A stress-free optic element or window for use in equipment such as lasers. In this window a plurality of circular or curved grooves are formed in the window surface to prevent stresses from reaching the central region of the window used for light beam transmission. The plurality of grooves effectively form a resilient or spring like zone between the periphery of the window and the central region so that stresses generated in the peripheral mounting area are isolated from reaching the central stress-free area.

Patent
   4421386
Priority
Mar 03 1982
Filed
Mar 03 1982
Issued
Dec 20 1983
Expiry
Mar 03 2002
Assg.orig
Entity
Large
19
2
all paid
1. A stress-free optical element for laser applications comprising:
a unitary disc-like transparent optical element having both a relatively stress-free central area for transmission of a light beam as well as a surrounding mounting area near the periphery;
a plurality of concentric grooves formed in the element surface on one side of the element; and,
at least one further concentric groove formed in the element surface on the opposite side of the element and of radius different from the intermediate said plurality of concentric grooves, said grooves forming a spring-like portion in said unitary optical element to effectually mechanically decouple said stress-free central area from said surrounding area.
2. The optical element according to claim 1 wherein the depth of the grooves is at least one half the thickness of the disc like optical element.

The present invention is related to low loss optic elements such as windows or lenses for use in equipment such as lasers. In the prior art it has been known to use Brewster windows in laser application. The Brewster window is a glass window used at opposite ends of some gas lasers to transmit one polarization of the laser output beam without loss. Previous Brewster window designs have been continuous sheets of glass. Small mismatches in expansion coefficients of the window and of the laser body to which the window is fastened result in stresses in the glass as the temperature changes. Such stresses make the glass window birefringent which increases surface reflectance losses and reduces power output from the laser. Birefringence also provides a retardance mechanism which creates elliptically polarized light from plane polarized light. When the laser is used in laser gyro applications, such elliptically polarized light results in a bias sensitivity to magnetic fields and performance degradation.

In the present invention the Brewster window has a novel structure in that a plurality of circular or curved grooves are formed in the window to isolate stresses from reaching the important window central region used for light beam transmission. The plurality of grooves effectively form a resilient or spring-like zone between the area used to attach the window and the central area used for light beam transmission. Differential (e.g. thermal) motion generated in the peripheral mounting area is stress-decoupled or absorbed in the spring-like region and thereby significantly reduces or eliminates stresses transmitted to the central region of the window.

FIG. 1 is a front FIG. 1a and edge FIG. 1b view of the stress-free window.

FIG. 2 is a schematic view of the windows of FIG. 1 mounted on a laser tube.

FIG. 3 is a side FIG. 3a and top FIG. 3b view of a typical Ne-He laser structure with the stress-free windows in place.

The present invention is directed to an improved optical window or lens of the type useable in a laser. In the specific embodiment shown and described herein, the improved window is a stress-free Brewster window. Referring now to FIGS. 1, a and b, there is shown a transparent glass window 10 in the form of a flat disc. The flat disc window may instead be a lens if desired. The window 10 has a stress-free central area 11, a plurality of stress relief grooves 12, 13 and 14 and a surrounding mounting area 15 at the periphery of the window. The number of grooves is not intended to be limited to three as shown. The grooves which may be prepared by etching or machining are shown as being circular in FIG. 1a for the preferred embodiment but may be non-circular if desired.

In one specific embodiment of the invention the diameter of the window 10 is about 15 mm, the central area 11 is about 4.3 mm in diameter, the thickness of the window is about 1.2 mm and the depth of the grooves 12, 13 and 14 is about 0.6 mm. The depth of the grooves may also be substantially deeper than about one half of the thickness of the window as is set out in the specific embodiment. Each succeeding groove has a different radius. The plurality of concentric grooves preferably alternate from one surface of the window to the other as is shown in FIG. 1.

