A method and apparatus effecting the perforating of a well casing and the gravel packing of the perforated areas of the well casing with one trip into the well of a combined perforating and gravel packing apparatus. This desirable objective is accomplished by a perforating gun construction permitting complete flexibility to adjust in the field the number of horizontally and vertically spaced shaped charges through the provision of a polygonal carrier having vertically spaced holes provided in each of its planar sides to accommodate vertically spaced horizontal groups of shaped charges with the charges in one horizontal group being angularly displaced relative to the charges in a vertically adjacent horizontal group. Additionally, the crossover mandrel employed in the gravel packing operation provides, in its run-in position, a continuous axial passage through its entire length, permitting a detonating device to be placed therethrough to actuate the perforating gun. Subsequent to the perforating operation, a ball is dropped and seated on an annular sleeve carried within the hollow mandrel which permits the development of internal pressure within the mandrel. Such internal pressure is employed not only to effect the setting of a fluid pressure actuated packer but also to shift the ball supporting sleeve downwardly and uncover a crossover port in the mandrel which permits the gravel packing operation to be carried out conventionally.

Patent
   4541486
Priority
Apr 07 1982
Filed
Jun 06 1983
Issued
Sep 17 1985
Expiry
Sep 17 2002
Assg.orig
Entity
Large
75
14
EXPIRED
24. A carrier for a plurality of shaped charge containers for a well perforating gun, said carrier comprising an elongated tubular element of polygonal cross-section having an even number of faces in excess of four; each of the faces of said polygonal carrier having vertically spaced apertures for mounting a selected number of shaped charge containers in vertical array, said apertures being positioned in a plurality of vertically spaced, horizontal groups with the apertures in each horizontal group angularly displaced from the apertures in the vertically adjacent group.
25. A perforating gun insertable in a well in a single trip of a production string and packer into the well comprising conduit means depending from the packer and having a bore communicable with the production string bore; a perforating gun suspended from said conduit means and having a percussion actuated firing head communicating with the bore of said conduit means, whereby a detonating bar may be dropped from the well surface through said conduit means to detonate said percussion actuated firing head, and a frangible barrier traversing the bore of said conduit means, thereby isolating said firing head from deposits of well trash, said conduit means having a plurality of radial ports adjacent said frangible barrier, some of said radial ports overlapping the upper surface of said frangible barrier to permit flushing of well trash from the surface of said frangible barrier.
23. A well casing perforating gun employing shaped explosive charges to perforate the well casing and adjacent formations, comprising an outer tubular housing assembly concentrically insertable in the well casing and defining a vertical axis cylindrical chamber, a tubular carrier of polygonal cross sectional configuration insertable in said chamber, said carrier having N faces where N is an even number in excess of four, means for positioning said carrier in concentric relationship to the cylindrical wall of said cylindrical chamber, each of the N faces of said carrier having apertures for mounting a selected number of shaped charge containers in vertical array, whereby the shaped charge containers may be positioned in a plurality of vertically spaced, horizontal groups with the shaped charge containers in each horizontal group angularly displaced from the shaped charge containers in the vertically adjacent group.
11. A well casing perforating gun employing shaped explosive charges to perforate the well casing and adjacent formation, comprising an outer tubular housing assembly concentrically insertable in the well casing and defining a vertical axis cylindrical chamber, a tubular carrier of polygonal cross sectional configuration insertable in said chamber, said carrier having N faces where N is an even number in excess of four, means for positioning said carrier in concentric relationship to the cylindrical wall of said cylindrical chamber, each of the N faces of said carrier having apertures for mounting a selected number of shaped charge containers in vertical array, whereby the shaped charge containers may be positioned in a plurality of vertically spaced, horizontal groups with the shaped charge containers in each horizontal group angularly displaced from the shaped charge containers in the vertically adjacent group, and means for discharging all said shaped charges contained in each said horizontal group.
15. A well casing perforating gun employing shaped explosive charges to perforate the well casing and adjacent formation, comprising an outer tubular housing assembly concentrically insertable in the well casing and defining a vertical axis sealed cylindrical chamber, a tubular carrier of polygonal cross sectional configuration insertable in said chamber, said carrier having N faces where N is an even number in excess of four, means for positioning said carrier in concentric relationship to the cylindrical wall of said sealed cylindrical chamber, a plurality of shaped charge containers of generally cylindrical external configuration and having a peripheral flange adjacent the discharge end, each of the faces of said polygonal tubular carrier having a plurality of vertically spaced apertures proportioned to snugly receive one of said shaped charge containers therein with said peripheral flange abutting the outer face of said carrier, said apertures being aligned to form horizontally aligned groups of vertically spaced apertures, there being N/2 shaped charge containers in each horizontal group, whereby the shaped charge containers may be positioned in a plurality of vertically spaced, horizontal groups with the shaped charge containers in each horizontal group angularly displaced from the shaped charge containers in the vertically adjacent group, and means for discharging all said shaped charges contained in each said horizontal group.
20. A combined method of perforating and gravel packing the production zone of a subterranean well with one trip of a work string comprising the steps of:
(1) assembling on a tubular polygonal carrier a plurality of shaped charges with the charges arranged in vertically spaced, horizontal groups with the charges in one horizontal group being angularly displaced relative to the charges in the vertically adjacent horizontal group;
(2) inserting the carrier with the charges assembled thereto within a vertical axis chamber defined by a tubular housing and sealing said chamber by means including a detonator at the upper end thereof;
(3) assembling at the surface for attachment to the end of a tubular work string, a hollow liner assembly including a production screen, a first settable and releasable packer secured to the lower end of the hollow liner assembly, a hydraulically settable packer secured to the upper end of the hollow liner assembly, a pressure operated actuator releasably connected to the first packer, and a hollow crossover mandrel assembly connected to the actuator and insertable within the liner assembly and defining a horizontal annular valve seat intermediate the first and second packer;
(4) connecting the tubular housing containing the spaced shaped charges in depending relationship to the first packer:
(5) lowering the work string with the above listed assemblies thereon in the well until the spaced shaped charges are positioned adjacent to the desired production zone;
(6) setting the first packer in a position immediately above the desired production formation with the spaced shaped charges adjacent the desired production zone:
(7) dropping a detonating element through the hollow work string, the bore of the hollow mandrel assembly, and the first packer to energize the detonator, discharge the spaced shaped charges and perforate the casing;
(8) releasing the first packer and lowering the work string to position the first packer below the perforated production zone, and then resetting said first packer;
(9) inserting a valve element through the work string to sealingly seat on said annular valve seat in the hollow crossover mandrel assembly, thereby permitting fluid pressure to be built up within the work string:
(10) increasing the fluid pressure in the work string to a level sufficient to cause the actuator to set the second packer;
(11) increasing the fluid pressure in the work string to a level sufficient to cause the downward displacement of the valve element of said hollow crossover mandrel assembly and open a radial fluid passage from the bore of said hollow crossover mandrel to the bore of said liner assembly; and
(12) introducing gravel carrying fluid through the work string to flow through passages defined by the hollow crossover mandrel and the hollow liner assembly downwardly along the casing annulus between said first and second packers, through the production screen, and upwardly through the crossover assembly to the casing annulus at a point above said second packer.
1. In an apparatus for use in a well bore and adapted to be run into the well casing on a tubular work string and in a single run-in of said string in said well accomplish perforation of the well casing adjacent a production zone and placement of a gravel pack in the casing adjacent the interior of the casing perforations, comprising, in combination: an axially elongated tubular liner assembly including a hollow screen element; a first packer secured to the lower end of said tubular liner assembly below said hollow screen, said first packer being initially settable in engagement with the casing bore at a position above the production zone; a tubular housing assembly secured in concentric depending relation to said first packer by a conduit, said tubular housing assembly defining a vertical axis, cylindrical chamber to house perforating charges, the top end of said chamber including a percussion operated detonator; a tubular carrier of polygonal cross sectional configuration concentrically insertable in said chamber, said carrier having N faces where N is an even number in excess of four; means for positioning said carrier in fixed equispaced relationship to the cylindrical wall of said cylindrical chamber; each of the N faces of said carrier having vertically spaced apertures for mounting thereon a selected number of shaped charge containers in a vertical array, there being only N/2 apertures having their axes disposed in a common horizontal plane at the level of each aperture, whereby the shaped charge containers may be positioned in a plurality of vertically spaced, horizontal groups with the shaped charge containers in each horizontal group angularly displaced from the shaped charge containers in the