A surgically implantable connector for a transcutaneous driving system comprised of a case having a base and a lid which are shaped to provide a cavity between them with a first elastomeric pad for supporting a first set of electrical contacts in the cavity which contacts mate with a second set of electrical contacts carried by the lid, a second elastomeric pad for supporting a third set of electrical contacts inbetween the lid and the first pad and which mate with the first or the second set of electrical contacts, means for electrically connecting the first set of electrical contacts to an implantable electrode, means for electrically connecting the second set of electrical contacts to the driving system and means for electrically connecting the third set of electrical contacts to a percutaneous plug.
|
1. A connector comprising a case, including a base member and a lid, the base member and lid being shaped to provide a cavity between them, a first contact pad of elastomeric material, a first set of electrical contacts embedded in the first contact pad, the contact pad being dimensioned to fit within the cavity, the contact pad being interposed between the lid and the base member, a second set of electrical contacts carried by the lid within the cavity, means for providing separate electrical connections through the case to the first and second sets of electrical contacts, and means for pressing the lid against the base member and the contact pad to exert a predetermined pressure on the pad, causing it to form a fluid tight seal around the first and second sets of electrical contacts, some of which are thereby placed in electrical contact with each other.
9. In combination, a connector comprising a case, including a base member and a lid, the base member and lid being shaped to provide a cavity between them, a first contact pad of elastomeric material, a first set of electrical contacts embedded in the first contact pad, the contact pad being dimensioned to fit within the cavity, the contact pad being interposed between the lid and the base member, a second set of electrical contacts carried by the lid within the cavity, means for providing separate electrical connections through the case to the first and second sets of electrical contacts, means for pressing the lid against the base member and the contact pad to exert a predetermined pressure on the pad, causing it to form a fluid tight seal around the first and second sets of electrical contacts, some of which are thereby placed in electrical contact with each other, a second contact pad having a third set of electrical contacts arranged in a pattern to mate with the first set of electrical contacts, the second contact pad being made of an elastomeric material which is dimensioned to fit within the cavity, means for providing separate electrical connections through the case to the third set of electrical contacts, wherein the second contact pad is interposed between the lid and the first contact pad, a transcutaneous driving circuit receiver for a cochlear stimulating protheses, a cochlear stimulating electrode, a percutaneous plug, and wherein the driving circuit receiver is housed in the lid, and further including means for electrically connecting the second set of electrical contacts to the driving circuit receiver, means for electrically connecting the first set of electrical contacts to the cochlear stimulating electrode, and means for electrically connecting the percutaneous plug to the third set of electrical contacts.
2. A connector as recited in
3. A connector as recited in
4. A connector as recited in
5. A connector as recited in
6. A connector as recited in
7. A connector as recited in
10. The combination as recited in
11. A connector as recited in
12. A connector as recited in
|
The invention described herein was made in the course of work under a grant or award from the Department of Health and Human Services.
This invention relates to an electrical connector and more particularly one for use in the human body.
In cochlear stimulating prostheses systems an electrical connector is often placed between the stimulating electrode and the driving component of the prosthesis to allow the driving component to be removed, replaced, or converted to another driving system, without disturbing the electrode itself. This connection and disconnection can be done by either mounting the connector in a channel through the skin (referred to as a percutaneous plug) or by implanting the connector beneath the skin (referred to as a surgical disconnect).
Percutaneous plugs seem to have a limited rather than a permanent life span of usefulness due to the ever present threat of infection through the open skin, and a tendency of the epithelium to bridge beneath such a foreign body and to eject it. Further, a percutaneous plug will usually never be considered in a transcutaneous driving system which emphasizes a fully implanted radio frequency or ultra sonic receiver. In such systems the receiver is implanted under the skin and receives signals from a transmitter located outside of the human body. The transmitter is of course, connected to a transducer and amplifier to convert audio signals into either radio signals or ultra sonic signals which are transmitted through the patient's skin to be detected by a receiver or a transducer connected to an amplifier within the patient's body.
From an engineering standpoint, the surgical disconnect presents unique problems. It must be small yet still easily manipulated by a gloved surgeon. It must be rugged, biologically inert, and should function reliably in a very hostile environment through multiple disconnection and reconnection cycles. For multi-channel systems it must carry fifteen to twenty leads or more.
