The invention provides a solution of one or more U.V. absorbers selected from resorcinol monobenzoate, phenyl salicylate and a benzophenone; and an emulsifier in an organic solvent system.

The solutions of the invention are useful for providing level dyeings of polyester material particularly for use in the automotive industry.

Patent
   4557730
Priority
May 23 1983
Filed
May 17 1984
Issued
Dec 10 1985
Expiry
May 17 2004
Assg.orig
Entity
Large
56
11
EXPIRED
1. A solution comprising one or more U.V. absorbers selected from resorcinol monobenzoate, phenyl salicylate and compounds of formula I ##STR2## in which R1 is selected from OH, halogen, C1-4 alkyl, CN, C1-4 alkoxy and hydrogen;
each R2, independently, is selected from C1-4 alkoxy, CN, halogen, hydrogen, C1-4 alkyl and OH; and
an emulsifier in an organic solvent system for said U.V. absorber and emulsifier comprising a mixture of a hydrophilic solvent and a hydrophobic solvent.
2. A solution according to claim 1, in which the one or more U.V. absorbers are selected from resorcinol monobenzoate, 4-chloro-2,2',4'-trihydroxybenzophenone, 2,2',4-trihydroxybenzophenone, 2,4-dihydroxy-4'-methoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone and phenyl salicylate.
3. A solution according to claim 1 in which the U.V. absorber is phenyl salicylate or a mixture of phenyl salicylate and 2-hydroxy-4-methoxybenzophenone.
4. A solution according to claim 1 in which the emulsifier is a C4-12 alkyl phenol ethoxylated with 5 to 20 moles ethylene oxide; a C4-12 -dialkyl phenol ethoxylated with 5 to 20 moles ethylene oxide; a C8-18 alcohol ethoxylated with 5 to 30 moles ethylene oxide; a C12-18 fatty acid ethoxylated with 5 to 20 moles of ethylene oxide and Castor oil ethyoxylated with 5 to 50 moles of ethylene oxide.
5. A solution according to claim 4 in which the solvent is a mixture of an ester of a fatty acid or an aromatic ester or an aromatic hydrocarbon and a pyrrolidone compound or a mixture of a chlorinated paraffin, a diethylene glycol dibenzoate and a pyrrolidone compound.
6. A process for treating a polyester fabric comprising applying to the fabric a solution according to claim 1.
7. A dyed polyester fabric to which a solution according to claim 1 and one or more disperse dyestuffs have been applied.
8. A composition according to claim 1 wherein, in formula (I), any C1-4 alkyl is methyl, ethyl or propyl, any C1-4 alkoxy is methoxy or ethoxy, and any halogen is chlorine or bromine.
9. A composition according to claim 1 wherein, in formula (I), at least one R2 is OH, methoxy or hydrogen.
10. A composition according to claim 1 wherein, in formula (I), R1 is in the 4-position and is chloro, methoxy or OH.
11. A composition according to claim 8 wherein, in formula (I), R1 is in the 4-position and is chloro, methoxy or OH.
12. A composition according to claim 9 wherein, in formula (I), R1 is in the 4-position and is chloro, methoxy or OH.
13. A composition according to claim 2 in which the emulsifier is a C4-12 alkyl phenol ethoxylated with 5 to 20 moles of ethylene oxide; a C4-12 dialkyl phenol ethoxylated with 5 to 20 moles of ethylene oxide; a C8-18 alcohol ethoxylated with 5 to 30 moles of ethylene oxide; a C12-18 fatty acid ethoxylated with 5 to 20 moles of ethylene oxide or Castor oil ethoxylated with 5 to 50 moles of ethylene oxide.
