The invention relates to the elaboration of an electrode comprising an electrochrome polymer.
The invention provides an electrode coated with a polymer film obtained by electrochemical polymerization of a monomer M, said polymer corresponding to the general formula (M+ X- y)n where X- represents an anion coming from the electrolyte used for the polymerization, the monomer being either a substituted aromatic heterocycle with 5 links containing a single hetero-atom, or an indole substituted on the phenyl nucleus, the substitutions being possibly groups of the alkyl, alkoxyl, hydroxyl, aryl, substituted aryl, halogene, trihalogenomethyl, cyano, amino or dialkylamino type.
|
1. An electrode comprising a conducting support coated with a polymer film obtained by electrochemical polymerization of at least one monomer M, said polymer corresponding to the general formula (M+ X- y)n; X- representing an ion coming from the electrolyte used during said polymerization, y the anion proportion with respect to a mole of monomer and n the degree of polymerization, said monomer having one aromatic heterocycle containing a single hetero-atom said monomer being substituted by at least one substituent, wherein said monomer corresponds to the chemical formula: ##STR4## with: X=S or O, wherein R1 and R2 are independently hydrogen alkyl, alkoxy, hydroxyl, aryl, substituted aryl, halogen, trihalogenomethyl, cyano, or dialkylamino wherein R1 and R2 are not both H.
13. An electrode comprising a conducting support coated with a polymer film obtained by electrochemical polymerization of at least one monomer M, said polymer corresponding to the general formula (M+ X- y)n; X- representing an ion coming from the electrolyte used during said polymerization, y the anion proportion with respect to a mole of monomer and n the degree of polymerization, said monomer having one aromatic heterocycle containing a single hetero-atom, said monomer being substituted by at least one substituent, wherein said monomer is an indole substituted on the phenyl nucleus by at least one of the compound R3, R4, R5, R6, of the general formula: ##STR6## R3, R4, R5 and R6 being either hydrogen or a substituted such as alkyl, alkoxy, hydroxyl, aryl, substituted aryl, halogen, trihalogenomethyl, cyano, or amino.
2. The electrode as claimed in
3. The electrode as claimed in
6. The electrode as claimed in
9. An electrochemical cell, wherein one of the electrodes is formed by an electrode obtained in accordance with
10. The electrochemical cell as claimed in
12. The display device as claimed in
14. The electrode as claimed in
15. The electrode as claimed in
18. The electrode as claimed in
20. The electrode as claimed in
21. An electrochemical cell, wherein one of the electrodes is formed by an electrode obtained in accordance with
22. The electrochemical cell as claimed in
24. The display device as claimed in
|
1. Field of the Invention
The invention relates to an electrode coated with a new electroactive polymer obtained by electrochemical oxidization of a monomer and application thereof to electrochemical cells and more especially to electrochemical display systems.
2. Description of the Prior Art
Electrodes coated with a polymer film have already been produced, more especially for manufacturing electrochemical cells. Organic polymer eletrochromes are of great interest because they are easier to use than other types of electrochromes. Furthermore, by modifying the chemical structure of the polymer, the absorption spectra of the oxidized and reduced molecules may be modified. Electrochrome polymers in which the electrochrome group has been fixed by a chemical reaction to the chain of a polymer have already been described. Polymers soluble in organic solvents may be readily deposited on an electrode by conventional methods (by centrifugation or immersion). Depending on the nature of the electrochrome group, response times of the order of 100 ms may be obtained in display systems using these materials but their adhesion to the electrode is often limited.
Another process used for depositing thin polymer films on an electrode consists in electrochemically polymerizing the desired monomer. It is known to deposit, by anode oxidization, pyrrol and N substituted pyrrols on platinum or glass electrodes coated with a conducting oxide. In electrochemical display systems, these films may undergo oxidizing and reducing cycles with modification of the optical spectra. Although the electrodes coated with such polymers are advantageous because of the better adhesion of the thin electrochrom film, the materials have the drawback of being very sensitive to oxygen which promotes degradation thereof and reduces their life-span.
The invention, due both to Messrs F. GARNIER and G. TOURILLON of the Laboratoire de Photochimie Solaire of the C.N.R.S. and to Mlle GAZARD of THOMSON-CSF proposes palliating these disadvantages by providing an electrode coated with a polymer obtained by electrochemical polymerization of a monomer which belongs to a family allowing a product to be obtained with improved performances: reduced response time, great stability of the materials and improved life-span. In the case of using this electrode in an electrochemical display device, the color characterizing the display depends on the structure of the monomer and on the nature of the counter-ion.
