Hard, wettable, gas-permeable, optically acceptable mechanically stable vision correction lenses can be made from a substantially hydrophobic polymeric matrix having randomly polymerized throughout the matrix residues derived from a hydrolyzable silicone-containing ethylenically unsaturated monomer.

Patent
   4581184
Priority
Nov 09 1981
Filed
Jan 16 1984
Issued
Apr 08 1986
Expiry
Apr 08 2003
Assg.orig
Entity
Large
6
17
all paid
17. A method of forming an optically clear, hard, mechanically stable, gas permeable, wettable vision correction lens material which comprises:
(a) forming a mixture of ethylenically unsaturated monomers that includes an ethylenically unsaturated silicone containing monomer, having a hydrolyzed silicone group, of the formula: ##STR15## wherein R is hydrogen or a c1-5 alkyl and A is a silicone group; and (b) initiating polymerization.
18. A method of forming a contact lens which comprises shaping a polymeric matrix having randomly polymerized in the matrix, residues derived from an ethylenically unsaturated silicone containing monomer, having a hydrolyzable silicone group, of the formula: ##STR16## wherein R is a hydrogen or a c1-5 alkyl and A is a silicone group, in an amount sufficient to provide gas permeability to the matrix and wettability to the lens surface when hydrated, into the form of a lens and hydrating the lens.
9. An optically clear, hard, mechanically stable vision correction lens material which comprises a polymeric matrix having randomly polymerized in the matrix, residues derived from an ethylenically unsaturated silicone-containing monomer, having a hydrolyzable silicone group, of the formula: ##STR12## wherein R is hydrogen or a c1-5 alkyl and A is a silicone group wherein a silicone of same is directly attached to the ester oxygen, in an amount sufficient to provide gas permeability to the matrix and wettability to the surface when hydrated.
1. An optically clear, hard, mechanically stable, gas permeable, wettable vision correction lens which comprises a polymeric matrix having randomly polymerized in the matrix, residues derived from an ethylenically unsaturated silicone containing monomer, having a hydrolyzable silicone group of the formula: ##STR9## wherein R is a hydrogen or a c1-5 alkyl and A is a silicone group wherein a silicone of same is directly attached to the ester oxygen, in an amount sufficient to provide gas permeability to the matrix and wettabillity to the lens surface when hydrated.
2. The vision correction lens of claim 1 wherein the silicone group is: ##STR10## wherein n is an integer of 1 to 10.
3. The vision correction lens of claim 1 wherein the silicone groups is: ##STR11##
4. The vision correction lens of claim 1 wherein the polymeric matrix is derived from an acrylic monomer, a styrenic monomer, or mixtures thereof, sufficient to provide a rigid lens matrix.
5. The vision correction lens of claim 1 wherein the polymeric matrix also contains sufficient crosslinking agent having at least two ethylenically unsaturated groups to provide additional mechanical stability.
6. The vision correction lens of claim 1 wherein the lens has a hardness of at least 50 Shore hardness units.
7. The vision correction lens of claim 1 wherein the surface of the vision correction lens has a wettablity contact angle of less than 75 degrees.
8. The vision correction lens of claim 1 wherein the vision correction lens has a minimum oxygen permeability of at least about 4×10-11 DK units.
10. The vision correction lens of claim 9 wherein the silcone group wherein a silicone of same is directly attached to the ester oxygen is: ##STR13## wherein n is an integer of 1 to 10.
11. The vision correction lens of claim 9 wherein the silicone group is: ##STR14##
12. The vision correction lens of claim 9 wherein the polymeric matrix is derived from an acrylic monomer, a styrenic monomer, or mixtures thereof.
13. The vision correction lens of claim 9 wherein the polymeric material also contains sufficient crosslinking agent having at least two ethylenically unsaturated groups to provide mechanical stability.
14. The vision correction lens of claim 9 wherein the lens has a hardness of at least 50 Shore hardness units.
15. The vision correction lens of claim 9 wherein the surface of the vision correction lens has a wettability contact angle of less than 75 degrees.
16. The vision correction lens of claim 9 wherein the vision correction lens has a minimum oxygen permeability of at least 4×10-11 DK units.