In FIG. 2 there is shown diagrammatically a laser tube 20 with the stress-free Brewster window 10 at each end. The dashed line passing through the stress-free center of the windows shows the path of the emanating laser beam. In FIG. 3, a and b, there is shown in more detail a conventional NeHe laser which utilizes the improved stress-free windows 10 of the invention. The mounting or bonding surface area of the window 10 and the mating surface of the glassy laser structure 21 where the surfaces contact, are made very smooth so that the molecules bond together to provide a vacuum tight seal for the laser chamber, which chamber contains a low pressure fill or mix of helium and neon at about 5 Torr. Epoxy bonding or the like may also be used. In FIG. 3b the window are removed so the laser beam passage is more clearly seen.

The stress-free Brewster windows 10 described above and the laser body to which the windows are sealed may have small mismatches in expansion coefficients which results in stresses in the glass as the temperature changes. The series of grooves 12, 13 and 14 in the present window effectively form a resilient or spring-like zone between the outer perimeter mounting area and the central area used for the light beam transmission to isolate stresses at the mounting area from reaching and affecting the window central region. The differential (thermal) motion is absorbed or decoupled in the spring-like region and significantly reduces stresses reaching the central region 11.

Podgorski, Theodore J.

Patent Priority Assignee Title
4506951, Aug 18 1982 Olympus Optical Co., Ltd. Plastic lens
4653060, Jun 29 1984 Siemens Aktiengesellschaft Gas laser tube and method for manufacturing the same
4864582, Jun 29 1984 Carl Zeiss Jena GmbH Gas laser tube and method for manufacturing the same
4953965, Dec 26 1985 NUFLARE TECHNOLOGY, INC High-accuracy traveling table apparatus
5039203, Feb 08 1989 SEIKO INSTRUMENTS INC , Optical window member and method for production thereof
5101301, Aug 25 1986 NUFLARE TECHNOLOGY, INC High-accuracy traveling table apparatus
5115354, Aug 25 1986 NUFLARE TECHNOLOGY, INC High accuracy traveling table apparatus
5718663, Jul 17 1995 OLYMPUS WINTER & IBE GMBH Endoscope optical system with a window plate having a light screen
5902326, Sep 03 1997 Medtronic, Inc Optical window for implantable medical devices
6125290, Oct 30 1998 Medtronic, Inc. Tissue overgrowth detector for implantable medical device
6125291, Oct 30 1998 Medtronic, Inc. Light barrier for medical electrical lead oxygen sensor
6134459, Oct 30 1998 Medtronic, Inc. Light focusing apparatus for medical electrical lead oxygen sensor
6144866, Oct 30 1998 Medtronic, Inc. Multiple sensor assembly for medical electric lead
6163723, Oct 22 1998 Medtronic, Inc. Circuit and method for implantable dual sensor medical electrical lead
6198952, Oct 30 1998 Medtronic, Inc. Multiple lens oxygen sensor for medical electrical lead
6248080, Oct 30 1998 Medtronic, Inc Intracranial monitoring and therapy delivery control device, system and method
6731976, Oct 30 1998 Medtronic, Inc Device and method to measure and communicate body parameters
7524235, Jun 23 2006 Method of eliminating surface stress of silicon wafer
8786658, Mar 26 2012 Ricoh Company, Ltd. Exposure device and image forming apparatus
Patent Priority Assignee Title
3420603,
3555450,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 25 1982PODGORSKI, THEODORE J HONEYWELL INC , A CORP OF DEASSIGNMENT OF ASSIGNORS INTEREST 0039610546 pdf
Mar 03 1982Honeywell Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Mar 02 1987M170: Payment of Maintenance Fee, 4th Year, PL 96-517.
Mar 11 1991M171: Payment of Maintenance Fee, 8th Year, PL 96-517.
Mar 17 1995M185: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Dec 20 19864 years fee payment window open
Jun 20 19876 months grace period start (w surcharge)
Dec 20 1987patent expiry (for year 4)
Dec 20 19892 years to revive unintentionally abandoned end. (for year 4)
Dec 20 19908 years fee payment window open
Jun 20 19916 months grace period start (w surcharge)
Dec 20 1991patent expiry (for year 8)
Dec 20 19932 years to revive unintentionally abandoned end. (for year 8)
Dec 20 199412 years fee payment window open
Jun 20 19956 months grace period start (w surcharge)
Dec 20 1995patent expiry (for year 12)
Dec 20 19972 years to revive unintentionally abandoned end. (for year 12)