The invention concerns a label printing and applying apparatus. A separate label printer and label applier are provided. A label holder, separably attachable to the printer and to the applier, receives a web of labels after they are printed while the label holder is attached to the printer. The label holder is separated from the printer and is attached to the applier and then the holder delivers labels to the applier for being applied. When a roll of labels has been wound upon the label holder, a cutting knife cuts the label web, thereafter permitting separation of the label holder from the label printer. printing of the labels is done on a rotary platen on the label printer. A drive transmission connects the rotary platen with the label winding roll for rotating the roll when the label holder is on the label printer. Instructions to the printer for printing particular indicia are inputted. A memory circuit on the label holder stores the inputted instructions for each label. When the label holder is attached to the label applier, a sensor on the label applier counts the labels being dispensed and indicates from the memory circuit the indicia that had been printed on the label then being applied by the label applier.

Patent
   4439257
Priority
Mar 05 1981
Filed
Mar 02 1982
Issued
Mar 27 1984
Expiry
Mar 02 2002
Assg.orig
Entity
Large
102
12
all paid
19. A method of printing labels and applying the labels to other objects, wherein the labels are arranged in a series on a web of labels, comprising the steps of:
printing the labels in series with indicia; collecting the web of printed labels on a label holder;
separating the collected labels and the label holder from the means which printed the labels; attaching the label holder to a label applier;
feeding the web of labels to the label applier and applying the labels individually to an object to be labeled;
inputting printing instructions to the printer for printing particular indicia on a first quantity of labels on the web; also inputting the printing instructions in a memory; indicating the printing instructions from the memory at an indicator for each of the labels as each of the labels is being applied by the label applier.
1. A label printing and applying apparatus, comprising:
a printer for printing labels in a web of a series of labels, the printer including printing means for printing labels as the web of labels is moved past the printing means, and including feed means for advancing the web of labels past the printing means to a receiving means;
a label holder having a body adapted to seat upon the printer; removably attachable to the printer, the label holder including receiving means supported on the label holder body for receiving and holding the label web that is fed to the receiving means by the feed means, after label printing by the printing means; and
a label applier, the label holder body also being adapted to seat upon the label applier and being removably attachable to the label applier; the label applier including means for feeding the label web from the label holder to the label applier; the label applier including an exit for labels of the label web, where labels may be removed from the label applier, and the label applier feeding means feeding the label web to the exit of the label applier.
14. A label printing and applying apparatus, comprising:
a printer for printing labels in a web of a series of labels, the printer including printing means for printing labels as the web of labels is moved past the printing means, and including feed means for advancing the web of labels past the printing means to a receiving means;
a label holder removably attachable to the printer, the label holder including receiving means for receiving and holding the label web that is fed to the receiving means by the feed means, after label printing by the printing means; and
a label applier, the label holder being removably attachable to the label applier; the label applier including means for feeding the label web from the label holder to the label applier; the label applier including an exit for labels of the label web, where labels may be removed from the label applier, and the label applier feeding means feeding the label web to the exit of the label applier;
memory circuit means at the label holder for remembering the indicia printed upon the labels at the printing means while the label holder is attached to the printer and for providing an indication of the remembered indicia when the label holder is attached to the label applier.
2. The apparatus of claim 1, further comprising a label web cutter on the printer, the cutter being movable for cutting the label web being fed from the printing means to the label holder which is then attached to the printer.
3. The apparatus of claim 1, further comprising a first bed in the printer for receiving and for the seating of the body of the label holder, a second bed in the label applier for receiving and for the seating of the body of the label holder, and separable attachment means in each of the first and second beds and cooperating separable attachment means on the label holder for removably attaching the label holder in one of the first and second beds.
4. The apparatus of claim 3, wherein the label holder comprises a cassette, which includes a frame, the receiving means comprises a roll supported on the frame and on which and from which a label web may be wound, and the cassette comprises the separable attachment means of the label holder.
5. The apparatus of claim 1, wherein the label web is a composite web of labels laminated on a strip of backing paper, and the label applier further comprises means for delaminating individual labels from the web thereof and for feeding delaminated labels to the label applier exit.
6. The apparatus of either of claims 1 or 5, further comprising a label applicator at the label applier exit for pressing each label at the exit against an item to be labeled.
7. The apparatus of claim 1, wherein the label web receiving means on the label holder comprises a roll which is supported on the label holder for being rolled for winding up the label web on the roll.
8. The apparatus of claim 7, further comprising connecting means for connecting the printing means of the printer with the roll such that the rotating roll winds up the web of labels on the roll on the label holder as the printing means prints labels on the web.
9. The apparatus of claim 8, wherein the printing means includes a rotary element past which the label web moves as the rotary element rotates; the connecting means connects the rotary element with the roll for rotating the roll, as the rotary element rotates, for rolling the web onto the roll.
10. The apparatus of claim 9, wherein the rotary element comprises a platen and the printing means further comprises a print head opposite the platen and the label web being fed by the feed means between the print head and the platen, wherein the print head prints labels against the platen.
11. The apparatus of claim 9, wherein the connecting means comprises a first transmission element on the roll and a second transmission element on the label printer; the second transmission element being positioned for engaging the first transmission element when the label holder is attached to the label printer, and rotary motion transmission means connecting the rotary element of the printing means and the second transmission element.
12. The apparatus of claim 11, further comprising a slip connection between the first transmission element and the roll for permitting rotational slippage between the first transmission element and the roll so that as the diameter of the roll changes upon winding of the web on the roll, the web is wound correctly on the roll.
13. The apparatus of either of claims 11 or 12, wherein the first transmission element comprises a surface located at a first end of the roll and facing out from that first end of the roll; the second transmission element comprises a shaft having a respective second end that faces out toward the first end of the first transmission element; and the second end being positioned such that the first and second ends are moved into engagement as the label holder is attached to the label printer.
15. The apparatus of claim 14, further comprising an input device for inputting indicia printing instructions to the printing means for printing particular indicia, and when the label holder is attached to the printer, for inputting the printing instructions to the memory circuit, whereby the memory circuit stores the instructions that have been inputted to the printing means.
16. The apparatus of claim 15, further comprising indication means on the label applier for indicating the printing instructions inputted to the memory circuit, and when the label holder is attached to the label applier, the memory circuit being connected with the indication means for indicating on the indication means the printing instructions that were inputted to the memory circuit.
17. The apparatus of claim 16, wherein the input device inputs individual printing instructions for printing each label in the series of labels on the web, the memory circuit is adapted to store the inputted printing instructions for each label in the series thereof and for counting the instructions received, one for each label printed;
the indicating means being adapted to display the printing instructions for each label in the series thereof; and
a sensor connected with the memory circuit for sensing as each label is fed to the exit of the label applier for counting the labels being fed to the exit and for causing the memory circuit to cause the indication means to display the instructions corresponding to that label count.
18. The apparatus of claim 14, wherein the label holder comprises a cassette, which includes a frame and the receiving means comprises a roll supported on the frame and on which and from which a label web may be wound.
20. The method of claim 19, further comprising sensing the individual labels as they move through the label applier to the position at which they are applied and counting each label as it is moved there, the sensor also operating the memory and the indicator to indicate the printing instruction for the next label in series as each label in series is sensed by the sensor as the labels move through the label applier.