This application is a continuation-in-part of U.S. Ser. No. 06/319,193, filed Nov. 9, 1981.

The invention relates to hard contact lenses that are optically clear and mechanically stable. More particularly, the invention relates to a hard contact lens material containing a silicone containing monomer that surprisingly can be formed into a lens which is stable and wettable when hydrated and gas permeable.

Vision correction lenses, i.e., both contact lenses and intraocular lenses, must be mechanically stable, optically clear, wettable, and gas-permeable. The material that makes up the lenses must be optically clear, mechanically stable and formable to a shape which can provide sufficient correction for the eye and can maintain the correction. The lens material must be wettable since a non-wettable lens tends to irritate and cause abrasion of the eye and lid. The lens material must be gas permeable. The cell covering (corneal epithelium) of the eye respires by exchanging oxygen, carbon dioxide, and other substances with tear fluid. The placement of a contact lens over the cornea can prevent the corneal cells from contacting tear fluid and can result in oxygen starvation, build-up of carbon dioxide, discomfort and in some cases, corneal damage.

Successful hard or rigid vision correction lenses have been prepared from a variety of well known rigid polymeric substances such as glass, acrylate based polymers, styrene-based polymers and others. The polymeric nature of the materials have been rendered potentially gas-permeable using ethylenically unsaturated silicone-containing monomers that successfully provide a change in the polymeric structure of the solid lens material resulting in reduced density and increased gas permeability. Ethylenically unsaturated silicone silicone containing monomers can in general be of two types. The first type comprises a silicone group attached to the ethylenically unsaturated group through a bond that is hydrolyzable in aqueous media. The second type comprises a monomer having a bond, between the silione group and the unsaturated group, that is substantially hydrolytically stable. The art as a whole suggests that hydrolytically stable monomers be used and hydrolytically unstable monomers be avoided. Polymers having hydrolytically unstable constituents, under conditions commonly encountered by the lens, have not been used and have been actively avoided by persons skilled in the vision correction lens art since the hydrolysis of the silicone monomers is believed to result in the mechanical instability of the lens. A contact lens having mechanical instability could be easily damaged during shaping or handling or could change in dimension during wearing and alter the vision correction, rendering the lens useless for the individual. See, for example, Deichert, U.S. Pat. No. 4,341,889, and others.

We have found that, contrary to the belief of persons skilled in the contact lens art, hydrolytically unstable ethylenically unsaturated silicone-containing monomers are substantially protected from hydrolysis in the interior of hard or rigid vision correction lenses. At the same time on the surface of the lens, the hydrolysis of the silicone-containing unsaturated monomers provides a positive useful result. Upon hydration, the silicone groups on the surface of the lens are chemically hydrolyzed from the polymer mass leaving a hydrophilic hydroxyl group. The creation of surface hydroxyl groups, with the concommitant removal of hydrophobic silicone groups, results in an increase in wettability of the contact lens, thus increasing the comfort of the wearer.

Briefly, the rigid vision correction lens material can be made by polymerizing a mixture of ethylenically unsaturated monomers including an ethylenically unsaturated hydrolyzable silicone-containing monomer resulting in a hard polymer matrix. Vision correction lenses can be made from the hard or rigid polymer matrix by shaping it into a lens form and hydrating the lens.

A first aspect of the invention is a hydrophobic polymeric matrix from which contact lenses can be manufactured. Another aspect of the invention is a method to form the hydrophobic polymeric vision correction lens matrix. A further aspect of the invention is a method of forming a vision correction lens from the hydrophobic polymeric matrix. Still another aspect of the invention comprises a vision correction lens made using the methods and materials above.

Ethylenically unsaturated silicone-containing monomers which can be used to provide gas permeability and potential wettability to the hard contact lens of this invention comprise a monomer having at least one ethylenically unsaturated or a vinyl group connected to a silicone or siloxane group through a bond which is hydrolyzable in an aqueous medium under conditions to which contact lens surfaces are subject to during hydration and use. The ethylenically unsaturated silicone-containing monomer can be represented by the following formula: ##STR1## wherein R is hydrogen or a C1-5 alkyl and A is a silicone group. The direct link between the carbonyl group and the silicone group through the oxygen is hydrolyzable in aqueous media. At least one class of previously used non-hydrolyzable silicone monomers in the art can be represented by the following formula: ##STR2## wherein n is an interger of 1-5 and A is a silicone group. The presence of the --(CH2)n -- group introduces substantial hydrolytic stability to the monomer.