14. A composition according to claim 12 in which the emulsifier is a C4-12 alkyl phenol ethoxylated with 5 to 20 moles of ethylene oxide; a C4-12 dialkyl phenol ethoxylated with 5 to 20 moles of ethylene oxide; a C8-18 alcohol ethoxylated with 5 to 30 moles of ethylene oxide; a C12-18 fatty acid ethoxylated with 5 to 20 moles of ethylene oxide or Castor oil ethoxylated with 5 to 50 moles of ethylene oxide.
15. A composition according to claim 13 in which the emulsifier is nonyl phenol ethoxylated with 5 to 20 moles of ethylene oxide.
16. A composition according to claim 13 in which the solvent is a mixture of an ester of a fatty acid or an aromatic ester or an aromatic hydrocarbon and a pyrolidone compound or a mixture of a chlorinated paraffin, a diethylene glycol dibenzoate and a pyrolidone compound.
17. A composition according to claim 14 in which the solvent is a mixture of an ester of a fatty acid or an aromatic ester or an aromatic hydrocarbon and a pyrrolidone compound or a mixture of a chlorinated paraffin, a diethylene glycol dibenzoate and a pyrrolidone compound.
18. A composition according to claim 15 wherein the solvent system is a mixture of trimethylbenzene and N-methyl pyrrolidone or a mixture of metil oil and N-methyl pyrrolidone.
19. A composition according to claim 1 comprising, by weight, 20 to 50% U.V. absorber, 10 to 30% emulsifier and 10 to 60% solvent.
20. A composition according to claim 16 comprising, by weight, 20 to 50% U.V. absorber, 10 to 30% emulsifier and 10 to 60% solvent.
21. A composition according to claim 18 comprising, by weight, 20 to 50% U.V. absorber, 10 to 30% emulsifier and 10 to 60% solvent.
22. A process according to claim 6 wherein the solution is applied to the fabric from a dyebath containing one or more disperse dyestuffs.
23. A process for dyeing polyester fabric which comprises treating said fabric in a dyebath containing one or more disperse dyestuffs, and 0.1 to 10%, based on the weight of the fabric, of a composition according to claim 16.
24. A process for dyeing polyester fabric which comprises treating said fabric in a dyebath containing one or more disperse dyestuffs and 0.1 to 10%, based on the weight of the fabric of a composition according to claim 21.
25. A solution according to claim 4 wherein the U.V. absorber is phenyl salicylate or a mixture of phenyl salicylate and 2-hydroxy-4-methoxybenzophenone.
26. A process for dyeing polyester fabric which comprises treating said fabric in a dyebath containing one or more disperse dyestuffs and 0.1 to 10%, base on the weight of the fabric, of a solution according to claim 4, said solution comprising, by weight, 20 to 50% U.V. absorber, 10 to 30% emulsifier and 10 to 60% solvent.
27. A process according to claim 26 wherein the solvent system is a mixture of trimethylbenzene and N-methyl pyrrolidone in a weight ratio of 2:3 to 5:1 or a mixture of metil oil and N-methyl pyrrolidone in a weight ratio of 2:1 to 4:1.
28. A process according to claim 26 wherein the U.V. absorber is phenyl salicylate or a mixture of phenyl salicylate and 2-hydroxy-4-methoxybenzophenone.