1. Field of the Invention

The present invention relates to a label printing and applying apparatus and, more particularly, to an apparatus for printing the labels, which are temporarily adhered in series to a web of backing paper, and for then delaminating the printed labels from the backing paper web so that they might be applied to articles.

2. Description of the Prior Art

Label printing and applying apparatus of the above-specified type are used in supermarkets, shops or the like. They are either nonportable, e.g. desk or table type, or they are portable types, as their intended uses dictate.

Generally, all the desk type apparatus are electrically powered, and they are roughly classified into two kinds. In one kind, a number of labels are arranged in series on their backing paper web, are continuously printed and are fed out in series to the exit from the apparatus, while still temporarily adhered to their backing paper web.

In the other kind of desk type apparatus, an electronic type, weighing, human readable character printer for weighing meat, fish, vegetables, or the like, and for printing and delaminating labels, is combined with an electronic bar code (for POS) printer for printing and delaminating labels. When an article is placed on a weighing pan, the two printers, i.e., the weighing, human readable character printer and the electronic bar code printer, print the two respective labels on the respective backing paper webs, separately printing human readable characters and bar codes in response to the electric signals coming from the weighing balance. The respective backing paper webs corresponding to the printed labels are turned at acute angles so that the printed labels are delaminated from their respective backing paper webs and the labels and the backing paper exit separately at two exits. The one label then at the exit from the human readable character printer is manually pinched and applied to the surface of an article, whereas the bar code label arranged at the exit of the bar code printer has its adhesive side applied and adhered to the back of the aforementioned article.

However, it is remarkably inefficient to manually bring the articles individually in the aforementioned manner to the bar code labels, and it is difficult to apply these bar code labels at desired positions. As a results, the desk type apparatus, which is combined with that weighing balance, is not used near the display shelves in shops, such as the supermarkets, because it is not suitable for such use.

In order to display commodities bearing printed labels on the display shelves of shops, therefore, currently only the other kind of apparatus is used, i.e., the desk type apparatus from which a number of labels printed in series are fed, while they are temporarily adhered to the backing paper web. Moreover, in applying the labels, which are printed by such apparatus, to commodities, a number of employees in the rear area of the shop peel the individual labels with their fingers, for a long time before the commodities are displayed at a counter, i.e., either before the shop is opened or after the shop is closed. Since the labels are applied manually by the workers, the speed of applying the labels to the commodities is usually as low as about 10 to 20 sheets per minute, producing poor working efficiency. In contrast, the label applying speed is about 100 sheets per minute for a hand labeler, which is capable of continuously applying the labels. At the same time, since the imprints on the labels are rubbed by the workers' fingers during label applying, the printed surfaces are often blotted and become hard to read.

The manual and portable type label printing and applying apparatus (called a "hand labeler") for printing and applying labels to articles is widely used mainly at the shop counter for label printing and applying purposes. Since this hand labeler is constructed so that the label printing and feeding operations are performed by repeated squeezing and releasing of the hand lever, the workers become tired. Moreover, since loud sounds are generated from the type surfaces of the printing head and from the platen which receives the types, the noises may raise a problem for some shops. Especially in a printing head for printing POS bar codes, strict accuracy is required for the width and spacing of the bar codes because these bar codes have to be read out by means of an optical reader. Nevertheless, due to a constructional error in the printing head and due to an excess or a shortage of the ink applied to the type surfaces, the bar codes are often neither accurately printed nor correctly read out. Furthermore, the bar code printing head necessarily is larger than the usual letter printing head because of the standardized size of the bar codes. As a result, the size and weight of the hand labeler are increased which fatigues the workers. At the same time, since bar code prints are difficult to understand by general workers, in contrast with numerals or letters, the bar code labels printed for one commodity are often erroneously applied to others. Although the bar codes require check digits, furthermore, the hand labeler is usually not able to be furnished with a function to automatically calculate the check digits, due to the limits in its size and construction. Therefore, the check digits have to be disadvantageously calculated in a separate manner and to be set in the printing head.

