2000 RPX Corporation System and method to communicate targeted information
9118693, Jun 27 2001 Skky, LLC Media delivery platform
9124717, Jun 27 2001 Skky, LLC Media delivery platform
9124718, Jun 27 2001 Skky, LLC Media delivery platform
9203870, Jun 27 2001 Skky, LLC Media delivery platform
9203956, Jun 27 2001 Skky, LLC Media delivery platform
9215310, Jun 27 2001 Skky, LLC Media delivery platform
9219810, Jun 27 2001 Skky, LLC Media delivery platform
9319516, Jun 27 2001 Skky, LLC Media delivery platform
9387760, Jan 28 1997 TALKING QUICK TIPS, INC Multimedia information and control system for automobiles
9444868, Mar 28 2000 RPX Corporation System to communicate media
9511765, Aug 01 1997 Auto Director Technologies, Inc. System and method for parking an automobile
9571449, Sep 21 2000 Auto Director Technologies, Inc. Technique for operating a vehicle effectively and safely
9621615, Mar 28 2000 RPX Corporation System to communicate media
9794797, Oct 04 2005 Multifactorial optimization system and method
9818136, Feb 05 2003 System and method for determining contingent relevance
9832304, Jun 27 2001 Skky, LLC Media delivery platform
9923944, Mar 28 2000 RPX Corporation System to communicate media
RE49334, Oct 04 2005 HOFFBERG FAMILY TRUST 2 Multifactorial optimization system and method
Patent Priority Assignee Title
3892474,
3940204, Jan 23 1975 Hughes Aircraft Company Optical display systems utilizing holographic lenses
4261647, Sep 15 1978 Elliott Brothers (London) Limited Head up displays
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 21 1981Elliott Brothers (London) Limited(assignment on the face of the patent)
Jul 21 1981ELLIS, STAFFORD M ELLIOTT BROTHERS LONDON LIMITED, A BRITISH COMPANYASSIGNMENT OF ASSIGNORS INTEREST 0038920126 pdf
May 26 1993GEC-MARCONI HOLDINGS LIMITEDGEC-Marconi LimitedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0066270425 pdf
Date Maintenance Fee Events
Apr 06 1987M170: Payment of Maintenance Fee, 4th Year, PL 96-517.
Apr 04 1991M171: Payment of Maintenance Fee, 8th Year, PL 96-517.
May 09 1995REM: Maintenance Fee Reminder Mailed.
Oct 01 1995EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 04 19864 years fee payment window open
Apr 04 19876 months grace period start (w surcharge)
Oct 04 1987patent expiry (for year 4)
Oct 04 19892 years to revive unintentionally abandoned end. (for year 4)
Oct 04 19908 years fee payment window open
Apr 04 19916 months grace period start (w surcharge)
Oct 04 1991patent expiry (for year 8)
Oct 04 19932 years to revive unintentionally abandoned end. (for year 8)
Oct 04 199412 years fee payment window open
Apr 04 19956 months grace period start (w surcharge)
Oct 04 1995patent expiry (for year 12)
Oct 04 19972 years to revive unintentionally abandoned end. (for year 12)