Pin-type connectors have been succesfully adapted in prior art surgical disconnects for cochlear implant systems. There are, however, some disadvantages with such pin-type connectors. Such connectors involve the use of non-biocompatible metal like beryllium copper. Such copper pins are isolated by gold plate in the epoxy connector housing but some small risk remains. The need to weld or solder the leads to the electrode also adds a potential failure site to the device. And finally, there is a constant desire to reduce the size of any implant.
Still another serious problem is to electrically isolate each of the contacts in the disconnect and prevent water vapor or liquid from causing a short circuit between them.
The above and other disadvantages of prior art implantable connectors are overcome by the present invention of a connector comprising a case, including a base member and a lid which are shaped to form a cavity between them, a first contact pad of elastomeric material, a first set of electrical contacts imbedded in the first contact pad, and with the first contact pad being dimensioned to fit within the cavity. Either the lid or the base member has a portion which is dimensioned to fit within the cavity. The lid has a second set of electrical contacts which are located on one wall of the cavity. Separate electrical connections are made through the case to the first and second sets of electrical contacts.
Means are provided in the form of a screw for pressing the lid against the base member and the contact pad to exert a predetermined pressure on the pad, thereby causing it to form a fluid tight seal around the first and second sets of electrical contacts, some of which are thereby placed in electrical contact with each other. The first set of electrical contacts are electrically connected to the intra-cochlear electrode. The second set of electrical contacts are connected to the driving system which, in the preferred embodiment, is housed in the case lid.
In the preferred embodiment a second contact pad is also provided which has a third set of electrical contacts arranged in a pattern to mate with the first set of electrical contacts. The second contact pad is also made of elastomeric material and is dimensioned to fit within the cavity. The third set of electrical contacts are connected through the case to a percutaneous connector. This second contact pad is interposed between the first contact pad and the lid so that when the lid and base member are forced together the third set of electrical contacts will be placed against the first set of electrical contacts. A fluid tight seal is thereby effected between the first and third sets of electrical contacts, some of which are also electrically connected together.
There are several advantages to the contact pad approach. By the configuration of the first, second, and third electrical contacts any combination of connections between the individual electrodes can be made. Furthermore the combination of electrodes can be relatively easily changed by simply changing the lid of the disconnect or by changing the contact pads.
In the embodiment in which a second contact pad is provided, patient testing can now be done in a form which was not previously possible. This second or interface pad carries leads to and from a percutaneous plug through which multi-channel information can be input and both the electrode array and the driving system can be monitored. This plug need only be utilized by the research staff in the hospital facility conducting the tests. While away from the facility the patient wears a radio frequency or ultra sonic transmitter connected to an audio transducer and amplifier system. Thus the risk of damage to the plug or infection at the site is reduced through reduced and closely monitored handling of the percutaneous plug. Also, the percutaneous plug site is sufficiently distant from the implanted disconnect that any infection there would not threaten the implanted connector site. At the end of the test series or at the first indications of infection the percutaneous plug can be removed along with its electrical contact pad and the patient will retain the transcutaneous driving system. If indicated by the test series, the lid and the receiving unit in it can be replaced with one which is reconfigured to stimulate a more optimal combination of electrodes.
It is therefore an object of the present invention to provide an implantable disconnect which provides an easily manipulated fluid tight seal between electrical contacts.
It is still another object of the invention to provide an implantable disconnect made of biocompatible materials.
It is still another object of the invention to provide a disconnect which allows easy interconnection between an implanted electronic driving circuit, a percutaneous connector and an implanted electrode.
The foregoing and other objectives, features and advantages of the invention will be more readily understood upon consideration of the following detailed description of certain preferred embodiments of the invention, taken in conjunction with the accompanying drawings.