Therefore, label printing and applying apparatus according to the prior art, both desk or portable type, present a variety of problems, which should be solved, especially as the POS system comes into general use.

It is, therefore, an object of the present invention to provide a label printing and applying apparatus which is free from all of the problems thus far described.

Another object of the present invention is to provide a label printing and applying apparatus which both prints and applies labels well, and which is enabled to remarkably improve the efficiency of label applying.

The present invention provides a label printing and applying apparatus. The apparatus comprises a printer for printing labels of a composite label web, in which the labels are temporarily adhered in series to a web of backing paper. A label holder is removably attached to the printer for receiving and rolling up the printed composite label web. There is a label applier separate from the printer, to which the label holder is removably attached, for unrolling the composite label web from the label holder to delaminate the labels from the backing paper web, and for applying the delaminated labels to articles.

Other objects and features of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings, in which:

FIGS. 1 to 7 show a first embodiment of the present invention wherein:

FIG. 1 is a sectional view showing a printer and a label holder with the label holder shown attached to and detached from the printer;

FIG. 2 is a sectional view showing the printer and the label holder, taken at a right angle with respect to FIG. 1;

FIG. 3 is a top plan view showing the printer;

FIG. 4 is also a top plan view, showing a label cutting mechanism;

FIG. 5 shows the label holder in a side elevation and a label applier in section, wherein the label holder is detached from the label applier;

FIG. 6 is a side elevation showing the label applier, to which the label holder is attached, with the frame removed; and

FIG. 7 is a top plan view showing the front end portion of the label applier.

FIG. 8 is a top plan view showing a composition label web before and after the printing operation.

FIG. 9(A) is a block diagram showing the electric circuit for controlling the printer and the label holder.

FIG. 9(B) is a view similar to FIG. 9(A), but showing the circuit construction relating to the controls of the label holder and the label applier.

FIGS. 10(A) and 10(B) are flow charts showing the operations of the apparatus according to the present invention.

FIGS. 11 to 13 show a second embodiment of the present invention wherein:

FIG. 11 is a sectional view and a side elevation showing the constructional members partially in an exploded form;

FIG. 12 is a sectional view showing the detail of a display unit; and

FIG. 13 is a partially sectional view showing the state at which the display unit is attached to the label applier.

The present invention will now be described in detail in conjunction with two embodiments thereof with reference to the accompanying drawings.

FIGS. 1 to 7 show a first embodiment of the label printing and applying apparatus according to the present invention, which comprises a printer 1, a label holder 2 and a label applier 3. The label holder 2 is removably mounted selectively in either of the printer 1 and the label applier 3.

The printer 1 prints labels with predetermined indicia and feeds the printed labels to the outside of the label printing and applying apparatus. The printing mechanism and the feed mechanism are means which are well known in the prior art. The embodiment described adopts a heat-sensitive printing mechanism of the thermal transfer type (which is called a "thermal printer"). A composite label web 6, shown in FIG. 8, had been prepared by temporarily adhering a series of labels 4 to one side of a web of backing paper 5. The labels are laminated on a thermal transfer ribbon 7 (e.g., a carbon ribbon), so that as the web is fed, its labels 4 are printed between a thermal head 8 and a platen roller 9. Conventional drive means 9a drive the roller 9 to rotate, and this operates the printer 1 and the label holder 2, as described below. After that, the thermal transfer ribbon 7 is delaminated from the composite label web 6 and is separately rolled up, whereas the composite label web 6 is turned around a turning pin 10 unit it is rolled up by the label holder 2 which is set in the upper portion of the printer 1.

The thermal printer reduces the generation of noises resulting from the stamping sounds during the printing operation, while providing excellent printing performance. This permits suitable application of the printer to bar code printing.

A mount 11 for a printer 1, in which the label holder 2 is to be removably set, is now described with reference to FIGS. 1 to 4. A mounting bed 12 is formed on the upper surface of the printer 1. It has a mounting recess 13 at its upper portion. The center of the recess 13 is formed with a deeper retaining recess 14. At both sides of the mounting bed 12, the apparatus frame includes slots 15, into which a retaining pin 16 is inserted to extend. The retaining pin 16 is biased by a pair of coil springs 17 to always protrude into the retaining recess 14. The retaining pin 16 also has both of its ends loosely fitted in the vertical slots 19 in the lower portion of a demounting lever 18, described below. At the rear end (to the right in FIG. 1) of the mounting recess 13, there is a connector 20 which is connected with a control unit (not shown) disposed inside of the printer 1.