The invention relates to compositions for dyeing polyester material, especially for use in the automotive industry.

For various shades of colour it is necessary to dye using mixtures of dyestuffs. The dyestuffs present in the mixture must be chosen on the basis of high light fastness and not, as is desirable, on the basis of having similar dyeing properties. The selection of dyestuffs of the highest light fastness leads therefore to the use of dyestuff combinations which have widely different dyeing properties; this, in turn, leads to problems of level dyeing and reproducibility. Hence, it is necessary to use a dyeing assistant such as a carrier or migration assistant in such situation. However, by using such products, the light fastness of the resultant dyeing is usually decreased.

To alleviate the problem of obtaining good light fastness properties whilst employing a carrier or migration assistant there is provided a solution of one or more U.V. absorbers selected from resorcinol monobenzoate, phenyl salicylate and compounds of formula I ##STR1## in which

R1 is selected from OH, halogen, C1-4 alkyl, CN, C1-4 alkoxy and hydrogen;

each R2 independently, is selected from C1-4 alkoxy, CN, halogen, hydrogen, C1-4 alkyl or OH;

and an emulsifier in an organic solvent system.

It has been found that in addition to being U.V. absorbers these U.V. absorbers also act as carrier active material.

In this Specification preferably C1-4 alkyl is methyl, ethyl or propyl, more preferably methyl or ethyl; preferably C1-4 alkoxy is methoxy or ethoxy and preferably halogen is chlorine or bromine.

Preferably at least one R2 is OH, methoxy or hydrogen, more preferably both R2 's are hydrogen.

Preferably R1 is in the 4-position and is selected from chloro, methoxy and OH.

Preferably there is provided a solution of one or more U.V. absorbers selected from resorcinol monobenzoate, 4-chloro-2,2',4'-trihydroxybenzophenone, 2,2',4-trihydroxybenzophenone, 2,4-dihydroxy-4'-methoxy benzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone and phenyl salicylate; and an emulsifier in an organic solvent system.

Preferably the U.V. absorber is phenyl salicylate or a mixture of phenyl salicylate and 2-hydroxy-4-methoxy benzophenone.

Preferably a solution according to the invention is clear and on adding to water forms an emulsion.

Preferably the emulsifier is an C4-12 alkyl phenol ethoxylated with 5 to 20 moles of EtO, di-C4-12 alkyl phenol ethoxylated with 5 to 20 moles of EtO, C8-18 alcohol ethoxylated with 5 to 30 moles of EtO, C12-18 fatty acid ethoxylated with 5 to 20 moles of EtO and castor oil ethoxylated with 5 to 50 moles of EtO. More preferably the emulsifier is an ethoxylated nonylphenol; most preferably the emulsifier is nonylphenol ethoxylated with 10 moles EtO. (EtO is ethylene oxide.)

Preferably the solvent system is a mixture of a hydrophobic solvent (preferably an ester of a fatty acid or an aromatic ester or an aromatic hydrocarbon) and a hydrophilic solvent (preferably a heterocyclic saturated compound such as pyrrolidone). A more preferred solvent system is a mixture of trimethylbenzene and N-methyl pyrrolidone (preferably in a ratio of 2:3 to 5:1 trimethylbenzene to N-methyl pyrrolidone) or a mixture of metil oil and N-methyl pyrrolidone (preferably in a ratio of 2:1 to 4:1 metil oil to N-methyl pyrrolidone). Metil oil is a mixture of methyl esters of C14-18 fatty acids.

A further preferred solvent system may also include a chlorinated paraffin, a dibenzoate and heterocyclic saturated compounds such as pyrrolidones.

Preferably in a solution according to the invention, 20 to 50% U.V. absorber; 10 to 30% emulsifier and 10 to 60% solvent are present. All ratios given are by weight.

In the dyebath the solution according to the invention is used in amounts from 0.5 to 10% based on the weight of the material.

The solutions according to the invention may be used in all dyeing methods, including rapid dyeing.

Using solutions according to the invention dyeings are produced that are more level and are more reproducible because the U.V. absorber in the composition of the invention assists in maintaining good light fastness of dyeings whilst acting at the same time as a carrier.

The invention will now be illustrated by the following Examples in which all percentages are by weight of substrate to be dyed, all parts are by weight of 100 parts and all temperatures are in °C.

A product A comprising:

27 parts of 2-hydroxy-4-methoxybenzophenone

45 parts of trimethylbenzene

10 parts of N-methyl pyrrolidone and

18 parts of nonyl phenol 10 ethoxylate

is prepared by stirring the components together at room temperature.

A dyebath is prepared as follows:

0.38% C.I. Disperse Yellow 42;

0.21% Foron Red SE LKJ

0.18% Foron Blue SE LKJ

0.46% C.I. Disperse Blue 87

2 g/l Sandacid PB

3.0% of product A above.