FIG. 1 is an exploded, perspective view of a surgical disconnect according to one embodiment of the invention together with the components of a cochlear stimulating prosthesis;
FIG. 2 is an enlarged, vertical, sectional view of a first electrical contact pad taken generally along the line 2--2 in FIG. 1;
FIG. 3 is an enlarged, vertical, sectional view of an interface electrical contact pad taken generally along the line 3--3 in FIG. 1;
FIGS. 4a and 4b are enlarged vertical, sectional views illustrating one method of assembly of the embodiment depicted in FIG. 1;
FIGS. 5a and 5b are enlarged vertical, sectional views illustrating a second method of assembly of the embodiment depicted in FIG. 1 when an interface pad is utilized;
FIG. 6 is an enlarged, vertical, sectional view of a second embodiment of the invention; and
FIG. 7 is an enlarged, vertical, sectional view of a third embodiment of the invention.
Referring now more particularly to FIG. 1 an implantable disconnect 10 according to the invention is illustrated in exploded form. The disconnect is comprised of a casing made up of a hollow base member 12 and a lid 14. The base member 12 is in the form of a cylinder and has a cavity 16 therein. The base member 12 is intended to be cemented into a surgically created recess in a bone of the patient, such as the skull. Lid 14 is also in the form of a cylinder and has a reduced diameter section 18 which is dimensioned to fit within the cavity 16 of the base member 12. The lid and the base member are made of a biocompatible material such as titanium.
A first electrical contact pad 20, made of elastomeric material is dimensioned to fit within the cavity 16. The pad 20 carries a first set of electrical contacts 22 embedded in it. The contacts are arranged in a radial pattern about a hypothetical axis of revolution which passes through the entire disconnect 10.
Referring more particularly to FIG. 2 it can be seen that the pad 20 is made of a silicone rubber material reinforced with a first layer of fine dacron mesh 24 followed by an unreinforced layer of silicone rubber 26 and then followed by a second dacron mesh layer 28 which is more loosely woven than the layer 24. Finally an unreinforced layer 30 is the topmost layer as viewed in FIG. 2.
The contacts 22 are formed by melting the free ends of platinum-iridium wires to form essentially uniform spheres. These spheres are then embedded in the matrix of silicone rubber reinforced mesh of the pad 20 in a radially spaced pattern. The other ends of the wires are gathered together to form a cable 32 which connects the first set of contacts 22 to an intracochlear electrode 34. Thus there are no welds or solder joints needed to connect the cable wires to the contacts of the disconnect.
The cable 32 passes through an aperture 36 in the base member 12 so that the pad 20 and contacts 22 assume a fixed orientation with respect to the lid 14 and base member 12. The lid 14 is aligned with the base 12 and the pad 20 by a protrusion 38 on the lid 14 which mates with the aperture 36.
A second set of electrical contacts 40 is positioned on a layer of elastomeric material 41 on the underside of the reduced diameter section 18 of the lid 14. These contacts are arranged in a pattern to mate with some or all of the first set of contacts 22, as will be described in greater detail hereinafter.
An interface contact pad 42, which is also dimensioned to fit within the cavity 16, is positioned between the first pad 20 and the reduced diameter section 18 of the lid 14. The pad 42 is also constructed of an elastomeric material such as silicone rubber and carries a third set of electrical contacts 44 (not shown in FIG. 1) which protrude from the underside of the pad 42 as viewed in FIG. 1.
As is more clearly shown in FIG. 3, these contacts 44 are also melted balls on the ends of platinum-iridium wires which have been flattened slightly to ensure good contact with complementary contacts 22 of the pad 20. The contacts 44 are arranged in a radial pattern about the hypothetical axis of revolution of the disconnect 10 and are embedded in the pad 42. The pad 42 is comprised of a layer of silicone rubber with intermediate layers of fine dacron mesh 46. The interface pad also carries a fourth set of electrical contacts 48 on its upper surface as viewed in FIGS. 1 and 3. The contacts 48 are also arranged in a radial pattern about the hypothetical axis of revolution and, like and contacts 44 and 22, are formed by melting the ends of platinum-iridium wires to form spheres of uniform diameter.
The contacts 44 are arranged in a pattern to mate with some or all of the contacts 22 of pad 20. The contacts 48 are arranged to mate with some or all of the contacts 40 of the lid 14. All of the contacts 44 and 48 are separately connected by means of a cable bundle 50 of platinum-iridium wires to a percutaneous plug 52.