At one side of the mounting bed 12, there is raised upright a supporting bed 21 having an upper portion, through which a transmission shaft 22 extends (as shown in FIG. 2). One end of the transmission shaft 22 is formed with a knob 23. Its other end face is convex and generally conical and is formed with radially extending engaging teeth 24. The center portion of the shaft 22 inside of the supporting bed 21 is equipped with a pulley 25. A belt 27 runs under tension upon both the pulley 25 and a pulley 26 which is mounted on the shaft of the platen roller 9.

One side of the supporting bed 21 has an annular protrusion 28, in which is fitted an annular protrusion 29 extending from the outer circumference of one end of the transmission shaft 22 toward the other end of that shaft. Inside the space which is defined by those two annular protrusions 28 and 29, a compression coil spring 84 is confined. It urges the transmission shaft 22 to the right, as viewed in FIG. 2 for engaging the rotating shaft 40, as described below. On the outer circumference of the annular protrusion 28, an annular member 31 is fitted. It is fixed to the demounting lever 18. The upper end of the lever is formed with a knob 30.

A label cutting mechanism 90 is disposed above the platen roller 9. As shown in FIG. 4, it comprises a cutting lever 92 equipped with a cutting blade 91. One end of the lever 92 is hinged to the mounting bed 12 by a pivot 93, and the other end of that lever is equipped with a knob 94. A return coil spring 96 is mounted between that other knob bearing end of the lever 92 and a spring retaining rod 95, thereby to urge the cutting lever 92 counter-clockwise in FIG. 3 at all times. At the end of the printing operation, the cutting lever 92 is rotated clockwise by means of the knob 94 so that the composite label web 9 is cut by the cutting blade 91.

The label holder 2 is a cassette type so that it can be removably mounted in the printer 1 and in the label applier 3, respectively. A label rolling mechanism 33 is rotatably disposed at the center portion of the frame 32 of the label holder 2. A pair of retainer members 35, each formed with retainer notches 34, protrude from the lower center portion of the frame 32. Inside of the rear end (to the right) of the frame 32, there are disposed a rechargeable battery 36, a memory circuit 37 for storing the content and label number to be printed by the printer 1, and a connector 38 for the input/output of such information to the memory circuit.

The label rolling mechanism 33 is now described in more detail. In one side of the frame 32, there is rotatably fitted a rotating shaft 40 which at one end has a conical depression that is formed with radially extending engaging teeth 39 for engaging with the engaging teeth 24 of the transmission shaft 22. An adjusting sleeve 41 is rotatably fitted in the other side of the frame 32. Through the center of that adjusting sleeve 41, an adjusting screw 42 is screwed, which has its leading end portion screwed into a screw thread 43 formed in the center of the rotating shaft 40. A hollow, cylindrical label strip rolling core 44 is mounted with its inner circumference supported by the rotating shaft 40 and the adjusting sleeve 41. The inward (left in FIG. 2) end of the core 44 defines an annular flange for being engaged by a rubber member 46, described below. The core 44 has its outer circumference equipped at four equally spaced locations with clamping springs 45 for clamping the leading end of the composite label web 6.

An annular rubber member 46 is fitted on the end face of the core 44 that abuts against the rotating shaft 40. A sleeve 47 is fitted on the outer circumference of the reduced leading end of the rotating shaft 40. A pressure-adjusting coil spring 49 is interposed between the leading end face of the adjusting sleeve 41 and a flange 48, which is formed at one end of the sleeve 47, thereby to force the annular rubber member 46 of the label rolling core 44 into abutting contact with the rotating shaft 40 at all times. A slip mechanism is defined, which includes the rubber member 46 interposed between the rotating shaft 40 and the core 44. The pressure between the shaft 40 and the core 44 can be adjusted by the adjusting screw 42. As a result, the label rolling core 44, which rotates in synchronism with the platen roller 9 during the label rolling, slips relative to the rotating shaft, as the external diameter of the composite label web 6 to be rolled on the core 44 is enlarged, thereby to adjust its rotations.

An elastic member 97 is attached to the upper end of the label holder 2. The member 97 is formed at its free leading end with a label holding portion 98 by which the outer circumference of the roll of the composite label web 6 is lightly held so that the web may not be loosened, while the member 97, 98 will not obstruct the feed of the composite label web 6.

The separate label applier 3 is now described with reference to FIGS. 5 to 7. The label applier is a device for unrolling the composite label web 6 from the core 44, for delaminating the labels 4 from their backing paper web 5 and for applying the delaminated labels 4 to articles. The label applier 3 is designed to permit the label holder 2 to be removably mounted therein. The label applier 3 has its upper surface formed at its center with a mounting recess 50 in which the label holder 2 is to be set. The center portion of the mounting recess 50 has a retaining recess 51 which is deep enough that the retainer members 35 of the label holder 2 may be fitted therein. At the front end of the retaining recess 51, there is a retaining pin 53 which is inserted through a pair of slots 52 formed in both sides of the frame of the applier. The pin 53 is urged to shift rearward (to the right in FIG. 5) at all times by the tensioned coil spring 54 that is secured on the pivot pin 62. Demounting knobs 87 are attached to the outsides of both sides of the pin 53. At the rear of the mounting recess 50, there is a connector 55 which is to be connected with the connector 38 of the label holder 2. At the front bottom portion of the mounting recess 50, there is a label passage 58 which is defined by a pair of guides 56 and 57 to extend downward.