vertically adjacent group; means responsive to said percussion operated detonator for discharging all said shaped charges contained in each said horizontal group; a second packer secured to the upper end of said tubular liner assembly; a work string supported setting tool releasably connected to said packer; a hollow crossover mandrel assembly depending from said setting tool; said setting tool having pressure responsive means for expanding said second packer into sealing engagement with the well casing, said crossover mandrel assembly being insertable in said liner assembly; said first and second packers, said liner, said hollow crossover mandrel assembly and said conduit defining, in their run-in position, a continuous axial passage to permit dropping an activating means onto said percussion operated detonator to discharge same and perforate the casing by said shaped charges; said first packer being subsequently releasable from its set position, lowered below the casing perforations by the work string and resettable in said lowered position; a ball valve seat sleeve mounted in the bore of said hollow mandrel assembly; means for retaining said sleeve in an initial run-in position, said sleeve receiving a dropped ball in sealing relation after the perforating operation, thereby permitting build up of fluid pressure in the work string; said second packer being then expandable by said fluid pressure into sealing engagement with said casing above said casing above said perforations; said liner assembly and said hollow crossover mandrel assembly having flow passages and spaced sealing means selectively positionable upon movement of said ball valve seat sleeve downwardly relative to said second packer from said initial run-in position to a second position for directing gravel carrying fluid flowing downwardly through the work string into the well bore between said first and second packers, thence through said screen into the bottom of said crossover mandrel assembly, and thence outwardly into the well casing annulus at a point above said second packer, thereby permitting the packing of gravel around said hollow screen; and said ball valve seat sleeve being shiftable to said second position upon a further increase in fluid pressure in said work string.
6. In an apparatus for use in a well bore and adapted to be run into the well casing on a tubular work string and in a single run-in of said string in said well accomplish perforation of the well casing adjacent a production zone and placement of a gravel pack in the casing adjacent the interior of the casing perforation, comprising, in combination: an axially elongated tubular liner assembly including a hollow screen element; a first packer secured to the lower end of said tubular liner assembly below said hollow screen, said first packer being initially settable in engagement with the casing bore at a position above the production zone; a tubular housing assembly secured in concentric depending relation to said first packer by a conduit, said tubular housing assembly defining a sealed, vertical axis, cylindrical chamber to house perforating charges, the top end wall of said chamber including a percussion operated detonator; a tubular carrier of polygon cross sectional configuration concentrically insertable in said chamber, said carrier having N faces where N is an even number in excess of four; means for positioning said carrier in concentric relationship to the cylindrical wall of said sealed cylindrical chamber; a plurality of shaped charge containers of generally cylindrical configuration and each having a peripheral flange adjacent the discharge end, each of the faces of said polygonal tubular carrier having a plurality of vertically spaced apertures respectively proportioned to snugly receive one of said shaped charge containers therein with said peripheral flanges respectively abutting the outer faces of said polygonal tubular carrier, there being N/2 apertures having their axes disposed in each of a plurality of vertically spaced horizontal planes, whereby the shaped charge containers are positioned in a plurality of vertically spaced, horizontal groups with the shaped charge containers in each horizontal group angularly displaced from the shaped charge containers in the vertically adjacent group; means responsive to said percussion operated detonator for concurrently discharging all said shaped charges contained in each said horizontal group; a second packer secured to the upper end of said tubular liner assembly; a work string supported setting tool releasably connected to said second packer, a hollow crossover mandrel assembly depending from said setting tool, said setting tool having pressure responsive means for expanding said second packer into sealing engagement with the well casing, said crossover mandrel assembly being insertable in said liner assembly; said first and second packers, said liner, said hollow crossover mandrel assembly and said conduit defining, in their run-in position, a continuous axial passage to permit dropping an activating means onto said percussion operated detonator to discharge same and perforate the casing by said shaped charges; said first packer being subsequently releasable from its set position, lowered below the casing perforations by the work string and resettable in said lowered position; a ball valve seat sleeve mounted in the bore of said hollow mandrel assembly; means for retaining said sleeve in an initial run-in position; said sleeve receiving a dropped ball in sealing relation after the perforating operation, thereby permitting build up of fluid pressure in the work string; said second packer being then expandable by said fluid pressure into sealing engagement with said casing above said perforations; said liner assembly and said hollow crossover mandrel assembly having flow passages and spaced sealing means selectively positionable upon movement of said ball valve seat means downwardly relative to said second packer from said initial run-in position to a second position for directing gravel carrying fluid flowing downwardly through the work string into the well bore between said first and second packers, thence through said screen into the bottom of said crossover mandrel assembly, and thence outwardly into the well casing annulus at a point above said second packer, thereby permitting the packing of gravel around said hollow screen; said ball vable seat sleeve being shiftable to said second position upon a further increase in fluid pressure in said work string.
2. The apparatus of claim 1 wherein said tubular carrier comprises a hexagonal extrusion of an extrudable metal.
3. The apparatus of claim 2 plus a primer cord depending from said detonator and positioned to be adjacent the inner end of each said shaped charge container.
4. The apparatus defined in claim 1, 2 or 3 further comprising a flapper valve pivotally mounted in the hollow crossover mandrel assembly at a position below the initial run-in position of said ball valve seat sleeve, an annular horizontal seat around the bore of said hollow crossover mandrel assembly cooperable with said flapper valve to close said bore to downward fluid flow, resilient acans urging said flapper valve to its closed position, latching means for holding said flapper valve in a vertical open run-in position, and means responsive to the downward displacement of said ball valve seat sleeve from its run-in position for releasing said latching means to permit said flapper valve to close.
5. The apparatus defined in claim 1, 2 or 3 wherein a frangible barrier traverses said conduit, said conduit having a plurality of radial ports immediately adjacent said frangible barrier to permit flushing of well trash from the surface of said frangible barrier.
7. The apparatus of claim 6 wherein said tubular carrier comprises a hexagonal extrusion of an extrudable material.
8. The apparatus of claim 6 plus a primer cord depending from said detonator and positioned adjacent an inner end of each said shaped charge container.
9. The apparatus defined in claim 6, 7 or 8 wherein a frangible barrier traverses said conduit, said conduit having a plurality of radial ports immediately adjacent said frangible barrier to permit flushing of well trash from the surface of said frangible barrier.
10. The apparatus defined in claim 6 further comprising a flapper valve pivotally mounted in the hollow crossover mandrel assembly at a position below the initial position of said ball valve seat sleeve, an annular horizontal seat around the bore of said hollow crossover mandrel assembly cooperable with said flapper valve to close said bore to downward fluid flow, resilient means urging said flapper valve to its said closed position, latching means for holding said flapper valve in a vertical open run-in position, and means responsive to the downward displacement of said ball valve seat sleeve from its run-in position for releasing said latching means to permit said flapper valve to close.
12. The perforating gun of claim 11 wherein said tubular carrier comprises a hexagonal extrusion of an extrudable material.
13. The perforating gun of claim 11 or 12 wherein said tubular housing assembly includes an upper end wall, and impact actuated detonating means sealably mounted in said upper end wall.
14. The perforating gun of claim 11 or 12 wherein said tubular housing assembly includes an upper end wall, impact actuated detonating means sealably mounted in said upper end wall, and a primer cord depending from said detonating means and positioned adjacent an inner end of each said shaped charge container.
16. The perforating gun of claim 15 wherein said tubular carrier comprises a hexagonal extrusion of an extrudable metal.
17. The perforating gun of claim 15 or 16 wherein said tubular housing assembly includes an upper end wall, and impact actuated detonating means sealably mounted in said upper end wall.
18. The perforating gun of claim 15 or 16 wherein said tubular housing assembly includes an upper end wall, impact actuated detonating means sealably mounted in said upper end wall, and a primer cord depending from said detonating means and positioned adjacent an inner end of each of said shaped charge containers.
19. The well casing perforating gun of claim 11 or 15 wherein said tubular housing assembly includes an upper end wall supporting sleeve, an impact actuated detonating means transversely sealably mounted in said end wall supporting sleeve, conduit means extending above said end wall supporting sleeve; frangible barrier means traversing the bore of said conduit to protect said detonating means from contact by well debris; and port means in said conduit immediately adjacent said barrier means for flushing collected debris from said barrier means.
21. The method of claim 20 further comprising the step of permitting a flushing flow of formation fluids through the newly formed perforations prior to releasing and moving the first packer.
22. The method defined in claim 20 or 21 further comprising the step of removing the work string, the actuator and the hollow crossover mandrel assembly after completion of the gravel packing.