The invention provides then an electrode comprising a conducting support coated with a polymer film obtained by electrochemical polymerization of at least one monomer M, said polymer corresponding to the general formula (M+ X- y)n; X- representing an anion coming from the electrolyte used during said polymerization, y the anion proportion with respect to a mole of monomer and n the degree of polymerization; wherein said monomer has at least one aromatic heterocycle with 5 links, containing a single hetero-atom and is substituted by at least one group of the alkyl, alkoxyl, hydroxyl, aryl, substituted aryl, halogen, trihalogenomethyl, cyano, amino, or dialkylamino type.
The invention also relates to using such an electrode in electrochemical cells.
A further aim of the invention is to provide such an electrode for constructing an electrochemical display device.
The invention will be better understood from the following description and the accompanying figures in which:
FIG. 1 is a sectional view of an electrochemical cell;
FIG. 2 is a D=f(λ) diagram showing the optical density as a function of the wavelength for an oxide-reduction cycle of polymethyl-3-thiophene associated with the ClO4- anion;
FIG. 3 is a D=f(λ) diagram of polymethyl-3-thiophene associated with the PF6- anion;
FIG. 4 is a D=(λ) diagram of polymethyl-3-thiophene associated with the BF4- anion;
FIG. 5 is a D=f(λ) diagram of poly 5-cyanoindole associated with the ClO4- anion.
There will first of all be described the method for preparing the deposition of a polymer film on a conducting element then examples will be given describing some embodiments.
The monomers used for forming the polymer film have at least one aromatic heterocycle with 5 links containing a single hetero-atom. The monomer may be a substituted derivative in position 3, in position 4 or in position 3 and 4 of pyrrol, of thiophene or of furan. This may be an indole substituted on the phenol nucleus by 1 to 4 groups.
Polymerization of the monomer is carried out in an electrolysis cell containing the monomer dissolved in an organic solvent such as acetonitrile, tetrahydrofuran, methylene chloride or a water-acetonitrile mixture, in the presence of a conducting salt of formula A+ X-. The cation A+ may be an alkaline element, the N(C4 H9)4+ ion, the N(C2 H5)4+ ion or a similar compound. The X- anion may be an ion of the type ##STR1## or a similar compound. The monomer concentration is between 5.10-3 and 10-1 mole/liter and the conducting salt concentration is between 10-2 and 1 mole/liter. The polymer is deposited on the anode in the form of an adhering film at a rate which depends on the monomer concentration in the solvent, on the potential of the anode and on the current between the anode and the cathode. The potential of the anode may be fixed with respect to a reference electrode or a potential difference may be imposed between the anode and the cathode.
The polymer film is deposited on a cathode formed by a metal plate which may be for example made from platinum or gold or by a glass plate on which a transparent conducting film has been deposited such as tin or indium oxide. The cathode or counter electrode may be a platinum or gold wire and the reference electrode a standard calomel electrode.
The polymer film formed on the surface of the anode contains a certain proportion of the anion coming from the electrolyte and its general formula may be written in the form (M+ X- y)n, where M represents the monomer, X- the anion or counter-ion, y the anion proportion in the polymer with respect to a mole of monomer and n the degree of polymerization. In the above formula, y is a factor which may vary between 0.1 and 0.5. It is not possible to determine the value of the coefficient n because of the insolubility of the polymer. The polymer and the anion form a charge transfer complex whose conductivity varies between 10-2 and 100Ω-1 ·cm-1.