A polyester fabric is immersed in the dyebath at a goods to liquor ratio of 1:12 at 60° and the dyebath is raised to 130° at a rate of 3° per minute and the bath is maintained at this temperature for a further hour.

The dyeing prepared from this bath is dried at 100° and fixed for 30 seconds at 170°.

The dyeing prepared is grey in colour and, compared to dyeings made under identical conditions except that the dyebath does not contain 3% of the product A, the light fastness of the dyeing is significantly better when exposed for 72 hours to a Hannaue Sun Test Lamp.

Following the process of Example 1 but using a dyebath comprising:

2.00% C.I. Disperse Orange 37

0.14% C.I. Disperse Red 167

0.61% C.I. Disperse Blue 73

2 g/l Sandacid PB and

3.0% of the product A of Example 1,

a dyeing of a brown colour is obtained and compared with a dyeing made under identical conditions except that the dyebath does not contain 3% of the product A, the light fastness of the dyeing is significantly better.

The Foron dyestuffs are commercially available from Sandoz Ltd., as is Sandacid PB, which is a buffer comprising mixed dicarboxylic acids, naphthalene sulphonic acid-formaldehyde condensate and ammonium sulphate.

A product B comprising:

40 parts of phenyl salicylate

30 parts of metil oil

20 parts of nonyl phenol 10 ethoxylate

10 parts of N-methyl pyrrolidone

is prepared by stirring the components together at room temperature until a clear solution is obtained.

This can be substituted for product A in either Example 1 or Example 2.

A product C comprising:

26.6 parts of 2-hydroxy-4-methoxy benzophenone

13.4 parts of phenyl salicylate

10.0 parts of N-methyl-2-pyrrolidone

7.5 parts of diethylene glycol dibenzoate

20.0 parts of Cerechlor 50 LU (a chlorinated paraffin)

22.5 parts of nonyl phenol 10 ethoxylate

is prepared by stirring the components together at room temperature until a clear solution is obtained.

This can be substituted for product A in either of Examples 1 or 2.

Bennett, Brian, Clough, Donald K.