This application is a divisional application of co-pending application Ser. No. 266,267, filed Apr. 7, 1982, which, in turn, is a continuation-in-part application of Ser. No. 250,772 filed Apr. 3, 1981, each of said applications being assigned to the same assignee as the present application.

1. FIELD OF THE INVENTION

This invention relates to a method and apparatus for effecting the perforating and the gravel packing of a production zone in a subterranean well.

2. DESCRIPTION OF THE PRIOR ART

As oil and gas wells are drilled to constantly increasing depths, the cost of completion or workover of a well is disproportionally increased by the number of trips of completion apparatus that must be made into the well in order to effect its completion or workover. Necessarily, every encased producing well has to have the casing perforated in the production zone. It is equally necessary in the case of many wells to provide gravel packing in the area of the perforations to filter out sand produced with the production fluids and thus prevent its entry into the well bore and into the production conduit. It has heretofore been necessary to make several trips of a work string into the well in order to first effect the perforation of the well casing and then the gravel packing of one or more production zones surrounding the perforations. Most commonly used tubing conveyed perforating apparatus rely upon percussion firing of explosive charges. Such firing is produced by dropping a weight through the tubular work string to fire a primer carried by the perforating apparatus located at the bottom of the well. lt is therefore necessary that the bore of the tubular work string be initially unrestricted, at least to the extent to permit the free passage of the firing weight or bar therethrough.

It has previously been suggested that the gravel packing of a plurality of production zones of a well could be accomplished in a single trip of a specially designed gravel packing apparatus into the well. Such apparatus is, for example, disclosed in U.S. Pat. No. 3,987,854 to Callihan et al. and also in the copending application Ser. No. 170,494, filed July 21, 1980, and assigned to the assignee of the present application. In both instances, however, the crossover tool which forms an essential part of such multiple zone gravel packing apparatus, has not provided an unrestricted axial passage through the crossover apparatus. Therefore, it has been a practical impossibility to enter the well with both a perforating apparatus and a gravel packing apparatus and accomplish both operations in the same trip.

Additionally, since the entire perforating operation is to be performed in the same single trip, it is highly desirable that the perforating gun be capable of adjustment in the field of both the total number and the horizontal and vertical spacings of the shaped charges employed in the perforating operation. An economical apparatus permitting the convenient field assembly of a plurality of shaped charges in any desired vertical and horizontal configuration has not heretofore been available.

This invention provides an improved apparatus for the completion of subterranean wells which permits the perforation of the casing at a production zone in the well and the subsequent gravel packing of a liner, screen or other filtering means positioned adjacent to the casing perforations with a single trip of the required apparatus into the well, following which the mandrel element of the gravel packing apparatus may be removed from the well, and the work string replaced by production tubing, permitting the well to be placed immediately in production.

To provide any desired number and spacing of shaped charges for effecting the perforation of the well casing and the adjoining formation, this invention provides a tubular housing assembly which is connected by conduit to the bottom end portion of the gravel packing apparatus. Such tubular assembly defines at least one generally cylindrical, vertical axis chamber in which a plurality of shaped charges are mounted. A primer cord in the chamber is energized by a percussion actuated detonator which may be activated by dropping a ball, bar or other device through the gravel packing apparatus. The shaped charges are disposed within the cylindrical chamber by being mounted on the planar sides of a tubular carrier having a polygonal shaped cross-section with an even number of sides and at least six such sides. Vertically spaced apertures are provided in each of the planar sides of the polygonal carrier to effect the mounting of the shaped charges therein. The apertures are arranged to permit the shaped charge containers to be disposed in a plurality of vertically spaced, horizontal groups with the containers of each horizontal group being angularly displaced relative to the containers in the vertically adjacent horizontal group by 360°/N, where N equals the number of sides of the polygonal carrier. The resulting perforations are thus uniformly distributed around the periphery of the well casing and also vertically spaced over a length corresponding to the formation height, but with the vertically adjacent perforations being unaligned in a vertical direction.

The apparatus of this invention further incorporates a unique crossover flow control mandrel for a gravel packing apparatus which, in its run-in position, defines an unimpeded axial passage through the entire gravel packing apparatus. This permits a firing weight to be freely dropped through the gravel packing apparatus to fire the perforating gun disposed at the bottom end of the gravel packing apparatus.

During the run-in and perforating operation, a radial passage through the gravel packing mandrel, which provides communication from the interior of the bore of the mandrel through the annular fluid passage surrounding such bore into the annulus between the mandrel and the liner assembly, is closed by a sleeve which carries a ball valve seat at its upper end. The sleeve is retained in this position by a shear pin. Following the perforating operation, a ball is dropped onto the ball seat permitting fluid pressure within the work string to be increased sufficiently to set a fluid pressure operated packer. Further increase in pressure will cause a shearing of the shear pin and a downward movement of the ball seat sleeve to uncover the radial passage in the crossover mandrel assembly, thus restoring the fluid flow passages through the crossover mandrel to their normal configuration which permits the flow of gravel carrying fluid downwardly through the bore of the mandrel, thence outwardly through the uncovered radial passage into the annulus between the mandrel and the sleeve assembly, thence outwardly into the annulus between the liner assembly and the casing, and thence downwardly into the area between the screen and the casing perforations. The return fluid passes through the screen, thence into the annular passage surrounding the bore of the mandrel, and thence outwardly into the casing annulus through a radial port located above the packer, in conventional fashion.

Additionally, this invention provides a flapper valve below the ball valve which is normally held in an inoperative position relative to the continuous axial passage through the gravel packing apparatus until after the perforation of the well has been accomplished by the dropping of the firing weight, and the work string has been pressurized above the ball seat sleeve. Such flapper valve is held in its open position by a retaining sleeve and is spring biased to a closed position. The flapper valve is caused to move to its closed position after completion of the perforating operation by downward movement of the ball seat sleeve, and isolates the bore of the screen, hence the formation, from reverse fluid flow after the gravel packing is acomplished.