The silicone group can be linear or can be partly substantially branched and can contain from 1 to 25 silicon atoms or more. The silicone group can contain portions which are substantially linear silicone moieties or can contain portions which are highly branched silicone moieties. A generalized representation of the silicone groups of this invention can be represented by the following general formula: ##STR3## wherein q and r are independently an integer of 0-6, X and Y are independently selected from the group consisting of a Z group, a C1-5 alkyl group, a cycloalkyl group, a substituted or unsubstituted phenyl group, and a polysiloxanol group, wherein the Z group can be represented by the following general formula: ##STR4## wherein A is a C1-5 alkyl group. Preferred silicone groups can comprise a moiety which can be represented by the following formula: ##STR5## wherein X and Y are independently selected from the group consisting of C1-5 alkyl groups, phenyl groups, or B wherein B is a group having the structure: ##STR6## wherein A is a C1-5 alkyl group or a phenyl group and p and m are independently integers of 1 to 5. The most preferred silicone groups correspond to the following general formula: ##STR7## wherein n is an integer of 1 to 5.

The above hydrolyzable ethylenically unsaturated silicone containing monomers are polymerized in a mixture of monomers resulting in a polymer matrix that can be formed into a lens that can be hydrated. The mixture of monomers can contain ethylenically unsaturated hydrolyzable silicone containing monomers or mixtures thereof along with other ethylenically unsaturated monomers that can polymerize generally in a redox or free radical initiated catalyzed polymerization reaction to form the hard mechanically stable lens material.

While any ethylenically unsaturated monomer can be used to form the material of the invention, representative monomers which may be employed in the practice of this invention include acrylate and methacrylate monomers, acrylic acid ester and methacrylic acid ester monomers, styrene type monomers, and others. Representative examples of acrylate type monomers include acrylate and methacrylate alkyl esters wherein the alkyl group comprises a C1-25 alkyl or aryl group such as methyl, ethyl, propyl, isopropyl, t-butyl, n-hexyl, isohexyl, hexyl, octyl, 2-ethylhexyl, nonyl, decyl, undecyl, lauryl, cetyl, octadecyl, cyclohexyl, benzyl, phenyl, etc.

Styrene type monomers which can be used in the material of the invention include monomer materials corresponding to the following general formula: ##STR8## wherein each R is independently selected from hydrogen or an n-alkyl, isoalkyl, tertiary alkyl group having 1 to 5 carbon atoms, n is an integer of 1 or 2 and m is an integer of 1 to 5. Representative examples of the styrene type monomer include styrene (vinyl benzene), alphamethylstyrene, vinyl toluene, divinyl benzene, etc.

A hydrophobic ethylenically polyunsaturated (di- or tri-unsaturated, etc.) crosslinking agent can be included in the polymerization mixture to result in a polymer matrix with substantial mechanical stability. Typical polyunsaturated crosslinking agents comprise two or more ethylenically unsaturated groups attached to a polyvalent group which provides sufficient separation between the ethylenically unsaturated groups to result in effective crosslinking between adjacent molecules. Crosslinking agents that can be used include a wide variety of commonly known ethylenically poly (di, tri, etc.) unsaturated crosslinking agents such as vinyl acrylate and methacrylate, allyl acrylate and methacrylate, diacrylates and dimethacrylates of polyoxyethylene, polyoxypropylene and polyoxybutylene glycols, triacrylate and trimethacrylate esters of glycerol and propylene glycol, trivinyl cyanurate, olefin glycol dimethacrylates, allyl diglycol carbonate, triallyl cyanurate, diallyl carbonates, and polyalkyl carbonates of dihydroxy or polyhydroxy compounds, divinyl and polyvinyl carbonate of dihydroxy or polyhydroxy compounds, di- or triacrylates and methacrylates of a polyhydroxy compound such as trihydroxypropane or trimethylolpropane, di, tri or polyvinyl ester of di, tri or polycarboxylic acids, di, tri or polyvinyl ethers of di, tri or polyhydroxy compounds; di, tri or polyallyl ethers of di, tri or polyhydroxy compounds; di, tri or polyalyl esters of di, tri or polycarboxylic acid compounds; di, tri or tetravinyl aromatic compounds.