The rear portion of the label applier 3 extends to form a grip 59. Below the grip, a hand lever 61 is hinged to the applier frame by a main pivot pin 62. The lever is biased clockwise by a return coil spring 60. A microswitch 63 for label issuing purposes is disposed inside of the grip 59, and a switch operating protrusion 64 for operating the microswitch is formed on the hand lever 61 at a position to oppose the switch 63 for closing the microswitch contacts.

A label feed mechanism 65 is disposed at the center portion of the label applier 3. It includes a shaft 66 on which are rotatably mounted both a pawl member 68, which is made integral with a pinion 67, and a feed roller 70, which has its outer circumference formed at predetermined intervals with label strip feed teeth 69. A plate 71 is hinged to the shaft 66.

The feed roller 70 has a circumferential rim which at one lateral side is formed on its inner circumference with retaining steps 72 which are spaced at predetermined intervals. The pawl member 68 is formed with a pair of pawls 73 made of an elastic material. When the hand lever 61 is squeezed, it brings a rack 74, which is formed at the leading end of the hand lever, into meshing engagement with the pinion 67 of the pawl member 68, thereby to rotate the pawl member 68 in the idle clockwise direction. The pawls 73 are slid on the inner circumferences of the rim of the feed roller 70 until the pawls are retained by the retaining steps 72. When the hand lever 61 is released, the pawl member 68 is rotated counterclockwise by the meshing engagement between the pinion 67 and rack 74, and the pawls 73 engaging the steps 72 rotate the feed roller 70 by a predetermined angle in the counterclockwise drive direction. In FIG. 5, a stopper 99 is shown, which is made of an elastic material and which is made engageable with other recesses (not shown) formed in the inner circumferences of the rim of the feed roller 70, for preventing the roller 70 from return rotating in the clockwise direction.

Upper and lower base plates 75 and 76 are mounted in the front portion of the label applier 3. A display unit 77, an issue lamp 78, a push button 79 and a connector 80 are connected with the upper base plate 75. A control device 81, a sensor 82 and a connector 83 are connected with the lower base plate 76. Also, the connectors 80 and 83, the connector 55 of the mounting recess 50, and the label issuing microswitch 63 are all connected with one another through lead wires. A panel holder 100 for holding a display panel 86 is formed in front of the display unit 77.

The display unit 77 is a light emitting diode display unit, for example, which displays the printed content, the number, and so on, of the labels. This information is stored in the memory circuit 37 of the label holder 2. The unit 77 displays information in response to the detection by the sensor 82 or the call from the push button 79. The issue lamp 78 is lit only when the printed information of the label being issued is displayed in the display unit 77. The lamp 78 is out in the remaining cases. The push button 79 is used to confirm the printed information, which is stored in the memory circuit, so that all of the printed information is consecutively displayed in the display unit 77 by repeatedly pushing the push button 79. The sensor 82 detects the marks 85 printed on the labels 4, as described hereinafter, thereby to effect the display of the printed information from the labels 4 in the display unit 77 and the count of the labels 4 for each issue.

The control device 81 controls the operational relationships among the memory circuit 37, microswitch 63, sensor 82, display unit 77, issue lamp 78 and push button 79, and this circuit construction is shown in FIG. 9(B). FIG. 9(A) is a block diagram showing the circuit construction of the control relationship between the printer 1 and the label holder 2.

The operation of the apparatus described above is explained in connection with bar code printing operations, with reference to FIGS. 9 and 10. First, the label holder 2 is set in the mounting bed 12 of the printer 1. The retainer members 35 of the label holder 2 are inserted into the retaining recess 14 of the mounting bed 12 until the retaining pin 16 is retained by the retainer notches 34. At the same time, the connectors 20 and 38 become connected. By this setting operation, the charge of the battery 36 is started, and the engaging teeth of the transmission shaft 22 and the engaging teeth 39 of the rotating shaft 40 move into engagement.

Next, the composite label web 6 is idly fed (from a source not shown) past the printing means 8, 9 until the leading end portion of the composite label web 6 thus fed is clamped by one of the clamping springs 45 of the label rolling core 44. Then a first piece of printed information A, i.e., the printed content (e.g., a commodity code, a price or check digits) and the printed number, is fed by input means such as key operation or a floppy disc to the thermal head 8. That input information A is simultaneously transferred to and stored in the memory circuit 37 of the label holder 2.

When the printing operation is then started, the composite label web 6 is fed (upwardly in FIG. 1), and a predetermined number of its labels 4 are printed with bar codes by the action of the thermal head 8 and by the rotation of the platen roller 9 by drive means 9a. The rotation of the platen roller 9 is transmitted through the pulley 26, the belt 27 and the pulley 25 to the transmission shaft 22. The rotating shaft 40 is synchronously rotated by the engagement between the engaging teeth 24 and 39 so that the label strip receiving, rolling core 44, which is forced through the rubber member 46 into contact with the rotating shaft 40, is rotated at the same speed to roll up the composite label web 6 onto the core 44.

After the printing of the information A has ended, subsequent printed information B is fed to effect the printing and rolling operations. Likewise, all the predetermined printing operations are performed in the order of pieces of printed information C, D,-, and H. Moreover, all those pieces of printed information A, B, C,-, H are stored in the aforementioned memory circuit 37. In the printing operations thus far described, the marks 85 are printed (as shown in FIG. 8), in addition to the predetermined bar codes, at predetermined positions, e.g., at each end portion of each label 4.