FIGS. 1a and 1b constitute a schematic vertical sectional view of a combined perforating and gravel packing apparatus incorporating this invention, shown with the components thereof in their run-in positions, FIG. 1b being a vertical continuation of FIG. 1a.

FIG. 2 is a view similar to FIG. 1b but showing the operation of the perforating gun.

FIGS. 3a and 3b are views similar to FIGS. 1a and 1b but showing the position of the elements of the apparatus after the perforating operation and at the beginning of the gravel packing operation, FIG. 3b being a vertical continuation of FIG. 3a.

FIG. 4 is an enlarged scale vertical sectional view of a portion of the apparatus of FIG. 1a illustrating in particular, the mounting of the flapper valve, with the valve shown in its open position.

FIG. 5 is a view similar to FIG. 4 but showing the flapper valve in its closed position.

FIG. 6 is a sectional view taken on the plane 6--6 of FIG. 4.

FIGS. 7a, 7b and 7c collectively constitute a vertical sectional view of a perforating gun which is preferred for use with the gravel packing apparatus of FIGS. 1a and 1b; FIGS. 7b and 7c respectively constituting vertical continuations of FIGS. 7a and 7b.

FIG. 8 is a sectional view taken on the plane 8--8 of FIG. 7b.

FIG. 9 is a view similar to FIG. 8 but illustrating the utilization of a polygonal carrier having eight sides.

FIG. 10 is a perspective view of a polygonal carrier with shaped charge containers assembled thereto.

Referring now to FIGS. 1a-1b, there is shown a combined gravel packing and perforating apparatus 10 embodying this invention with all of the elements of the apparatus shown in their "run-in" position within the bore 1a of a well casing 1. Major components of the apparatus 10 include a percussion actuated perforating gun 5, which is supported in depending relationship from a first packer element 6 by a nipple 9 having radial wall perforations 9a. The packer element 6 is in turn suitably secured to the bottom end of a hollow liner assembly 20. On the top end of the liner assembly 20, a second packer 7 is conventionally secured. The packer 7 is of the type having a fluid pressure responsive actuator 8 which is detachably secured to the packer 7 and has its upper end secured to the end of a tubular work string 2. Depending from the actuator 8 is a hollow crossover mandrel 30. The axial bore 30a of the hollow crossover mandrel 30 extends entirely through the length of the assembly and is in direct communication with the bore 6c of the lower packer 6 and the bore of the nipple 9, hence providing direct communication with the percussion actuated perforating gun 5.

The perforating gun 5 may be any one of several well known types which contains explosive charges which are detonated to fire a plurality of radially directed charges through the walls of the casing 1, thus producing casing perforations 1b (FIG. 2) and associated perforations in the surrounding production zone of the well bore. A preferred gun structure is illustrated in FIGS. 7a, 7b and 7c and will be subsequently described. From the description thus far, it will be readily apparent that in the run-in position of the combined perforating and gravel packing apparatus, there is provided an unrestricted axial passage from the tubular work string 2 to the perforating gun 5, thus permitting a detonating weight or bar 5a (FIG. 2) to be dropped onto the gun 5 from the top of the well to effect its discharge and the production of perforations 1b in the well casing and the surrounding production zone.

All of the aforedescribed major components of the combined perforating and gravel packing apparatus 10 are assembled to the end of the tubular work string 2 at the well head and are lowered into the casing 1 by the work string 2 until the perforating gun 5 is positioned adjacent a desired production zone.

The lower packer 6 is of the type known in the art as a mechanically actuated, retrievable packer. In other words, through mechanical manipulation of the work string 2, the lower packer 6 may be expanded into sealing engagement with the interior bore 1a of casing 1 at any selected point. Further maniplation of the work string 2 will result in the collapsing of the lower packer 6 to permit it to be moved to another position. The packer 6 may, for example, comprise the Baker Model R-3 Single Grip Retrievable Casing Packer.

Thus, the first step involved in the process after the run-in of the combined perforating and gravel packing apparatus 10 into the well casing is to effect the setting of the lower packer 6 by manipulation of the work string 2. This results in the expansion of gripping teeth 6a and annular seals 6b conventionally provided on the packer into engagement with the casing bore 1a (FIG. 2).

As previously mentioned, the top end of the lower packer 6 is conventionally secured, as by threads, to the bottom end of an elongated liner assembly 20. The liner assembly 20 is constructed in the same general manner as the liner assembly employed in the gravel packing apparatus described in the aforementioned U.S. Pat. No. 3,987,854. The construction of the liner assembly 20 will not, therefore, be described in great detail, but the principal elements thereof, starting at the bottom of the liner assembly (FIG. 1b) and moving upwardly, include the following items:

First is an O-ring seal sub 21 providing a mounting for an O-ring seal 21a which cooperates in sealing relationship with the lower tubular portion 30b of the crossover mandrel 30.

Next, the top end of the O-ring seal sub 21 is threadably secured to a conventional telltale screen 22 employed in the gravel packing apparatus. Screen 22 provides a plurality of radially disposed small area passages 22a communicating between the casing annulus and the interior of the hollow screen assembly 22. The passages 22a are sufficiently small in size to provide a barrier for the passage of the size of gravel particles with which the well is to be packed.

The top end of telltale screen 22 is in turn threadably secured to the bottom end of a second O-ring seal sub 23 which defines a support for an O-ring 23a which also sealingly engages the lower tubular portion 30b of the hollow crossover mandrel 30.

The top end of the second O-ring seal sub 23 is threadably engaged to the bottom of a main screen 24 around which the primary gravel pack is to be placed. The screen 24 may be of any one of several well known constructions and defines a plurality of radially disposed, restricted area fluid passages 24a which are sized to freely permit fluid flow therethrough from the casing annulus but prevent passage of the gravel particles of the size to be employed in the gravel packing operation.

The top end of the main screen 24 is threadably secured to the lower end of a blank pipe 25 which is provided with a radially projecting centering flange 25a. The top end of the blank pipe 25 is in turn threadably connected to the lower end of a conventional shearout safety joint 26 which permits release of component parts of the apparatus, including the upper packer 7, in the event that the apparatus becomes stuck in the well bore. The shearout safety joint 26 may be of conventional construction.

The top end of the shearout safety joint 26 is threadably secured to the lower end of a crossover sub 27. The top of crossover sub 27 is threadably secured to the bottom end of a blank pipe 27a which has its top end threadably secured to a seal bore unit 28 which defines an internal sealing surface 28a for cooperation with seals 30g provided on the enlarged upper end 30c of the hollow crossover mandrel 30. Lastly, the top end of seal bore unit 28 is threadably secured to a connecting sleeve 29 having radial passages 29a formed therein and its top end threadably secured to the lower end of the upper packer 7.

The upper packer 7 may be any one of several well known types which may be set by the fluid pressure operated actuator 8. For example, upper packer 7 may comprise Baker model "SC-1 Packer". Since the construction and operation of this type of actuator and packer is entirely conventional, it will not be further described. The actuator 8 is detachably secured to upper packer 7 in conventional fashion and threadably secured at its top end to the lower end of the tubular work string 2.

A hollow crossover mandrel 30 is suitably secured in depending relation to actuator 8 by engagement with a depending sleeve portion 8a of actuator 8. Starting from the top of the crossover mandrel 30, there is first provided a pair of axially spaced, annular seats for seals 31a and 31b. Seal 31a slidably and sealingly engages a seal bore surface 7a formed in the upper packer 7. The seal 31b provides sealing engagement with the bore 7a of the packer 7 when the crossover mandrel is raised relative to the packer by actuator 8 in a manner to be hereinafter described.