An ethylenically unsaturated dicarboxylic acid anhydride in combination with the other monomers can provide additional wettability to the lens. Examples of the dicarboxylic anhydride compound include maleic anhydride, citriconic anhydride, ethyl maleic anhydride, iticonic anhydride, halo maleic anhydride, etc. Preferably maleic anhydride is used for reasons of reactivity and increased wettability of the resulting polymer matrix. The improved wettability can be achieved by the hydrolysis of the surface dicarboxylic anhydride groups forming ionized carboxylate groups which enhance wettability. In order to provide other properties to the lens materials, coloring agents, ultraviolet light absorbers, light polarizers, etc. can be either polymerized along the chain of the polymer matrix or dispersed throughout the polymer matrix.

In somewhat greater detail, the vision correction lens composition of this invention can be made by polymerizing a mixture of polymerizable monomers including the ethylenically unsaturated hydrolyzable silicone containing monomer to form the polymeric matrix. Commonly the monomers can be combined in a polymerization reaction mixture comprising a major proportion of polymerizable monomers and an effective gas permeability, and a potential wettability providing amount of the ethylenically unsaturated hydrolyzable silicone containing monomer. Generally the polymerization mixture contains less than about 25 parts of the silicone monomer, preferably about 1 to about 15 parts and most preferably for reasons of optimum gas permeability and wettability, about 4 to 15 parts of the ethylenically unsaturated silicone containing monomer.

Preferred catalysts used are catalysts which generate free radical polymerization initiators upon exposure to ultraviolet radiation or heat. These catalysts are well known in the art but examples of useful catalysts are 2,2-diethoxyacetophenone, and 2,2-azobis-(2-methylbutyronitrile). Catalysts are generally used at a concentration of about 1% or less of the reaction mixture. A preferred polymerization technique comprises mixing the desired monomers, dispensing the monomers into clear molded or machined polymerization cups and exposing the cups to a source of energy generating the free radical polymerization initiators from the catalyst compound. Generally it is preferred to degas the polymerization mixture, to remove oxygen and to conduct the polymerization under nitrogen.

Reaction conditions for polymerization are generally not critical. Ambient pressures and temperatures can be satisfactory for polymerization with an ultraviolet radiation initiation. A heat polymerization initiation technique can be used at temperatures from about ambient to about 95°C Polymerization time can be from about 2 to about 48 hours. It is common to cure the polymerized mass at temperatures ranging from about ambient to 90°C for about 8 to 20 hours after polymerization is complete. Other modifications and variations in the polymerization of the vision correction lens material are well known to persons skilled in the art.

In order to manufacture lenses from the vision correction lens polymer matrix the resulting rigid solid product can be cut or formed into approximately circular lens blanks of approximate dimensions of about 3/4 to 1 inch in diameter and about 5/8 to 1 inch in thickness (about 19 to 25 millimeters in diameter and about 15 to 25 millimeters in thickness) and the circular lens blanks can be ground to the desired surface finish. After grinding the surface, the lens can be contacted with a hydrolyzing solution sufficient to cause the hydrolytic removal of the silicone group and to hydrolyze any other hydrolyzable groups present. A preferable hydrolyzing agent comprises an aqueous solution of base such as a 1 to 15 wt-% aqueous solution of ammonium hydroxide or sodium hydroxide.

Although the lens can be advantageously used as a hard plastic lens by fabrication in the manner indicated above, it is sometimes desirable to provide a composite type lens in which the peripheral skirt area of the lens comprises a hydrophilic polymer. The skirt portion can be formed from a water soluble vinyl monomer copolymerized with a hydrophobic water insoluble monomer in the presence of a crosslinking agent and a quantity of a water soluble inert substance. This inert substance is substantially removed during the exposure of the lens to water during hydration. Upon exposure to water, a substantial portion of the water soluble inert substance is removed from the polymer matrix and replaced by water of hydration to form the soft hydrophilic polymer structure desirable for use in contact lenses. Stresses and distortions of the lens can be minimized or eliminated by this simple exchange of water soluble inert substance or water in the polymer matrix. See U.S. Pat. No. 4,093,361.