During the rolling operation, as the core 44 has its rolling diameter enlarged with more of the label strip, the core is permitted to slip, by the slip mechanism 44, 46, 40, thereby to ensure the rolling operation without any difficulty.

When all of the printing operations are ended or when the rolled quantity of labels at the label holder 2 reaches a predetermined limit, the printing operation is interrupted, but the idle feed of the composite label web 6 automatically continues. When the idle feed of a predetermined number of labels is completed, the knob 94 of the label cutting mechanism 90 is shifted to the left in FIG. 3, so that the composite label web 6 is cut by the cutting blade 91. Next, the label holder 2 is demounted from the printer 1 by turning the knob 30 of the demounting lever 18 clockwise, as viewed in FIG. 1, thereby to disengage the retaining pin 16 from the retained notches 34 of the label holder 2. The the label holder 2 is lifted out.

Next, the loaded label holder 2 is set in the mounting recess 50 of the label applier 3, which is shown in FIG. 5. The retainer members 35 are inserted into the retaining recess 51 until the retainer notches 34 are retained on the retaining pin 53. The connectors 38 and 55 are also connected. Then the tail end portion of the printed composite label web 6 is extracted from the label holder 2 and is inserted into and through the label passage 58. The bottom cover 89 of the label applier 3 and the platen 71 are opened, as indicated at dotted lines in FIG. 6, so that the composite label web 6 may be grasped and manually turned back in front of a turning pin 71a, which is disposed at the leading end of the platen 71. The strip is drawn back so that the cuts 5a through the turned back backing paper web 5 are brought into engagement with the feed teeth 69 then beneath the feed roller 70. After that loading process, the plate 71 and the bottom cover 89 are closed to restore their original positions.

When it is intended to issue the labels, the hand lever 61 is first squeezed. This contacts the operator for the microswitch 63, which is turned on to effect the power supply from the battery 36 disposed in the label holder 2. When the hand lever 61 is then released, the feed roller 70 is rotated one pitch in the counter-clockwise direction by the rotation of the pawls 73 so that the backing paper web 5 is pulled to the rear by the feed teeth 69. During this label strip motion, one of the labels 4, which are temporarily adhered to their backing paper web, is delaminated from the backing paper web 6 at the turning pin 71a and is fed to a position below a label applying roller 88. Although blank labels are fed out at the beginning by the idle feed of the printer 1, after the hand lever has been repeatedly squeezed and released, the marks 85 printed on the labels 4 are detected before long by the sensor 82 so that the display unit 77 and the issue lamp 78 are turned on. Since the labels 4 are fed in the reverse order of the sequence in which they are rolled up, i.e., in the order of the pieces of the printed information H, G,-, and A, the control is arranged such that the pieces of the printed information are transferred in the order of H, G,-, and A from the memory circuit 37 to the display unit 77.

Each of the pieces of printed information, i.e., the printed content and the label number, are displayed in human readable digits in the display unit 77. The sensor 82 detects the marks, each time the labels 4 are issued one by one by the actuation of the hand lever 61, thereby to count down the displayed label number one by one. When the label number display of the printed information H is reduced to zero, then the printed content is automatically changed to the label number of the printed information G.

If the push button 59 is pushed in during this course, the issue lamp 78 is put out, and the display of the display unit 77 is changed to show the subsequent printed information. Thus, all of the pieces of the printed information stored can be confirmed by pushing the push button 79 in succession. If the display is returned to that of the label then being issued at present, the issue lamp 78 is lit again.

The application of the labels 4 to articles can be effected by the action of the label applying roller 88, similarly to the usual hand labeler, if the label below the label applying roller 88 has its lower side (i.e., its adhesive side) applied to and rubbed against the article to be labeled.

The control device 81 is equipped with a power sparing mechanism using a timer, by which the battery 36 has its power supply interrupted, thereby to put out the display unit 77 and the issue lamp 78, unless the hand lever 61 is operated for a predetermined time period.

In the present embodiment, the label issuing operations are performed in a sequence opposite to the printing order at the printer 1 and to the rolling order at the label holder 2, i.e., the labels are issued in the order H, G,-, and A. This construction can be modified by first effecting the rewinding operation using a suitable rewinding mechanism, so that the labels are issued in the printing order A, B,-, and H and so that the display at the display unit 77 is effected in that printing order.

A second embodiment of the present invention is now described with reference to FIGS. 11 to 13. The label printing and applying apparatus of ths second embodiment is furnished with neither a function to memorize the printed information of the printer 1 in the label holder 2 nor a function to electrically display the memorized function in the label applier 3. The second embodiment has suitable application where there is one piece of printed information, i.e., to the printing and applying operations of labels of one kind.

Although the label holder 102 shown in FIG. 11 is not equipped with the memory circuit 37, battery 36 and connector 38 of the first embodiment, the label rolling mechanism 33 and the remaining construction of the label holder 102 are similar to those of the first embodiment. At the rear (right hand) end of the label holder 102, there is a card holder 104, into which an indication card 105 written with the printed information is inserted.

The label applier 103 is not equipped with the display unit 77, control device 81, and so on, of the first embodiment. Instead, at its front side, it has a connector 106 for effecting a connection with a display unit, as described below. A cover 107 is attached to the front side of the label applier 103. The remaining construction of the label applier 103 and of the printer 1 are similar to those of the first embodiment.