The entire assembly 10 is held together by means of a screw 53 which passes through a hole 15 in the lid 14 along the hypothetical axis of revolution and threadably engages in the base member 12. When the screw 53 is tightened the lid 14 is pressed down on the pads 42 and 20 to cause them to deform, the electrical contacts to mate, and the elastomeric material on the layer 41 and the pads 20 and 42 to form fluid tight seals around the contacts 22,44 and 48.
The lid 14 is hollow and contains a receiver/driver circuit 55 (shown in FIG. 4A). In the preferred embodiment the receiver/driver 55 is part of a transcutaneous driving system of a cochlear stimulating prostheses. The entire disconnect 10 along with the receiver/driver 55 is positioned near the surface of the skin so that when the antenna or ultrasonic transducer 54, which is connected via a cable 56 to a transmitter unit 58 is placed over the disconnect 10 on the surface of the skin, the receiver/driver 55 will detect the appropriate signal and convert it into electrical signals which are transmitted through the contacts 40, 48, 44 and 22 to the intracochlear electrode 34. At this point it should be mentioned that the disconnect 10 is also intended to operate without the presence of the second contact pad 42 as will be explained in greater detail hereinafter. In such cases the electrical signals would be transmitted directly from the contacts 40 to the contacts 22.
In the embodiment depicted in FIG. 1, however, which illustrates the research mode of the disconnect 10, the signals derived from the contacts 40 pass through the cable 50 to the percutaneous connector 52. They can then be monitored by researchers through the connector 52 or, in other cases, the signals can be directed back through the cable 50 via connections made at the plug 52 to pass on through the contacts 44 and 22 to the intracochlear electrode 34. Thus the researcher can control what connections are made to the intracochlear electrode as well as monitor the signals through the percutaneous connector 52.
While the patient is away from the research facility he or she relies solely on the transmitter 58; the plug 52 would not be utilized or handled. Thus the risk of damage to the plug or infection at that site is reduced through reduced and closely monitored handling of the plug 52. Also the plug site 52 is sufficiently distant from the site of the disconnect 10 that any infection at the plug site would not threaten the connector site. At the end of the test series or at the first indications of infection, the percutaneous plug 52 can be surgically removed along with its interface pad 42 and the patient will then retain the transcutaneous driving system. Also, if indicated by the test series, the lid 14 along with the transcutaneous receiver therein, could be replaced with one which is reconfigured to stimulate a more optimal combination of electrodes in the intracochlear electrode 34.
Referring now more particularly to FIGS. 4a and 4b the assembly of the disconnect 10 is shown when the interface pad 42 is removed. Under these circumstances the electrical contacts 40 mate directly with the first set of contacts 22 when the scew 53 is threadably engaged in the base member 12 to clamp the lid 14 down against the pad 20.
Referring now more particularly to FIGS. 5a and 5b the assembly of the disconnect 10 is illustrated when the interface pad 42 is present. Under these circumstances the contacts 40 only mate with the contacts 48 and the contacts 44 of the interface pad mate with the contacts 22 of the first contact pad. In both cases the tightening of the screw 53 in the base member 12 causes the lid 14 to press the pads 20 and 42 against the base member 12 with a predetermined pressure sufficient to effect the fluid tight seal among the various electrical contacts.
Referring now more particularly to FIG. 6 an alternative embodiment of the invention is illustrated. In this embodiment a disconnect 60 is made of a base member 62 and a lid 63. The base member 62 is essentially a flat plate with sloping side edges which is cemented in a surgically created cavity in the bone 64 of a patient by means of a surgical adhesive or cement 66. The base member 62 is provided with a groove 68 which receives the bottom edge 70 of the lid 63. The lid 63 is constructed to have the shape of an H in vertical cross-section to thereby create a cavity 72 between the lid 70 and the base 62.
It is into this cavity 72 that the electrical contact pads 20 and 42 are placed in the same manner as in the embodiment of FIG. 1. Similarly the second set of electrical contacts 40 are placed on the bottom surface of the lid 70, that is at the top of the cavity 72 to mate with the electrical contacts 48 or 22, depending on whether the second contact pad 42 is in place.