As is stated above, the contact lens material of the invention must be wettable, oxygen permeable and hard.

Oxygen permeability indicates that the lens material has the capability of transporting oxygen and carbon dioxide sufficiently to meet the requirements of the human cornea. Oxygen gas permeability values (DK) in units of milliliters (O2)-cm2 /sec./ml./mm. Hg. are measured at 32°C in oxygen-consuming electrode cell (oxygen flux meter). See J. Falt, Polarigraphic Oxygen Sensor, C.P.C. Press, 1976. Values of DK greater than about 4×10-11, preferably 8×10-11, most preferably greater than 12×10-11, are desirable for vision correction lens material that is permeable to gas exchange. Wettability indicates the tendency of water to associate with or wet the surface of the lens. Water wettability can be determined on dry samples using a Kayness contact angle measurement. Contact angles of less than 75° and preferably less than 70° indicate beneficial wettability. Mechanical stability can be established by measuring the base curvature of the lens from time to time on an American optical radioscope. A change in base curvature of less than 0.04 milliliters during use is acceptable. Generally the term hard is used herein to describe the vision correction lens material of the instant invention. Hardness can be determined using a Shore hardness A scale measurement in which the hardness of the lens should be about 50 Shore hardness units or greater.

The present invention will be further understood by reference to the following specific Examples that include a best mode.

A polymerization reaction mixture was prepared on a weight basis comprising tertiary butyl styrene 70.75%, pentamethyldisiloxanyl methacrylate 5.5%, methyl methacrylate 5.5%, trimethylpropane trimethacrylate 11.0%, maleic anhydride 7.15%, diethoxy acetophenone 0.1%. The reaction mixture was stirred for five minutes, dispensed into transparent acrylic cups molded from a UV transmitting grade of polymethylmethacrylate resin, placed on a glass tray above a bank of ultraviolet fluorescent tubes and exposed to ultraviolet light at an intensity of at least 1500 microwatts per square centimeter for about 12 hours. Lenses were manufactured by grinding and polishing the thus formed blanks. The resulting lenses were soaked in a 2% aqueous sodium hydroxide solution for 72 hours in order to hydrate the hydratable groups on the surface of the lens. The oxygen permeability of the lens was 15×10-11 and a wettability contact angle of 66° in saline. The lens was mechanically stable.

Example I was repeated except the silicone methacrylate used was a nonhydrolyzable monomer, methacryloxypropyl pentamethyldisiloxane (available through Petrarch Systems Inc. as M8547). Contact angle measurements were in excess of 75° which indicated that the lenses made from this material were not wettable by human tears.

Example I is repeated except that 70.75% of methylmethacrylate is substituted for the tertiary butyl styrene. Hydration of lens blanks results in a substantial reduction in wetting angle resulting in a wettable lens. The lens is mechanically stable. The lens has an oxygen permeability of greater than 4×10-11.

Discs from buttons made in Examples I and II were made and half from each group were hydrolyzed as outlined in Example I while half remained unhydrolyzed. All groups were analyzed by X-ray photo-electron spectroscopy. The material of Example II showed no change in silicone to carbon or oxygen to carbon ratios after hydration. The material of Example I showed a 2-fold decrease in oxygen/carbon ratios, a 6-fold decrease in silicone/oxygen ratios and a dramatic 16-fold decrease in silicone/carbon ratios after hydration. This demonstrates the gross reduction in the amount of silicone on the surface of the lens after hydrolysis.

Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides wholly in the claims hereinafter appended.

Powell, James C.