The mandrel assembly 30 also defines an annular fluid passage 32, open at its top end, which extends downwardly and has a semiannular lower end 32a (FIG. 4) communicating with the bore 30a extending through the upper portion 30c and the lower end 30b of the mandrel assembly 30.

Near the upper extremity of the enlarged upper portion 30c of the hollow crossover mandrel, a radial crossover port 34 is provided which permits fluid to pass from the axial bore 30a of the hollow mandrel to the exterior of the mandrel, passing through, but not communicating with the annular passage 32. Port 34 thus provides communication between the mandrel bore 30a and the annulus that exists between the exterior of the hollow crossover mandrel 30 and the interior bore 20a of the liner assembly 20.

In the run-in position of the hollow crossover mandrel, the crossover port 34 is closed by a sleeve 35 which defines at its upper end, an annular ball valve seat 35a (FIG. 4). Seals 35b and 35c on sleeve 35 respectively located above and below the crossover port 34 assure that such port will be sealed by sleeve 35 against any fluid flow from the bore 30a of the hollow crossover mandrel 30. The ball valve seat sleeve 35 is retained in the aforedescribed position with respect to the crossover port 34 by a shear pin 35d in the mandrel wall which engages a suitable annular groove 35e in the outer periphery of the sleeve 35.

Below the position of the ball valve seat sleeve 35, a flapper valve 36 is mounted for movement about a horizontal pin 36a from a vertical position, in which it does not significantly obstruct the bore 30a of the hollow crossover mandrel, to a horizontal position, shown in FIG. 5, wherein it cooperates with an upwardly facing, annular sealing surface 39a (FIG. 4) surrounding bore 30a. The flapper valve seat 39a is defined on the top portion of a second valve sealing sleeve 39 which is secured in a fixed position in the axial bore 30a of the hollow crossover mandrel 30 by a pair of C-rings 39b and 39c respectively engaging the top and bottom surfaces of the sleeve 39 and appropriate grooves formed in the bore 30a. Conventional sealing elements 39d are provided between the external surface of the sleeve 39 and bore 30a to prevent fluid leakage between the external surface of the valve seat 39a and the bore surface 30a of the hollow crossover mandrel 30. A torsion spring (not shown) is provided for flapper valve 36 to urge it towards its horizontal or closed position.

As it is best shown in the enlarged FIGS. 4-6, the flapper valve 36 includes a radially disposed, enlarged head, locking pin 36c. In the run-in position of the crossover mandrel 30, the shank portion of the enlarged head locking pin 36c is disposed within a narrow slot 38b defined by an axial projection 38a formed on the bottom end of a sleeve 38 which in turn is hung onto a radial flange 35f on the bottom end of the valve sleeve 35. The retaining slot 38b provided in the axial projection 38a of connecting sleeve 38 is enlarged at its upper end as shown at 38c so as to permit the headed locking pin 36c of flapper valve 36 to freely pass therethrough and permit the valve to assume its horizontal closed position in engagement with the valve seat 39a whenever the connecting sleeve 38 is moved axially downwardly by displacement of the valve seat sleeve 35 in a manner to be hereinafter described.

The connecting sleeve 38 is provided with a cutout portion 38d extending approximately half way around the upper portion of the sleeve to provide unimpeded communication between mandrel bore 30a and semi-annular passage 32a.

As previously mentioned, the entire apparatus which has heretofore been described, is run into the well casing 1 on the end of the tubular work string 2 and the perforating gun 5 is positioned opposite a region in the well casing where a production formation exists. With the perforating gun so located, the lower packer 6 is then set by manipulation of the tubular work string 2 (FIG. 2).

A detonating weight or bar 5a is then dropped through the tubular work string 2 and passes through the unimpeded axial bore 30a of the hollow crossover mandrel, bore 6c of lower packer 6, and nipple 9 and impacts on the top of the perforating gun 5, discharging the explosive charges contained therein and driving the charges carried by the gun outwardly to perforate the casing 1 and produce the perforations 1b as illustrated in FIG. 2.

Preferably prior to the firing of the perforating gun 5, the bore of the tubular work string 2 is filled with a light density fluid so that when the gun is fired, the work string will be in an "under balanced" condition, i.e., hydraulic fluid pressure at the face of the formation when the gun is fired will be less than the formation pressure, which insures that the formation pressure will force fluid into the well bore and upwardly to the surface. Such light fluid is introduced prior to the setting of the lower packer 6 and is pumped down through the tubular work string 2 displacing any heavier fluid existing in the work string, such as drilling mud, out of the bottom of the inserted apparatus through the perforated nipple 9 below the lower packer and returning to the surface through a bypass in the lower packer 6.

In most cases, it is desirable to permit fluid contained in the production formation to freely flow through the perforations 1b to effect a flushing of such perforations and the fissures in the formation. Such fluid flow enters the axial bore 30a of the hollow crossover mandrel assembly 30 through the perforations 9a provided in the connecting nipple 9 and flows freely up to the work string 2 and then to the top of the well.

After a sufficient flow period to insure the adequate flushing of the perforations, the well flow is closed in conventional fashion by the introduction of a heavy kill fluid downwardly through the tubular work string 2.

As soon as the well is under control by the kill fluid, the lower packer 6 is released by manipulation of the work string 2. The entire assembly is lowered down the well bore so that the main screen 24 is positioned opposite the newly produced perforations 1b (FIG. 3a). At this position, the lower packer 6 is then reset by manipulation of the tubular work string 2 (FIG. 3b). The lower packer now in essence becomes a sump packer and is generally permitted to remain in that position (FIG. 3b).

To initiate the gravel packing operations, the upper packer 7 is set through the application of fluid pressure through the tubular work string 2. To apply such fluid pressure, a ball 40 is dropped through the tubular work string and seats on the ball valve seating surface 35a defined by the valve seat sleeve 35. The fluid pressure within the work string and the upper portion of the hollow tubular mandrel assembly 30 may now be increased to a level which will effect the hydraulic operation of the actuator 8 which effects the setting of the upper packer 7 in conventional manner (FIG. 3a). After setting of the upper packer 7, the fluid pressure within the tubular work string 2 is then increased to an extent that a shearing of the shear pin 35d is accomplished and the ball valve seat sleeve 35 moves downwardly, thus uncovering the crossover port 34 in the crossover mandrel 30 (FIG. 5). Such downward movement is, of course, transmitted directly to the connecting sleeve 38 by a downwardly facing shoulder 35g which moves the enlarged portion 38c of the locking slot 38b into alignment with the locking pin 36c of the flapper valve 36 and permits the flapper valve 36 to shift to its horizontal, closed position as shown in FIG. 5, under the bias of the torsion spring. The actuator 8 is released from packer 7 and moved upwardly by work string 2 until an indicator ring 41 on the crossover mandrel 30 contacts the bottom of seal bore 28. The hollow mandrel assembly 30 is thus elevated to position its open bottom end 30e at a point above the lowermost O-ring seal sub 21 provided on the lower portion of the liner assembly 20.

As mentioned, the initial raised position of the hollow mandrel assembly 30 is determined by the engagement of the locating ring 41 which surrounds the lower, reduced diameter portion 30k of the enlarged upper portion 30c of the hollow mandrel assembly 30. Ring 41 is of C-shaped configuration and expanded to engage the bottom end of the seal bore 28. The ring 41 is releasably retained in its expanded position on the crossover mandrel 30 by a sleeve 42 which is slidable upon the lower cylindrical mandrel portion 30b and retained in its uppermost position by one or more shear pins 42a. Thus, when it is desired to raise the crossover mandrel 30 further by raising the work string 2, sufficient upward force is applied to the tubular work string 2 to effect the shearing of the shear pins 42a and this permits the positioning C-ring 41 to move downwardly over the smaller diameter mandrel portion 30b where it will contract so as to freely pass through the bore defined by the seal bore 28. The plurality of axially spaced seals 30g provided on the periphery of the upper enlarged mandrel portion 30c insures that at all times, one or the other of such seals is engaged with seal bore 28 as the vertical position of the hollow mandrel assembly 30 is shifted during the operation of the device for gravel packing.