The screw 53 is threadably received in a recess 74 in the base member 62 to hold the lid 70 against the base member 62 and to exert the predetermined pressure on the pads 20 and 42 as in the embodiment in FIG. 1. The groove 68 is of sufficient depth to allow such pressure to be exerted by the screw 53.
The upper portion of the lid 70 contains a second cavity 76 into which the electronic receiving circuitry is installed. This cavity 76 is covered by a second lid 78 which can be cemented in a sealed relationship to the lid 70 to make a fluid tight seal. An antenna coil 80 can be mounted around the outside upper edge of the lid 70 and connected through the lid to electronic circuitry 82 within the cavity 76. The disconnect 60 is preferably cylindrical however it can take other shapes in other embodiments.
Referring now more particularly to FIG. 7, still another embodiment of the invention is illustrated. In this embodiment the junction of the antennae coil wires to the input feedthroughs to the electronics receivers is sealed in the same manner as the electrical contacts in the contact pads. It has been found that potting around the weld site with an elastomer is not sufficient, since the water vapor, which can pass through the elastomer, condenses on the weld (or solder) joint. When the elastomer is placed under pressure, however, it will prevent condensation as long as the matrix is reasonably free of voids. In this embodiment, the elastomer potted around the input feedthroughs is put under pressure by the side walls of the connector base when the connector is closed.
Thus, the disconnect depicted in FIG. 7 comprises a base member 92 and lid member 90. The base member 92 is provided with a cavity portion which houses the pads 20, 40 and 42 as in the embodiments previously discussed herein. The lid 90 is provided with a cavity which contains the electronics 82 for the receiver. The electronics 82 are connected by means of feedthrough contacts 102, sealed by elastomeric potting material 100 in the bottom of the lid 90, to contact the pads 42 as in the previously described embodiments.
The base member 92 is also provided with a circumferential ridge 106 which mates with a corresponding circumferential groove 108 in the lid 90. Within the groove 108 is placed the antennae coil 94. It is connected by means of the feedthrough 96 to the electronics 82. The antennae 94 is potted in an elastomeric material 104 of the type previously described. When a bolt (not shown) is passed through the lid 90 and screwed into the base 92, thereby forcing the lid 90 down on to the base 92, the contact pad 42 and the elastomeric material 104 are pressed up against the elastomeric feedthrough bushings 98 and 100 to effect a fluid tight seal around the feedthroughs.
The silicone rubber utilized in the preferred embodiment is type MDX4-4210 Silastic® brand silicone subdermal implant material. Silastic® is a registered trademark of The Dow Chemical Company for its series of unvulcanized organopolysiloxane elastomers.
The disconnect has heretofore been described only in reference to a hearing prothesis. It should be apparent, however, that the disconnect according to the invention has a far broader application. It is also suitable for use with brain stimulators, nerve stimulators and heart pacemakers, for example.
The terms and expressions which have been employed here are used as terms of description and not of limitations, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described, or portions thereof, it being recognized that various modifications are possible within the scope of the invention claimed.
Patent | Priority | Assignee | Title |
10078944, | May 31 2017 | Optimally interconnectable terminal matrix with circuit identification | |
10293174, | Dec 22 2014 | NewPace Ltd. | Wireless recharging system and method for flexible implantable subcutaneous medical device |
10576292, | Nov 29 2015 | Boston Scientific Neuromodulation Corporation | Skull-mounted deep brain stimulator |
10814137, | Jul 26 2012 | Nyxoah SA | Transcutaneous power conveyance device |