Such a polymer coating an electrode may undergo, in an electrochemical cell, oxido-reduction cycles accompanied by modification of the light absorption spectrum. The oxido-reduction cycles cause insertion and de-insertion phenomena of the counter-ions inside the polymer which modify the light absorption spectrum. It is particularly advantageous to use an electrode in accordance with the invention in an electrochemical cell comprising at least two electrodes, the working electrode and a counter-electrode, so as to form an electrochemical display device. This is what is shown in FIG. 1 which is a sectional view of an electrochemical cell. The cell is formed of a transparent container 1, made from glass for example, closed by a lid 2. Electrode 3, which is the working electrode, is coated with an electrochrome polymer film 4 of the invention. This film is deposited on electrode 3 in accordance with the above-described process and its thickness is between 0.1 and 0.5 micron. The counter-electrode 5 may be simply a platinum wire. It is possible to provide the system with a reference electrode 6 which may be a standard calomel electrode. The cell is filled with an electrolyte solution in an organic solvent 7, for example of the type which has served for producing the polymer film. The electrolyte is a conducting salt of the A+ X- type already described whose concentration in the solution is between 10-2 and 1 mole/liter. Electrodes 3, 5 and 6 are connected to a voltage generator 8. By varying the potential of the working electrode with respect to the reference electrode, by means of generator 8, modification of the color of the polymer film is caused. Variation of the potential difference between electrodes 3 and 6 caused by generator 8 depends on the nature of the polymer but does not generally depart from the range [-1.5 V, +1.5 V]. The charge amount required for oxidizing or for reducing the polymer depends on the thickness of film 4. It is between 1 and 50 mC/cm2. Generator 8, through electrodes 3 and 5, allows the electrolysis current to pass through solution 7.
Each (M+ X- y)n polymer has an absorption spectrum for the reduced form and an absorption spectrum for the oxidized form. It is thus possible to obtain polychromatic display devices either by modifying for the same monomer M the nature of the counter-ion X- (by changing the nature of the electrolyte), or by modifying the structure of the monomer M. It is possible to obtain by the same methods polymer films formed from two or more basic monomers.
An electrochrome cell such as the one shown in FIG. 1 may operate by reflection or transmission. In the case of reflection operation, electrode 3 may be made from metal, for example from platinum. For transmission operation, a glass plate may be used on which a transparent conducting film has been deposited such as tin oxide or indium oxide. The reference electrode is placed so as not to disturb observation of the cell.
Examples of the process are given hereafter.
This example describes the typical manufacture of an electrochrome polymer in which the monomer is methyl-3-thiophene.
An electrolysis cell comprising three electrodes, the anode, the cathode and a reference electrode is filled with a solution containing 10-2 moles of methyl-3-thiophene and 0.1 mole of lithium perchlorate for a liter of acetonitrile. The anode is for example a glass plate on which has been deposited a conducting film such as tin oxide SnO2 over an area of 1 cm2. The cathode is in the form of a platinum wire. The solution is perfectly deoxygenated by sweeping with dry argon for at least half an hour.
The potential of the anode is fixed at 1.4 V with respect to the reference electrode. By establishing a potential difference between the anode and the cathode, electrolysis of the solution is caused and the anode is then coated with a polymer film dark blue in color and the thickness of which may reach 4000 Å after a minute. The polymer obtained by this method is poly methyl-3-thiophene which may be represented by the following formula, determined by microanalysis: ##STR2##
This polymer is stable in air and in a vacuum up to temperatures greater than 300°C Its conductivity is between 10 and 100Ω-1 ·cm-1.
The electrode coated with this polymer film is rinsed in acetonitrile then placed in another cell of the type shown in FIG. 1. This cell is filled with a solution containing 0.1 mole of lithium perchlorate per liter of acetonitrile. The film is reduced and re-oxidized if a voltage at first zero then equal to 0.8 V is applied between the working electrode (formed by the electrode coated with the polymer film) and the reference electrode. The color of the film then changes from the dark blue characteristic of the oxidized polymer to red characteristic of the reduced polymer. The charge amount required for reducing the film which occupies an area of 1 cm2 is 5.9 mC and that required for oxidizing it 6 mC. When voltage pulses are applied for modifying the optical spectrum, the response times are less than 100 ms. The number of oxido-reduction cycles which may be carried out is greater than 104.
FIG. 2 shows the absorption spectra for the polymer during an oxido-reduction cycle. It is a diagram which represents the trend of the optical density D as a function of the wavelength λ of light. Curve 10 relates to the reduced polymer which is then red in color. Curve 11 relates to the oxidized polymer which dark blue. It can be seen that curve 10 presents a maximum for λ=510 nm and that it decreases substantially symmetrically on each side of this wavelength. Curve 11 presents a maximum for λ> about 650 nm and decreases with the wavelength. According to FIG. 2, it may be noted that for λ=510 nm, the optical density difference ΔD between curves 10 and 11 is ΔD=0.55 and that for λ>650 nm ΔD=0.2.
This example describes the color modification obtained when the nature of the counter-ion X- is changed from the monomer of example 1 for elaborating the polymer.