The fluid pressure within the tubular work string may then be reduced and a gravel carrying fluid introduced into the gravel packing apparatus through the tubular work string 2. The flow path of such gravel carrying fluid through the gravel packing portion of the apparatus 10 is conventional, passing first into the axial bore 30a of the hollow mandrel assembly and then radially outwardly through the crossover port 34 into the annulus between the crossover mandrel 30 and the surrounding liner assembly 20. The fluid then flows through the ports 29a provided in the tubular element 29 into the annulus defined between the casing 1 and the outer periphery of the liner assembly 20. The gravel carrying fluid thus flows downwardly through the casing annulus to a position opposite the telltale screen 22. The gravel portion of the fluid will not pass the screen apertures 22a while the fluid inwardly to the internal bore 20a the liner assembly.

The fluid then enters the bottom semi-annular portion 32a of the annular fluid passage 32 provided in the hollow crossover mandrel 30. It cannot flow directly upwardly through the axial bore 30a because such bore is blocked by the ball valve 40 which is subjected to the full downward pressure of the gravel carrying fluid to maintain a sealing engagement with the valve seat 35a provided on the valve seat sleeve 35. The fluid then flows through the top open end of the annular passage 32 and into the casing annulus at a point above the sealing surface 7a of the upper packer 7. because the actuator 8 has been shifted upwardly to position the top open end of annular passage 32 above the packer 7.

When the telltale screen 22 is fully covered with gravel, indicating that the gravel has reached the lowermost extremity of the region to be packed, the operator will detect a pressure increase

Once the operator receives the pressure indication that the telltale screen 22 has been fully packed with gravel, the work string 2 may then be raised upwardly an additional distance, carrying the hollow crossover mandrel 30 with it, to, for example, position the open bottom end 30e of the hollow crossover mandrel assemblage at a position above the seal sub 23 in the liner 20. This then permits the gravel packing operation to continue, with the fluid flow being through the main screen 24, then upwardly through the annular passage 32, and then outwardly into the casing annulus at a point above the upper packer 7.

The packing operation is continued until the pressure build up indicates to the operator that the entire main screen 24 and the adjacent perforated area of the formation have been filled with gravel. At this point, there is generally excess gravel in the tubular work string 2 and after shearing the screws 42a by picking up on the work string 2, a reverse fluid flow is applied to the work string 2 to remove the excess gravel. Such reverse flow is, of course, accomplished in conventional fashion by pressurizing the casing annulus and flowing the fluid through the crossover port 34 into the bore 30a of the hollow crossover mandrel 30 and then upwardly through the tubular work string 2. It is during this operation that the flapper valve 36 performs its primary function in that it prevents the reversing fluid from entering the fluid bypass system that goes around the crossover port 34, and going down through the bore 30a of the crossover mandrel 30 to the formation.

Following completion of the removal of the excess gravel, the setting tool or actuator 8, with the hollow crossover mandrel 30 connected thereto, is removed from the well and the well is ready for subsequent testing or production operations.

Referring now to FIGS. 7a, 7b and 7c, there is illustrated a preferred form of perforating gun 5 for employment with the gravel packing apparatus heretofore described. The gun 5 comprises a ported sub 101 which is substituted for the ported conduit 9 and achieves the threaded connection of the perforating gun to the bottom end of the lower packer 6. Sub 101 includes a plurality of peripherally spaced radial ports 102 and 103. Port 103 is located in the immediate vicinity of an upwardly facing shoulder 104 on which a frangible disc 105 is seated. In fact, ports 103 overlap the top surface of frangible disc 105. Disc 105 provides protection for the detonating components of the perforating gun against inadvertent activation by debris falling through the well. Frangible disc 105 is preferably formed from a sheet of glass having sufficient strength to require the dropping of a detonating weight to achieve its breakage. The ports 102 and 103 permit the flushing of the upper surface of the frangible disc 105 by fluid introduced through the work string to remove debris therefrom through such ports.

The lower end of ported sub 101 is provided with internal threads 106 which are engaged with the top end of a pup joint 107 having a lower threaded portion 108 threadably engaged with a guide sleeve 109. Guide sleeve 109 is provided with an inwardly sloped surface 110 which functions to direct any detonating weight dropped toward the center of the bore of the guide sleeve 109.

The lower end of guide sleeve 109 is secured by threads 111 to a firing head 112. Firing head 112 is of conventional configuration, having an upwardly projecting hammer 114 secured in elevated position relative to a firing pin 115 by a shear pin 113. Firing pin 15 in turn is positioned immediately above a detonating cartridge 116 which is in communication with an enlarged chamber 117 and a booster charge 118 disposed in the upper end of a tubular housing hanger 126. The cartridge 116 contains a face seal 116a to isolate well fluids from the interior of the gun. The detonating cartridge is in communication with two small diameter passages which lead to a booster charge 118. The booster charge 118 comprises any conventional form of blasting cap, such as the G63 booster, manufactured by DuPont.

The lower end 112a of the firing head 112 is sealably secured to the top end of a tubular housing assemblage 125 by threads 112b and O-rings 112c (FIG. 7b). Tubular housing assembly 125 comprises the annular hanger 126, and a chamber defining sleeve 127. Chamber defining sleeve 127 is secured to the lower end of hanger 126 by threads 127a and O-rings 127b seal the threaded connection. The sleeve 127 defines a vertical axis cylindrical chamber 130. The lower end of the chamber 130 is sealed either by a bull plug 132 (FIG. 7c) or by a connector sub 134 having external threads 135 engaging the bottom end of sleeve 127 and a pair of O-rings 136 seal the threaded connection. The connector sub 134 is employed if it is desired to provide an additional chamber for the mounting of additional shaped charges in the manner that will be hereinafter described. Connector sub 134 is provided at its lower end with internal threads 137 which engage a connector nipple 138. O-ring seals 139 effect the sealing of this threaded joint. Nipple 138 is provided at its bottom end with external threads 140 for supporting a second chamber defining sleeve 150 (FIG. 7c). O-ring seals 142 effect the sealing of the threads 140.

The second chamber defining sleeve 150 defines a second vertical axis cylindrical chamber 151 and in turn is connected at its bottom end to either another connector box, if additional chambers are required, or to the bull plug 132 by threads 152 and O-rings 153.

In accordance with this invention, the mounting of a plurality of perforating charges within the vertical axis cylindrical chambers 130 and 151 is accomplished most conveniently through the utilization of a supporting strip or carrier 160 having a polygonal configuration. For reasons to be hereinafter developed, the polygonal configuration includes an even number of sides and a minimum of six sides. In other words, the carrier 160 has a polygonal cross section including N sides where N is an even number not less than six.

The reason for this specific configuration may be readily appreciated by reference to the cross sectional views of FIGS. 8 and 9 wherein the arrangement of the shaped charge containers 170 is indicated for a six sided carrier 160, in the case of FIG. 8, and an eight sided carrier 180, in the case of FIG. 9. The shaped charge containers 170 are of generally cylindrical configuration but are provided with an enlarged flange 172 at their outer ends. Flanges 172 abut the planar outer faces of polygonal carrier 160 and maintain the exact radial orientation of the spaced charges when discharged. A snap ring or clip 173 secures each container 170 to carrier 160. The inner container ends 171 are conically shaped with the angle of the cone determined by the number of shaped charge containers that are to be disposed in any one horizontal group. This permits the inner ends 171 to lie closely adjacent and define an axial opening 174 for reception of a primer cord 120 which is connected to booster charge 118. The internal construction of the shaped charge (not shown) is conventional.