10960215, | Oct 23 2013 | SHIRATRONICS, INC | Low profile head-located neurostimulator and method of fabrication |
11357995, | Oct 23 2013 | SHIRATRONICS, INC | Implantable head located radiofrequency coupled neurostimulation system for head pain |
11400302, | Oct 23 2013 | Shiratronics, Inc. | Surgical method for implantable neurostimulation system for pain |
11612756, | Oct 23 2013 | Shiratronics, Inc. | Implantable head mounted neurostimulation system for head pain |
11623100, | Oct 23 2013 | Shiratronics, Inc. | Low profile head-located neurostimulator |
12070610, | Oct 23 2013 | Shiratronics, Inc. | Low profile head-located neurostimulator |
4648403, | May 16 1985 | The Board of Trustees of the Leland Stanford Junior University | Method and apparatus for providing spread correction in a multi-channel cochlear prosthesis |
4773427, | May 26 1987 | Fukuda Denshi Co., Ltd. | Water-proof device for transmitter |
4819647, | May 03 1984 | Boston Scientific Neuromodulation Corporation | Intracochlear electrode array |
4904233, | May 10 1985 | Arrangement in a hearing aid device | |
5144952, | Jun 07 1989 | Assistance Publique | Transcutaneous connection device |
5201903, | Oct 22 1991 | PI MEDICAL CORPORATION A CORP OF OREGON | Method of making a miniature multi-conductor electrical cable |
5482473, | May 09 1994 | MEDTRONIC MINIMED, INC | Flex circuit connector |
5488768, | Sep 24 1993 | Pacesetter, Inc | Method of forming a defibrillation electrode connection |
5515848, | Oct 22 1991 | ADVANCED NEUROMODULATION SYSTEMS, INC | Implantable microelectrode |
5524338, | Oct 22 1991 | ADVANCED NEUROMODULATION SYSTEMS, INC | Method of making implantable microelectrode |
5746616, | Sep 24 1993 | Pacesetter, Inc | Defibrillation electrode connection |
5817984, | Jul 28 1995 | Medtronic, Inc | Implantable medical device wtih multi-pin feedthrough |
5851222, | Apr 30 1997 | Medtronic, Inc. | Implantable medical device |
5866851, | Jul 28 1995 | Medtronic Inc. | Implantable medical device with multi-pin feedthrough |
5871513, | Apr 30 1997 | MEDTRONICS, INC | Centerless ground feedthrough pin for an electrical power source in an implantable medical device |
6067474, | Aug 01 1997 | Advanced Bionics AG | Implantable device with improved battery recharging and powering configuration |
6076017, | Apr 30 1997 | Medtronic, Inc. | Method of centerless ground finishing of feedthrough pins for an implantable medical device |
6141591, | Mar 06 1996 | Boston Scientific Neuromodulation Corporation | Magnetless implantable stimulator and external transmitter and implant tools for aligning same |
6154677, | Aug 20 1998 | Cochlear Limited | Implantable device with a charging current feed arrangement which has a receiving coil |
6272382, | Jul 31 1998 | Advanced Bionics AG | Fully implantable cochlear implant system |
6308101, | Jul 31 1998 | Advanced Bionics AG | Fully implantable cochlear implant system |
6409531, | Feb 12 2001 | ADVANCED NEUROMODULATION SYSTEMS, INC | Easily mated compact connector |
6662035, | Sep 13 2001 | NeuroPace, Inc | Implantable lead connector assembly for implantable devices and methods of using it |
6840919, | Dec 18 1997 | Osseofon AB | Percutaneous bone anchored transferring device |
7003356, | Mar 08 2002 | Quallion LLC | Battery terminal sealing and supporting device and method |
7009362, | Nov 07 2001 | Quallion LLC | Standalone implantable medical power module |
7054691, | Jan 02 2002 | Advanced Bionics AG | Partitioned implantable system |
7225028, | May 28 2004 | Advanced Bionics, LLC | Dual cochlear/vestibular stimulator with control signals derived from motion and speech signals |
7280870, | Jun 04 2002 | Brown University Research Foundation | Optically-connected implants and related systems and methods of use |
7303422, | Jun 04 2003 | 4491343 CANADA, INC | Implantable modular, multi-channel connector system for nerve signal sensing and electrical stimulation applications |
7486048, | Nov 07 2001 | Quallion LLC | Implantable power module for powering a medical device |
7534127, | Jan 05 2004 | Cochlear Limited | Implantable connector |