The products used for obtaining the polymer film are the same as before except for the electrolyte which is replaced by tetrabutylammonium hexafluorophosphate N(Bu)4+ Pf6- or by tetrabutylammonium tetrafluoroborate N(Bu)4+ BF4- in the same concentration. Under the same electrolysis conditions as before, a film of a thickness of 1500 Å is obtained.
The electrode coated with its polymer film is rinsed in acetonitrile then placed in another cell of the type shown in FIG. 1. This cell is filled with a solution containing the same electrolyte which served for elaborating the polymer film so as to conserve the optical properties of the film during the oxido-reduction cycles. The solution will contain then 0.1 mole of tetrabutylammonium hexafluorophosphate or tetrabutylammonium tetrafluoroborate for 1 liter of acetonitrile. The film is reduced then re-oxidized if a voltage first of all zero then equal to I V is applied between the working electrode and the reference electrode.
The absorption spectra of the oxidized and reduced forms and the charge amounts used are:
(a) for X- =PF6-, blue-violet for the oxidized form (charge amount during oxidization 6 mC/cm2) and orange for the reduced form (charge amount during reduction 5.9 mC/cm2),
(b) for X- =BF4-, blue-green for the oxidized form (5.5 mC/cm2) and orange-red (5.4 mC/cm2) for the reduced form.
FIG. 3 shows the absorption spectra for the polymer of example 2 with X- =PF6-. It is a diagram which shows the trend of the optical density D as a function of the wavelength λ of light. Curve 12 relates to the reduced polymer which is orange in color. Curve 13 relates to the oxidized polymer which is blue-violet. Curves 12 and 13 show a maximum respectively for λ=510 nm and λ=670 nm. For λ=510 nm, the optical density difference ΔD between curves 12 and 13 is ΔD=0.8, for λ=670 nm ΔD=0.45 and for λ=850 nm ΔD=0.4.
FIG. 4 shows the absorption spectra for the polymer of example 2 with X- =BF4-. It is a diagram which shows the trend of the optical density D as a function of the wavelength λ of light. Curve 14 relates to the reduced polymer which is orange-red in color. Curve 15 relates to the oxidized polymer which is blue-green in color. Curves 14 and 15 show a maximum respectively for λ=510 nm and λ=670 nm. For λ=510 nm, the optical density difference ΔD between curves 14 and 15 is ΔD=0.7, for λ=670 nm ΔD=0.43 and for λ=850 nm ΔD=0.25.
The table below shows the effects of different counter-ions coming into the structure of poly methyl-3-thiophene:
______________________________________ |
Nature of the counter ion X- |
Oxidized form |
Reduced form |
______________________________________ |
ClO4 dark blue red |
PF6 blue violet orange |
BF4 blue green orange-red |
______________________________________ |
This example shows the influence of the basic monomer in the absorption spectrum of the polymer. The monomer of examples 1 and 2 was replaced by 5-cyanoindole of formula: ##STR3##
The synthesis of the polymer is achieved in the same way as that for methyl-3-thiophene with a potential difference of 1.4 V between the anode and the reference electrode. After a minute, there is obtained on the anode a polymer film of a thickness of 1000 Å in which is incorporated the ClO4- ion coming from the electrolyte used (lithium perchlorate). The electrode coated with the poly 5-cyanoindole film is rinsed in acetonitrile. This electrode may then be used in an electrochemical cell of the type shown in FIG. 1. This cell is filled with a solution containing 0.1 mole of lithium perchlorate for 1 liter of acetonitrile. The film is reduced then re-oxidized if a voltage at first equal to 1 V then equal to 0.17 V is applied between the working electrode and the reference electrode. The color of the film changes then from green (oxidized form) to a whitish color (reduced form). The charge amounts used are 3.5 mC/cm2 during oxidization and 3.5 mC/cm2 during reduction.
FIG. 5 shows the absorption spectra for the polymer of example 3 with X- =ClO4-. It is a diagram which shows the trend of the optical density D as a function of the wavelength of light. Curve 16 relates to the reduced polymer which is whitish in color. Curve 17 relates to the oxidized polymer which is green in color. Curves 16 and 17 present a maximum respectively for λ=350 nm and λ=750 nm. For λ=350 nm, the optical density difference between curves 16 and 17 is ΔD=0.2, for λ=750 nm we also have ΔD=0.2.