The reason for employing a polygonal carrier of not less than six sides is the fact that it is not desirable to vertically align the vertically adjacent perforations. The most desirable arrangement of perforations is a plurality of vertically spaced, horizontal groups with the perforations in each horizontal group being angularly displaced from the perforations in the next adjacent horizontal group. Thus, the polygonal carrier 160 is provided with a plurality of vertically spaced apertures 162 (FIG. 10) for respectively receiving the shaped charge containers 170 therein. However, as best shown in the perspective view of FIG. 10, the first horizontal group of shaped charge containers 170 is not axially aligned with the second row of charge containers 170 but is angularly displaced therefrom by 60° or 360°/N where N equals six sides. Likewise, the second horizontal group of charge containers 170 is angularly displaced from the third row of charge containers 170, etc. Thus, the polygonal sides of the carrier 160 are apertured so as to produce a plurality of vertically spaced horizontal arrays of shaped charge containers 170, with the containers in each horizontal array being angularly displaced from the containers in the next vertically adjacent horizontal array by an angle equal to 360°/N, where N is the number of polygonal sides.

The reason for utilizing a polygon having an even number of sides is to permit the shaped charge containers mounted thereon to be equally peripherally spaced. This is readily apparent from FIG. 8 in the case of a six sided carrier, and in the case of an eight sided carrier from FIG. 9. If a five or seven sided carrier were employed, the resulting perforations would not be equally angularly spaced around the periphery of the well casing. Moreover, it is desirable that at least a six sided polygonal carrier be employed due to the fact that it is recognized that a four-sided strip would only result in two diametrically opposed perforations being produced, which is not adequate for the majority of producing wells.

As a practical matter, a six-sided polygonal carrier is preferred for the majority of wells. For large well casings, there is sufficient room to adequately mount additional shaped charge containers in each horizontal array and hence an eight-sided carrier or one with a higher number of sides could be effectively employed.

To minimize the manufacturing cost of the polygonal carrier 160 and ensure its dimensional accuracy, it is preferred to manufacture such carrier by extrusion of an extrudable metal such as aluminum. This then permits the field operation to be stocked with several lengths of six-sided aluminum strips, such as three foot, seven foot and even up to fourteen foot lengths, and corresponding lengths of chamber sleeves 127, and the proper length strip can be selected to permit all of the shaped charge containers to be disposed within a single vertical axis sealed chamber 130 provided by the selected length of chamber sleeve 127. On the other hand, if the height of the producing formation is in excess of fourteen feet, then two or more charge receiving chambers may be fabricated in the field through utilization of the connector sub 134 and the connector nipple 138 and two or more chamber sleeves, and the required lengths of polygonal carrier strips 160 can be inserted in the resulting chambers.

As mentioned, the shaped charge containers in chamber 130 have their inner ends each abutting primer cord 120 which extends downwardly from the booster charge 118 contained in the firing head 112. Such primer cord is entirely conventional and may, for example, comprise the flexible cord-type explosive sold under the trademark "Primacord" by the Ensign-Bickford Company of Simsbury, Conn. Usually it is a hollow fabric or plastic tube filled with a well known detonable explosive, such as pentaerythritoltetranitrate, which may be fired by applying a detonating shock at any point along its length, or on its ends, and, in the construction heretofore described, the detonating shock is applied by the booster charge 118. When additional charge containing chambers are connected to the perforating gun mechansim by the connector sub 134 and nipple 138, the primer cord 120 terminates in another booster 181 which is disposed in connector box 134 axially adjacent to a third booster 182 disposed in nipple 138. Booster 182 is connected to a primer cord 184 which extends downwardly through the central aperture in the connector nipple 138 and thence into the next chamber 151 to effect the detonation of the shaped charges contained in such chamber.

To permit the central symmetric positioning of the polygonal carriers 160 in the chambers 130 or 151, the member forming the bottom wall of such chamber may be provided with a polygonal groove to receive the bottom end of polygonal carrier 160. Thus, the connector sub 134 is provided with groove 134a and the bull plug 132 with groove 132a. Alternatively, lock in screws or keys and grooves may be used for the same purpose. With the carrier 160 thus oriented, the chamber defining sleeves 127 and 150 may have reduced wall sections 127c and 150a formed therein as shown in the drawings, or by use of flat bottom holes or the like, opposite the known locations of the shaped charge containers 170 to reduce the energy required to blast through such sleeves.

While the invention has been described in terms of a specific application of the unique perforating gun and crossover mandrel construction to accomplish the perforating of a well and gravel packing the perforated area in a single trip of the apparatus into the well, those skilled in the art will recognize that any operation below the gravel packing area requiring the axial passage of a tool or instrument through the unrestricted axial bore of the hollow crossover mandrel assembly embodying this invention, could also be accomplished. Thus, testing operations in a perforated well could be accomplished below the gravel packing apparatus with a single trip of the entire apparatus into the well.

Although the invention has been described in terms of specified embodiments which are set forth in detail, it should be understood that this is by illustration only and that the invention is not necessarily limited thereto, since alternative embodiments and operating techniques will become apparent to those skilled in the art in view of the disclosure. Accordingly, modifications are contemplated which can be made without departing from the spirit of the described invention.

Wetzel, Rodney J., Stout, Gregg W.