7647120, | May 28 2004 | Advanced Bionics, LLC | Dual cochlear/vestibular stimulator with control signals derived from motion and speech signals |
7717726, | Oct 15 2007 | HONDA MOTOR CO , LTD | Self-aligning electrical contact and related methods |
7769461, | Dec 17 2004 | Boston Scientific Neuromodulation Corporation | Skull-mounted electrical stimulation system and method for treating patients |
8388384, | Jun 07 2010 | TC1 LLC | Bi-ventricular percutaneous cable |
8454668, | May 24 2007 | Cochlear Limited | Anchoring element |
8454701, | Dec 05 2008 | UBIPLUG | Surgical method for implanting a housing-interface assembly in a bone wall |
8594750, | Apr 04 2005 | Malikie Innovations Limited | Mobile wireless communications device having improved antenna impedance match and antenna gain from RF energy |
8668526, | Jun 07 2010 | TC1 LLC | Bi-ventricular percutaneous cable |
9162054, | Jan 22 2007 | Cochlear Limited | Implantable component interface |
9378908, | Sep 04 2013 | EATON INTELLIGENT POWER LIMITED | Vacuum switching apparatus and contact assembly therefor |
9511216, | Sep 28 2011 | Advanced Bionics AG | Modular biomedical implants |
9679723, | Sep 04 2013 | EATON INTELLIGENT POWER LIMITED | Vacuum switching apparatus and contact assembly therefor |
9717922, | Dec 22 2014 | NEWPACE LTD | Wireless recharging system and method for flexible implantable subcutaneous medical device |
9855032, | Jul 26 2012 | Nyxoah SA | Transcutaneous power conveyance device |
9907967, | Jul 26 2012 | MAN & SCIENCE S A | Transcutaneous power conveyance device |
Patent | Priority | Assignee | Title |
3478297, | |||
3657681, | |||
3701964, | |||
3731258, | |||
3995644, | Sep 16 1975 | The United States of America as represented by the Administrator of the | Percutaneous connector device |
4054479, | Dec 22 1976 | E. I. du Pont de Nemours and Company | Additive process for producing printed circuit elements using a self-supported photosensitive sheet |
4116517, | Apr 15 1976 | ITT Corporation | Flexible printed circuit and electrical connection therefor |
4125310, | Dec 01 1975 | Electrical connector assembly utilizing wafers for connecting electrical cables | |
4162226, | Jun 05 1972 | Electrostatic toner with an antiplasticizer | |
4221444, | Oct 21 1977 | TELECTRONICS PACING SYSTEMS, INC | Connectors and articles having connectors thereon |
4229616, | Aug 10 1978 | SOUTHERN DEVICES, INC , C O LEVITON MANUFACTURING COMPANY, INC , 59-25 LITTLE NECK PARKWAY, LITTLE NECK, NEW YORK, 11362, A CORP OF NORTH CAROLINA | Cable connector cover |
4255003, | Nov 13 1975 | VIASYSTEMS CORPORATION | Electrical connector |
4311137, | Apr 30 1980 | Sherwood Services AG; TYCO GROUP S A R L | Infusion device |
4361153, | May 27 1980 | Pacesetter, Inc | Implant telemetry system |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 04 1982 | BYERS, CHARLES L | REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, A CORP OF CA | ASSIGNMENT OF ASSIGNORS INTEREST | 003997 | /0993 | |
Mar 26 1982 | The Regents of the University of California | (assignment on the face of the patent) | / | |||
Nov 16 2007 | Advanced Bionics Corporation | Boston Scientific Neuromodulation Corporation | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 020299 | /0200 |
Date | Maintenance Fee Events |
Feb 16 1988 | M170: Payment of Maintenance Fee, 4th Year, PL 96-517. |
Feb 22 1988 | ASPN: Payor Number Assigned. |
Jun 06 1992 | ASPN: Payor Number Assigned. |
Jun 06 1992 | RMPN: Payer Number De-assigned. |
Date | Maintenance Schedule |
Jan 29 1988 | 4 years fee payment window open |
Jul 29 1988 | 6 months grace period start (w surcharge) |
Jan 29 1989 | patent expiry (for year 4) |
Jan 29 1991 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 29 1992 | 8 years fee payment window open |
Jul 29 1992 | 6 months grace period start (w surcharge) |
Jan 29 1993 | patent expiry (for year 8) |
Jan 29 1995 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 29 1996 | 12 years fee payment window open |
Jul 29 1996 | 6 months grace period start (w surcharge) |
Jan 29 1997 | patent expiry (for year 12) |
Jan 29 1999 | 2 years to revive unintentionally abandoned end. (for year 12) |