Patent Priority Assignee Title
4812139, May 04 1988 PROJECT IVORY ACQUISITION, LLC Dyed polyester fabrics with improved lightfastness
4824483, Jun 12 1986 JUNIUS, L L C U.V. Detectable flame retardant treatment
4874391, Jul 29 1986 Ciba-Geigy Corporation Process for photochemical stabilization of polyamide fiber material and mixtures thereof with other fibers: water-soluble copper complex dye and light-stabilizer
4943299, Oct 09 1987 Bayer Aktiengesellschaft Levelling agents for disperse dyeing of polyester: ethoxylate or propoxylate of substituted phenol, emulsifier and carrier
5085903, Jun 11 1990 PPG Industries Ohio, Inc Coatings for the protection of products in light-transmitting containers
5182148, Jun 11 1990 PPG Industries Ohio, Inc Coatings and method for coloring light-transmitting containers
5387262, Sep 25 1992 Surry Chemicals; SURRY CHEMICALS, INC Process for increasing the lightfastness of dyed fabrics
5498345, Dec 13 1990 Ciba Specialty Chemicals Corporation Aqueous dispersion of sparingly soluble UV absorbers
5575958, Jul 23 1990 Huntsman International LLC Aqueous dispersions of sparingly soluble UV absorbers
5681380, Jun 05 1995 Kimberly-Clark Worldwide, Inc. Ink for ink jet printers
5700850, Aug 05 1993 Kimberly-Clark Worldwide, Inc Colorant compositions and colorant stabilizers
5709955, Jun 30 1994 Kimberly-Clark Worldwide, Inc Adhesive composition curable upon exposure to radiation and applications therefor
5721287, Aug 05 1993 Kimberly-Clark Worldwide, Inc Method of mutating a colorant by irradiation
5733693, Aug 05 1993 Kimberly-Clark Worldwide, Inc. Method for improving the readability of data processing forms
5772920, Jul 12 1995 CLARIANT FINANCE BVI LIMITED U.V. absorber compositions
5773182, Aug 05 1993 Kimberly-Clark Worldwide, Inc Method of light stabilizing a colorant
5782963, Mar 29 1996 Kimberly-Clark Worldwide, Inc Colorant stabilizers
5786132, Jun 05 1995 Kimberly-Clark Worldwide, Inc Pre-dyes, mutable dye compositions, and methods of developing a color
5837429, Jun 05 1995 Kimberly-Clark Worldwide, Inc Pre-dyes, pre-dye compositions, and methods of developing a color
5855655, Mar 29 1996 Kimberly-Clark Worldwide, Inc Colorant stabilizers
5858586, Aug 05 1993 Kimberly-Clark Corporation Digital information recording media and method of using same
5865471, Aug 05 1993 Kimberly-Clark Worldwide, Inc Photo-erasable data processing forms
5885337, Jan 22 1996 Colorant stabilizers
5891229, Mar 29 1996 Kimberly-Clark Worldwide, Inc Colorant stabilizers
5908495, Aug 05 1993 Ink for ink jet printers
6008268, Jun 30 1994 Kimberly-Clark Worldwide, Inc. Photoreactor composition, method of generating a reactive species, and applications therefor
6017471, Aug 05 1993 Kimberly-Clark Worldwide, Inc. Colorants and colorant modifiers
6017661, Aug 05 1993 Kimberly-Clark Corporation Temporary marking using photoerasable colorants
6033465, Jun 28 1995 Kimberly-Clark Worldwide, Inc.; Kimberly-Clark Worldwide, Inc Colorants and colorant modifiers
6039767, May 19 1997 Equistar Chemicals, LP Blended dyes and process for dyeing polypropylene fibers
6054256, Aug 05 1993 Kimberly-Clark Worldwide, Inc. Method and apparatus for indicating ultraviolet light exposure
6060200, Aug 05 1993 Kimberly-Clark Worldwide, Inc. Photo-erasable data processing forms and methods
6060223, Aug 05 1993 Kimberly-Clark Worldwide, Inc. Plastic article for colored printing and method for printing on a colored plastic article
6063551, Jun 15 1995 Kimberly-Clark Worldwide, Inc. Mutable dye composition and method of developing a color
6066439, Aug 05 1993 Kimberly-Clark Worldwide, Inc. Instrument for photoerasable marking
6071979, Jun 30 1994 Kimberly-Clark Worldwide, Inc. Photoreactor composition method of generating a reactive species and applications therefor
6090236, Jun 30 1994 Kimberly-Clark Worldwide, Inc. Photocuring, articles made by photocuring, and compositions for use in photocuring
6099628, Nov 27 1996 Kimberly-Clark Worldwide, Inc Colorant stabilizers