Gazard, Maryse, Garnier, Francis, Tourillon, G/e/ rard
Patent | Priority | Assignee | Title |
4613211, | Nov 21 1983 | Chevron Research Company; CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA A CORP OF DE | Electrochromic devices |
4773741, | Apr 09 1987 | Central Glass Company, Limited | Electrochromic display device having auxiliary electrode |
4818352, | May 04 1987 | Central Glass Company, Limited | Electrodeposition of functional film on electrode plate relatively high in surface resistivity |
4909610, | Oct 24 1987 | Schott Glaswerke | Process for charging an electrochromic system with hydrogen |
4909959, | Apr 01 1986 | Solvay & Cie (Societe Anonyme) | Conductive polymers derived from 3-alkylthiophenes, a process for manufacturing them and electroconductive devices containing them |
5128013, | Dec 17 1990 | FORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATION | Deposition of electroactive polymers |
5405937, | Jul 29 1991 | SOLVAY SOCIETE ANONYME 33, URE DU PRINCE ALBERT | Polymers derived from fluorinated thiophenes, and conductive polymers derived therefrom |
6067185, | Aug 27 1998 | E Ink Corporation | Process for creating an encapsulated electrophoretic display |
6120839, | Jul 20 1995 | E Ink Corporation | Electro-osmotic displays and materials for making the same |
6249271, | Jul 20 1995 | E Ink Corporation | Retroreflective electrophoretic displays and materials for making the same |
6262706, | Jul 20 1995 | E Ink Corporation | Retroreflective electrophoretic displays and materials for making the same |
6262833, | Oct 07 1998 | E Ink Corporation | Capsules for electrophoretic displays and methods for making the same |
6300932, | Aug 27 1998 | E Ink Corporation | Electrophoretic displays with luminescent particles and materials for making the same |
6312971, | Aug 31 1999 | E Ink Corporation | Solvent annealing process for forming a thin semiconductor film with advantageous properties |
6376828, | Oct 07 1998 | E Ink Corporation | Illumination system for nonemissive electronic displays |
6377387, | Apr 06 1999 | E Ink Corporation | Methods for producing droplets for use in capsule-based electrophoretic displays |
6392785, | Aug 28 1997 | E Ink Corporation | Non-spherical cavity electrophoretic displays and materials for making the same |
6445489, | Mar 18 1998 | E Ink Corporation | Electrophoretic displays and systems for addressing such displays |
6473072, | May 12 1998 | E Ink Corporation | Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications |
6498114, | Apr 09 1999 | E Ink Corporation | Method for forming a patterned semiconductor film |
6515649, | Jul 20 1995 | E Ink Corporation | Suspended particle displays and materials for making the same |
6518949, | Apr 10 1998 | E Ink Corporation | Electronic displays using organic-based field effect transistors |
6545291, | Aug 31 1999 | E Ink Corporation | Transistor design for use in the construction of an electronically driven display |
6683333, | Jul 14 2000 | E INK | Fabrication of electronic circuit elements using unpatterned semiconductor layers |
6693620, | May 03 1999 | E Ink Corporation | Threshold addressing of electrophoretic displays |
6704133, | Mar 18 1998 | E Ink Corporation | Electro-optic display overlays and systems for addressing such displays |
6727881, | Jul 20 1995 | E INK CORPORATION | Encapsulated electrophoretic displays and methods and materials for making the same |
6738050, | May 12 1998 | E Ink Corporation | Microencapsulated electrophoretic electrostatically addressed media for drawing device applications |
6750473, | Aug 31 1999 | E-Ink Corporation | Transistor design for use in the construction of an electronically driven display |
6825068, | Apr 18 2000 | E Ink Corporation | Process for fabricating thin film transistors |
6839158, | Aug 27 1997 | E Ink Corporation | Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same |
6842657, | Apr 09 1999 | E Ink Corporation | Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication |
6864875, | Apr 10 1998 | E Ink Corporation | Full color reflective display with multichromatic sub-pixels |
6865010, | Dec 13 2001 | E Ink Corporation | Electrophoretic electronic displays with low-index films |
6900851, | Feb 08 2002 | E Ink Corporation | Electro-optic displays and optical systems for addressing such displays |
6950220, | Mar 18 2002 | E Ink Corporation | Electro-optic displays, and methods for driving same |