In using the apparatus of ths second embodiment, the label holder 102 is set in the printer 1 similarly to the first embodiment. Usually, the labels are printed in a predetermined number and are then rolled up. After that, the label holder 102 is removed from the printer 1 and is set in the label applier 103 so that the labels 4 may be issued and applied to the articles by the squeezing and releasing operations of the hand lever 61. In this case, if the indication card 105 carries the printed content, the label number and so on and is inserted into the card holder 104, it is possible to avoid erroneously applying the labels 4 to unintended commodities.

The present embodiment can be furnished with the memory function and the electric display function, similarly to the first embodiment. For this purpose, it is sufficient to use the label holder of the first embodiment and to connect a separate display unit 108, as shown in FIG. 12, with the label applier 103. The display unit 108 is equipped with a control device 109, sensor 110, an indicator 111, an issue lamp 112, a push button 113 and a connector 114, and guide rails 115 (as shown in FIG. 11), which are formed on the outer surface of the side plates of the display unit 108 and are connected to engage with the retaining grooves 116 which are formed in the inner walls of the frame of the label applier 103. Then, the connectors 116 and 114 are connected to retain the same functions as in the first embodiment, as shown in FIG. 13.

As has been described hereinbefore, the label printing operations are effected in a desk type printer, while the applications of the labels to the articles are effected through a cassette type label holder by means of the special portable type label applier. Thus, as compared with the manual application method according to the prior art, label application according to the invention is remarkably speeded up, and the efficiency of the applying works is highly improved while preventing the prints from being so rubbed by fingers that they become hard to read. As compared with a known hand labeler, on the other hand, not only is the printing performance of the invention superior, but also the print head need not be attached to the label applier in the present invention. As a result, the present label applier has its size and weight so reduced as to reduce fatigue of the workers and to improve the label applying speed.

If the apparatus of the present invention is furnished, as in the first embodiment, with the memory and display functions for the printed information of the printer, workers should not fail to apply the proper labels to a variety of commodities, even if labels printed with many kinds of indicia are rolled into one roll. This effect is important especially in the case of printing of bar codes, which are not readily human readable.

Although the present invention has been described in connection with preferred embodiments thereof, many variations and modifications will now become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.