6120949, Aug 05 1993 Kimberly-Clark Worldwide, Inc. Photoerasable paint and method for using photoerasable paint
6127073, Aug 05 1993 Kimberly-Clark Worldwide, Inc. Method for concealing information and document for securely communicating concealed information
6168654, Mar 29 1996 Kimberly-Clark Worldwide, Inc Colorant stabilizers
6168655, Jan 22 1996 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
6211383, Aug 05 1993 Kimberly-Clark Worldwide, Inc. Nohr-McDonald elimination reaction
6228157, Jul 20 1998 HANGER SOLUTIONS, LLC Ink jet ink compositions
6235095, Dec 20 1994 Ink for inkjet printers
6242057, Jun 30 1994 Kimberly-Clark Worldwide, Inc Photoreactor composition and applications therefor
6265458, Sep 28 1999 TAMIRAS PER PTE LTD , LLC Photoinitiators and applications therefor
6277897, Jun 03 1998 Kimberly-Clark Worldwide, Inc Photoinitiators and applications therefor
6294698, Apr 16 1999 Kimberly-Clark Corporation; Kimberly-Clark Worldwide, Inc Photoinitiators and applications therefor
6331056, Feb 25 1999 Kimberly-Clark Worldwide, Inc Printing apparatus and applications therefor
6342305, Sep 10 1993 Kimberly-Clark Corporation Colorants and colorant modifiers
6368395, May 24 1999 Kimberly-Clark Worldwide, Inc Subphthalocyanine colorants, ink compositions, and method of making the same
6368396, Jan 19 1999 Kimberly-Clark Worldwide, Inc Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
6391065, Nov 03 1995 DYSTAR L P UV light absorber composition and method of improving the lightfastness of dyed textiles
6503559, Jun 03 1998 HANGER SOLUTIONS, LLC Neonanoplasts and microemulsion technology for inks and ink jet printing
6524379, Jan 12 2000 Kimberly-Clark Worldwide, Inc Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
Patent Priority Assignee Title
3702229,
3932128, Jan 29 1975 COLLOIDS, INC Dye carriers for polyamide fibers
3950419, Oct 13 1972 Sandoz Ltd., (Sandoz AG) Aromatic carboxylic acid esters and amides as fixing agents
3969075, Jul 28 1975 Celanese Corporation Dyeing halogenated aromatic polyester fibrous materials with acetophenone
4032291, Jan 12 1976 Ciba-Geigy Corporation Phenyl phthalate carriers in dyeing and printing synthetic fibers
4229172, Apr 15 1976 SANDOZ LTD A K A SANDOZ A G , A CORP OF SWITZERLAND Disperse dyeing of polyester with benzalketo derivatives as carriers: benzalacetone, methyl cinnamate etc.
4348203, May 05 1973 Ciba Specialty Chemicals Corporation Dyeing process
4383835, Oct 31 1980 Bayer Aktiengesellschaft Process for improving the light fastness of polyamide dyeings with copper complexes of schiff bases or ortho-hydroxy benzophenone
GB1213398,
GB810570,
JP5659372,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 18 1984BENNETT, BRIANSANDOZ LTD , A COMPANY OF SWITZERLANDASSIGNMENT OF ASSIGNORS INTEREST 0044530481 pdf
Apr 18 1984CLOUGH, DONALD K SANDOZ LTD , A COMPANY OF SWITZERLANDASSIGNMENT OF ASSIGNORS INTEREST 0044530481 pdf
May 17 1984Sandoz Ltd.(assignment on the face of the patent)
Jun 07 1984S A N D O Z LTD FIDELITY UNION BANK FORMERLY KNOWN AS FIDELITY UNION TRUST COMPANY EXECUTIVE TRUSTEE UNDER SANDOZ TRUST OF MAY 4, 1955 ASSIGNMENT OF ASSIGNORS INTEREST 0053190846 pdf
Date Maintenance Fee Events
Apr 14 1989M173: Payment of Maintenance Fee, 4th Year, PL 97-247.
Apr 24 1989ASPN: Payor Number Assigned.
Jul 13 1993REM: Maintenance Fee Reminder Mailed.
Dec 12 1993EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Dec 10 19884 years fee payment window open
Jun 10 19896 months grace period start (w surcharge)
Dec 10 1989patent expiry (for year 4)
Dec 10 19912 years to revive unintentionally abandoned end. (for year 4)
Dec 10 19928 years fee payment window open
Jun 10 19936 months grace period start (w surcharge)
Dec 10 1993patent expiry (for year 8)
Dec 10 19952 years to revive unintentionally abandoned end. (for year 8)
Dec 10 199612 years fee payment window open
Jun 10 19976 months grace period start (w surcharge)
Dec 10 1997patent expiry (for year 12)
Dec 10 19992 years to revive unintentionally abandoned end. (for year 12)