6967640, | Jul 27 2001 | E Ink Corporation | Microencapsulated electrophoretic display with integrated driver |
7002728, | Aug 28 1997 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
7030412, | May 05 1999 | E Ink Corporation | Minimally-patterned semiconductor devices for display applications |
7035084, | Jul 22 1999 | NEC Tokin Corporation | Secondary battery and capacitor using indole polymeric compound |
7038655, | May 03 1999 | E Ink Corporation | Electrophoretic ink composed of particles with field dependent mobilities |
7057880, | Sep 18 2000 | NEC Tokin Corporation | Secondary battery and capacitor utilizing indole compounds |
7071913, | Jul 20 1995 | E Ink Corporation | Retroreflective electrophoretic displays and materials for making the same |
7075502, | Apr 10 1998 | E INK | Full color reflective display with multichromatic sub-pixels |
7109968, | Jul 20 1995 | E Ink Corporation | Non-spherical cavity electrophoretic displays and methods and materials for making the same |
7167155, | Jul 20 1995 | E Ink Corporation | Color electrophoretic displays |
7180649, | Apr 19 2001 | E Ink Corporation | Electrochromic-nanoparticle displays |
7230750, | May 15 2001 | E Ink Corporation | Electrophoretic media and processes for the production thereof |
7242513, | Aug 28 1997 | E Ink Corporation | Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same |
7247379, | Aug 28 1997 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
7312916, | Aug 07 2002 | E Ink Corporation | Electrophoretic media containing specularly reflective particles |
7365394, | Apr 18 2000 | E Ink Corporation | Process for fabricating thin film transistors |
7375875, | May 15 2001 | E Ink Corporation | Electrophoretic media and processes for the production thereof |
7382363, | Jul 27 2001 | E Ink Corporation | Microencapsulated electrophoretic display with integrated driver |
7391555, | Jul 20 1995 | E Ink Corporation | Non-spherical cavity electrophoretic displays and materials for making the same |
7532388, | May 15 2001 | E Ink Corporation | Electrophoretic media and processes for the production thereof |
7746544, | Jul 20 1995 | E Ink Corporation | Electro-osmotic displays and materials for making the same |
7787169, | Mar 18 2002 | E Ink Corporation | Electro-optic displays, and methods for driving same |
7893435, | Apr 18 2000 | E Ink Corporation | Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough |
8115729, | May 03 1999 | E Ink Corporation | Electrophoretic display element with filler particles |
8466852, | Apr 10 1998 | E Ink Corporation | Full color reflective display with multichromatic sub-pixels |
8593718, | Jul 20 1995 | E Ink Corporation | Electro-osmotic displays and materials for making the same |
9005494, | Jan 20 2004 | E Ink Corporation | Preparation of capsules |
D485294, | Jul 22 1998 | E Ink Corporation | Electrode structure for an electronic display |
Patent | Priority | Assignee | Title |
4304465, | Oct 29 1979 | LENOVO SINGAPORE PTE LTD | Electrochromic display device |
EP27855, | |||
EP36118, | |||
FR94536, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 10 1983 | GAZARD, MARYSE | Thomson-CSF | ASSIGNMENT OF ASSIGNORS INTEREST | 004341 | /0605 | |
May 10 1983 | TOURILLON, GERARD | Thomson-CSF | ASSIGNMENT OF ASSIGNORS INTEREST | 004341 | /0605 | |
May 10 1983 | GARNIER, FRANCIS | Thomson-CSF | ASSIGNMENT OF ASSIGNORS INTEREST | 004341 | /0605 | |
May 31 1983 | Thomson-CSF | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 11 1988 | M173: Payment of Maintenance Fee, 4th Year, PL 97-247. |
Aug 17 1988 | ASPN: Payor Number Assigned. |
Oct 06 1992 | REM: Maintenance Fee Reminder Mailed. |
Oct 14 1992 | REM: Maintenance Fee Reminder Mailed. |
Mar 07 1993 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 05 1988 | 4 years fee payment window open |
Sep 05 1988 | 6 months grace period start (w surcharge) |
Mar 05 1989 | patent expiry (for year 4) |
Mar 05 1991 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 05 1992 | 8 years fee payment window open |
Sep 05 1992 | 6 months grace period start (w surcharge) |
Mar 05 1993 | patent expiry (for year 8) |
Mar 05 1995 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 05 1996 | 12 years fee payment window open |
Sep 05 1996 | 6 months grace period start (w surcharge) |
Mar 05 1997 | patent expiry (for year 12) |
Mar 05 1999 | 2 years to revive unintentionally abandoned end. (for year 12) |