Sato, Yo, Matsuda, Yasuhiko, Kashiwaba, Tadao

Patent Priority Assignee Title
10095179, Jun 20 2008 Canon Kabushiki Kaisha Cartridge, mounting method for coupling member, and disassembling method for coupling member
10209670, Dec 22 2006 Canon Kabushiki Kaisha Rotational force transmitting part
10429794, Dec 22 2006 Canon Kabushiki Kaisha Rotational force transmitting part
10520887, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
10539923, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
10539924, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
10545450, Jun 20 2008 Canon Kabushiki Kaisha Cartridge, mounting method for coupling member, and disassembling method for coupling member
10551793, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
10585391, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
10620582, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
10627778, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
10671018, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
10712709, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
10712710, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
10788789, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
10788790, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
10795312, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
10816931, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
10845756, Dec 22 2006 Canon Kabushiki Kaisha Rotational force transmitting part
10877433, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
10901360, Jun 20 2008 Canon Kabushiki Kaisha Cartridge, mounting method for coupling member, and disassembling method for coupling member
11156956, Dec 22 2006 Canon Kabushiki Kaisha Rotational force transmitting part
11163263, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
11204584, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
11209772, Jun 20 2008 Canon Kabushiki Kaisha Cartridge, mounting method for coupling member, and disassemblying method for coupling member
11237517, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
11402795, Aug 26 2019 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Replaceable cartridge with driven coupler
11675308, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
11720054, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
4483733, Apr 30 1981 Kabushiki Kaisha Sato Rolled label strip cassette
4498947, Feb 28 1984 Monarch Marking Systems, Inc. Hand-held labeler
4498950, Apr 30 1981 Kabushiki Kaisha Sato Portable label applying machine
4505773, Mar 03 1983 Kabushiki Kaisha Sato Automatic label winding and charging device
4552610, May 28 1983 Kabushiki Kaisha Sato Automatic label winding and charging device for printers
4562773, Nov 30 1983 Markem Systems Limited Printing machine with label stock indexing mechanism
4669381, Jul 21 1981 Teraoka Seiko Co., Ltd. Cassette type labeler and cassette case
4807177, Jun 06 1986 BERDAH, AARON J , C O MANHATTAN ELECTRONICS INC Multiple format hand held label printer
4954208, Aug 16 1982 Monarch Marking Systems, Inc. Hand-held labeller
4988221, Aug 17 1982 Kabushiki Kaisha Sato Specific data input order for continuous strips of tags including line spacing amount
5265966, Mar 05 1993 FIRST BANK NATIONAL ASSOCIATION Printer linkage
5384003, Aug 24 1992 Minnesota Mining and Manufacturing Company; MINNESOTA MINING AND MANUFACTURING COMPANY A CORP OF DELAWARE Dispenser for tapes and similar web materials incorporating a cutting and delayed feed mechanism
5658647, Jun 07 1995 Avery Dennison Corporation; ELECTRO-SEAL CORP Garment labeling system, equipment and method and elastomeric label for use therewith
5716469, Mar 04 1993 DOCUTAG, L L C Method and apparatus for labeling documents
5868893, May 16 1997 PAXAR AMERICAS, INC Label printing apparatus and method
6068716, Mar 04 1993 DOCUTAG, L L C Method and apparatus for labeling documents
8275286, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
8280278, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
8295734, Dec 22 2006 Canon Kabushiki Kaisha Rotational force transmitting parts
8369744, Jun 20 2008 Canon Kabushiki Kaisha Process cartridge including a photosensitive drum for an electrophotographic image forming apparatus
8401442, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
8437669, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
8452210, Dec 22 2006 Canon Kabushiki Kaisha Rotational force transmitting part
8532533, Dec 22 2006 Canon Kabushiki Kaisha Rotational force transmitting part
8630564, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
8676090, Dec 22 2006 Canon Kabushiki Kaisha Rotational force transmitting part
8682215, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
8688004, Jun 20 2008 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus and electrophotographic photosensitive drum unit
8688008, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
8731435, Nov 26 2011 Jiangxi YiBo E-TECH Co., Ltd. Process cartridge for an imaging device
9116641, Nov 30 2004 Panduit Corp Market-based labeling system and method
9132677, Sep 25 2009 Intermec IP Corp. Mobile printer with optional battery accessory
9176468, Dec 22 2006 Canon Kabushiki Kaisha Rotational force transmitting part
9333776, Jul 16 2013 Esselte IPR AB Cartridge for label printer
9333777, Jul 16 2013 Esselte IPR AB Label printer
9348303, Jun 20 2008 Canon Kabushiki Kaisha Cartridge, mounting method for coupling member, and disassembling method for coupling member
9377755, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9381713, Aug 13 2010 Avery Dennison Retail Information Services LLC Machine for manufacturing multi-layer price tags and method of using the same
9477201, Jun 20 2008 Canon Kabushiki Kaisha Cartridge, mounting method for coupling member, and disassembling method for coupling member
9594343, Jun 20 2008 Canon Kabushiki Kaisha Cartridge, mounting method for coupling member, and disassembling method for coupling member
9658592, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9658593, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9671751, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
9678471, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9703257, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
9733614, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9746826, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9772602, Dec 22 2006 Canon Kabushiki Kaisha Rotational force transmitting part
9817333, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
9836015, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
9836021, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9841724, Mar 23 2007 Canon Kabushiki Kaisha Image forming apparatus cartridge having changeable relative positioning of a coupling member and another part of the image forming apparatus cartridge
9841727, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9841728, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge having changeable relative positioning of a coupling member and another part of the process cartridge
9841729, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9846408, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9851685, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
9851688, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
9857764, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9857765, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9857766, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
9864331, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9864333, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9869960, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9874846, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9874854, Dec 22 2006 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
9886002, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
9939776, Mar 23 2007 Canon Kabushiki Kaisha Electrophotographic image forming apparatus, developing apparatus, and coupling member
D315920, Mar 25 1987 Manually operated labelling gun
D316105, Nov 17 1987 Hand-held labelling gun
D753585, May 08 2014 Esselte IPR AB Battery module for a printer
D763350, May 08 2014 Esselte IPR AB Cartridge for printer
D775274, May 08 2014 Esselte IPR AB Printer
Patent Priority Assignee Title
1525071,
3024155,
3711353,
3801408,
3944455, Sep 27 1973 COMPAC CORPORATION, A CORP OF DE Labelling system and cassette label applicator usable therewith
4081309, Jun 23 1971 Monarch Marking Systems, Inc. Method of making a composite label web
4264396, Jul 28 1977 Monarch Marking Systems, Inc. Labelling machines
4359939, Apr 21 1981 Kabushiki Kaisha Sato Kenkyusho Printing device
JP5811639,
JP5820632,
JP5820633,
JP5824489,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 23 1982SATO, YOKABUSHIKI KAISHA SATO, A CORP OF JAPANASSIGNMENT OF ASSIGNORS INTEREST 0039820784 pdf
Feb 23 1982KASHIWABA, TADAOKABUSHIKI KAISHA SATO, A CORP OF JAPANASSIGNMENT OF ASSIGNORS INTEREST 0039820784 pdf
Feb 23 1982MATSUDA, YASUHIKOKABUSHIKI KAISHA SATO, A CORP OF JAPANASSIGNMENT OF ASSIGNORS INTEREST 0039820784 pdf
Mar 02 1982Kabushiki Kaisha Sato(assignment on the face of the patent)
Date Maintenance Fee Events
Jun 23 1987M170: Payment of Maintenance Fee, 4th Year, PL 96-517.
Jul 01 1988ASPN: Payor Number Assigned.
Sep 03 1991M171: Payment of Maintenance Fee, 8th Year, PL 96-517.
Sep 21 1995M185: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Mar 27 19874 years fee payment window open
Sep 27 19876 months grace period start (w surcharge)
Mar 27 1988patent expiry (for year 4)
Mar 27 19902 years to revive unintentionally abandoned end. (for year 4)
Mar 27 19918 years fee payment window open
Sep 27 19916 months grace period start (w surcharge)
Mar 27 1992patent expiry (for year 8)
Mar 27 19942 years to revive unintentionally abandoned end. (for year 8)
Mar 27 199512 years fee payment window open
Sep 27 19956 months grace period start (w surcharge)
Mar 27 1996patent expiry (for year 12)
Mar 27 19982 years to revive unintentionally abandoned end. (for year 12)