Patent Priority Assignee Title
10287836, Dec 03 2015 Halliburton Energy Services, Inc. Tubing removal system
10844696, Jul 17 2018 DynaEnergetics Europe GmbH Positioning device for shaped charges in a perforating gun module
10920543, Jul 17 2018 DynaEnergetics Europe GmbH Single charge perforating gun
11021923, Apr 27 2018 DynaEnergetics Europe GmbH Detonation activated wireline release tool
11125056, Jul 18 2013 DynaEnergetics Europe GmbH Perforation gun components and system
11274530, Jul 17 2018 DynaEnergetics Europe GmbH Unibody gun housing, tool string incorporating same, and method of assembly
11339632, Jul 17 2018 DynaEnergetics Europe GmbH Unibody gun housing, tool string incorporating same, and method of assembly
11480038, Dec 17 2019 DynaEnergetics Europe GmbH Modular perforating gun system
11525344, Jul 17 2018 DynaEnergetics Europe GmbH Perforating gun module with monolithic shaped charge positioning device
11634956, Apr 27 2018 DynaEnergetics Europe GmbH Detonation activated wireline release tool
11648513, Jul 18 2013 DynaEnergetics Europe GmbH Detonator positioning device
11753889, Jul 13 2022 DynaEnergetics Europe GmbH Gas driven wireline release tool
11773698, Jul 17 2018 DynaEnergetics Europe GmbH Shaped charge holder and perforating gun
11808093, Jul 17 2018 DynaEnergetics Europe GmbH Oriented perforating system
4664184, Mar 31 1986 Halliburton Company Balanced isolation tool enabling clean fluid in tubing perforated operations
4747201, Jun 11 1985 Baker Oil Tools, Inc. Boosterless perforating gun
4753301, Oct 07 1986 HUNTING TITAN, INC Well perforating gun assembly
4813481, Aug 27 1987 Halliburton Company Expendable flapper valve
4815540, Nov 30 1987 BAKER HUGHES INCORPORATED, A DE CORP Method and apparatus for releasing a well perforating gun from a supporting tubing string
4832129, Sep 23 1987 Halliburton Company Multi-position tool and method for running and setting a packer
4846281, Aug 27 1987 OTIS ENGINEERING CORPORATION, A CORP OF DE Dual flapper valve assembly
4850438, Apr 27 1984 Halliburton Company Modular perforating gun
4858690, Jul 27 1988 Completion Services, Inc. Upward movement only actuated gravel pack system
4889183, Jul 14 1988 Halliburton Services Method and apparatus for retaining shaped charges
4951750, Oct 05 1989 Baker Hughes Incorporated Method and apparatus for single trip injection of fluid for well treatment and for gravel packing thereafter
5007486, Feb 02 1990 Dresser Industries, Inc. Perforating gun assembly and universal perforating charge clip apparatus
5067568, Apr 25 1990 Baker Hughes Incorporated Well perforating gun
5069280, Feb 12 1990 Dowell Schlumberger Incorporated Gravel packer and service tool
5146983, Mar 15 1991 Schlumberger Technology Corporation Hydrostatic setting tool including a selectively operable apparatus initially blocking an orifice disposed between two chambers and opening in response to a signal
5174379, Feb 11 1991 Halliburton Company Gravel packing and perforating a well in a single trip
5287928, Nov 13 1992 Mobil Oil Corporation Apparatus and method for repairing a gravel-packed well completion
5297629, Jan 23 1992 HALLIBURTON COMPANY, A DE CORP Drill stem testing with tubing conveyed perforation
5360069, Mar 30 1993 Baker Hughes Incorporated Failsafe liner installation assembly and method
5373899, Jan 29 1993 Union Oil Company of California Compatible fluid gravel packing method
5413180, Aug 12 1991 HALLIBURTON COMAPNY One trip backwash/sand control system with extendable washpipe isolation
5462117, Oct 25 1994 Baker Hughes Incorporated Tubing conveyed perforating system with fluid loss control
5496132, May 22 1991 Societe Materials Vincent Vaillant MVV S.A. Vibration controller designed in particular for vibrating, tamping and compacting equipment
5513703, Dec 08 1993 Halliburton Energy Services, Inc Methods and apparatus for perforating and treating production zones and otherwise performing related activities within a well
5597040, Aug 17 1994 BJ Services Company Combination gravel packing/frac apparatus for use in a subterranean well bore
5611401, Jul 11 1995 Baker Hughes Incorporated One-trip conveying method for packer/plug and perforating gun
5775426, Sep 09 1996 Marathon Oil Company Apparatus and method for perforating and stimulating a subterranean formation
5845712, Dec 11 1996 Halliburton Energy Services, Inc Apparatus and associated methods for gravel packing a subterranean well
5887654, Nov 20 1996 Schlumberger Technology Corporation Method for performing downhole functions
5890539, Feb 05 1997 Schlumberger Technology Corporation Tubing-conveyer multiple firing head system
5921318, Apr 21 1997 Halliburton Energy Services, Inc Method and apparatus for treating multiple production zones
5931229, May 13 1997 BJ Services Company Through tubing gravel pack system and method of gravel packing
6082450, Sep 09 1996 Marathon Oil Company Apparatus and method for stimulating a subterranean formation
6095245, Oct 07 1999 Union Oil Company of California, dba UNOCAL Well perforating and packing apparatus and method
6142231, Jul 11 1995 Baker Hughes Incorporated One-trip conveying method for packer/plug and perforating gun
6158511, Sep 09 1996 Marathon Oil Company Apparatus and method for perforating and stimulating a subterranean formation
6182750, Nov 20 1996 Schlumberger Technology Corporation Device for performing downhole functions
6213203, Nov 20 1996 Schlumberger Technology Corporation Lock mechanism for use with a downhole device
6216785, Mar 26 1998 Schlumberger Technology Corporation System for installation of well stimulating apparatus downhole utilizing a service tool string
6336506, Sep 09 1996 Marathon Oil Company Apparatus and method for perforating and stimulating a subterranean formation
6354374, Nov 20 1996 Schlumberger Technology Corp. Method of performing downhole functions
6446729, Oct 18 1999 Schlumberger Technology Corporation Sand control method and apparatus
6464006, Feb 26 2001 Baker Hughes Incorporated Single trip, multiple zone isolation, well fracturing system
6513599, Aug 09 1999 Schlumberger Technology Corporation Thru-tubing sand control method and apparatus
6662883, Nov 13 2001 DYNAENERGETICS CANADA INC Charge tube assembly for a perforating gun
6745834, Apr 26 2001 Schlumberger Technology Corporation Complete trip system
7213648, Mar 30 2004 VERTEX RESOURCE GROUP LTD Pressure-actuated perforation with continuous removal of debris
7228900, Jun 15 2004 Halliburton Energy Services, Inc System and method for determining downhole conditions
7240733, Mar 30 2004 VERTEX RESOURCE GROUP LTD Pressure-actuated perforation with automatic fluid circulation for immediate production and removal of debris
7274984, Jun 14 2004 GM Global Technology Operations LLC Vehicle stability enhancement system
7753121, Apr 28 2006 Schlumberger Technology Corporation Well completion system having perforating charges integrated with a spirally wrapped screen
8132625, May 07 2009 BAKER HUGHES HOLDINGS LLC Dual action jet bushing
8225859, Mar 04 2011 BAKER HUGHES HOLDINGS LLC Debris cleanup tool with flow reconfiguration feature
8230913, Jan 16 2001 Halliburton Energy Services, Inc Expandable device for use in a well bore
8844627, Aug 03 2000 Schlumberger Technology Corporation Intelligent well system and method
D921858, Feb 11 2019 DynaEnergetics Europe GmbH Perforating gun and alignment assembly
D935574, Feb 11 2019 DynaEnergetics Europe GmbH Inner retention ring
ER6255,
RE45011, Oct 20 2000 Halliburton Energy Services, Inc. Expandable tubing and method
RE45099, Oct 20 2000 Halliburton Energy Services, Inc. Expandable tubing and method
RE45244, Oct 20 2000 Halliburton Energy Services, Inc. Expandable tubing and method
Patent Priority Assignee Title
2649046,
2686472,
2750885,
2760408,
2873676,
3013491,
3565188,
3589453,
3773119,
4049055, Apr 30 1971 HUGHES TOOL COMPANY A CORP OF DE Gravel pack method, retrievable well packer and gravel pack apparatus
4140188, Oct 17 1977 Halliburton Company High density jet perforating casing gun
4372384, Sep 19 1980 Halliburton Company Well completion method and apparatus
4378842, Feb 09 1981 Halliburton Company Valve
4401158, Jul 21 1980 Baker International Corporation One trip multi-zone gravel packing apparatus
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 06 1983Baker Oil Tools, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Nov 10 1988M173: Payment of Maintenance Fee, 4th Year, PL 97-247.
Nov 17 1988ASPN: Payor Number Assigned.
Jul 11 1991ASPN: Payor Number Assigned.
Jul 11 1991RMPN: Payer Number De-assigned.
Dec 14 1992M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Apr 22 1997REM: Maintenance Fee Reminder Mailed.
Sep 14 1997EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Sep 17 19884 years fee payment window open
Mar 17 19896 months grace period start (w surcharge)
Sep 17 1989patent expiry (for year 4)
Sep 17 19912 years to revive unintentionally abandoned end. (for year 4)
Sep 17 19928 years fee payment window open
Mar 17 19936 months grace period start (w surcharge)
Sep 17 1993patent expiry (for year 8)
Sep 17 19952 years to revive unintentionally abandoned end. (for year 8)
Sep 17 199612 years fee payment window open
Mar 17 19976 months grace period start (w surcharge)
Sep 17 1997patent expiry (for year 12)
Sep 17 19992 years to revive unintentionally abandoned end. (for year 12)