Patent Priority Assignee Title
4822864, Jun 18 1987 VISION 2000 HOLDINGS, LLC Gas permeable contact lens and method and materials for its manufacture
4861840, Dec 03 1986 BARNES-HIND, INC , 895 KIFER ROAD, SUNNYVALE, CA 94086 A CORP OF DE Novel siloxanyl acrylic monomer and gas-permeable contact lenses made therefrom
4940762, Nov 09 1981 Novartis AG Oxygen permeable lens with hydrolyzable silicon group
5399612, Dec 20 1990 S C JOHNSON COMMERICAL MARKETS, INC Blended polymeric compositions
8079703, Jul 21 2008 Alcon Inc Silicone-containing polymeric materials with hydrolyzable groups
8883928, Jul 21 2008 Alcon Inc Silicone-containing polymeric materials with hydrolyzable groups
Patent Priority Assignee Title
2674743,
3400175,
3619044,
3641208,
3645835,
3651035,
3654250,
3681305,
3718383,
3745042,
3792125,
3808178,
4101513, Feb 02 1977 Minnesota Mining and Manufacturing Company Catalyst for condensation of hydrolyzable silanes and storage stable compositions thereof
4138382, May 01 1978 Dow Corning Corporation Hydrophilic, water-swellable, crosslinked, copolymer gel and prosthesis employing same
4139692, Oct 12 1977 Toyo Contact Lens Co., Ltd. Copolymer for contact lens, its preparation and contact lens made thereof
4152508, Feb 15 1978 B&L INTERNATIONAL HOLDINGS CORP C O BAUSCH & LOMB, INCORPORATED Silicone-containing hard contact lens material
4424328, Dec 04 1981 B&L INTERNATIONAL HOLDINGS CORP C O BAUSCH & LOMB, INCORPORATED Silicone-containing contact lens material and contact lenses made thereof
///////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 11 1984POWELL, JAMES C PRECISION-COSMET CO , INC ASSIGNMENT OF ASSIGNORS INTEREST 0042190207 pdf
Jan 16 1984Precision-Cosmet Co., Inc.(assignment on the face of the patent)
Dec 05 1986PRECISION-COSMET CO , INC , A DE CORP FRIGITRONICS, INC , 770 RIVER ROAD, SHELTON, CONNECTICUT 06484, A DE CORP ASSIGNMENT OF ASSIGNORS INTEREST 0046790171 pdf
Aug 20 1987FRIGITRONICS INC FRG THIRTY-ONE CORPORATIONCHANGE OF NAME SEE DOCUMENT FOR DETAILS EFFECTIVE DATE : 8-20-870053110532 pdf
Aug 15 1988FRG THIRTY-ONE CORPORATIONBARNES-HIND, INC MERGER SEE DOCUMENT FOR DETAILS EFFECTIVE DATE: AUG 8, 1988, DE0053110516 pdf
Sep 26 1988BARNES-HIND INC PILKINGTON VISIONCARE, INC , A CORP OF DE CHANGE OF NAME SEE DOCUMENT FOR DETAILS EFFECTIVE DATE: 10-08-880053110524 pdf
Jun 27 1996PILKINGTON VISIONCARE, INC PILKINGTON BARNES HIND, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0080130438 pdf
Oct 02 1996PILKINGTON BARNES HIND, INC PBH, INCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0107190286 pdf
Feb 19 1997PBH INC Bankers Trust CompanySECURITY INTEREST SEE DOCUMENT FOR DETAILS 0084230903 pdf
Apr 27 2001Bankers Trust CompanyPBH, INCRELEASE OF A SECURITY INTEREST0118210602 pdf
Dec 18 2002PBH, INCNovartis AGASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0138520405 pdf
Date Maintenance Fee Events
Jun 26 1989ASPN: Payor Number Assigned.
Sep 18 1989M173: Payment of Maintenance Fee, 4th Year, PL 97-247.
Sep 20 1989ASPN: Payor Number Assigned.
Sep 20 1989RMPN: Payer Number De-assigned.
Oct 02 1989F160: Maintenance Fee Has Already Been Paid. Refund is scheduled.
Oct 08 1993M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Jul 30 1996ASPN: Payor Number Assigned.
Jul 30 1996RMPN: Payer Number De-assigned.
Sep 22 1997M185: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Apr 08 19894 years fee payment window open
Oct 08 19896 months grace period start (w surcharge)
Apr 08 1990patent expiry (for year 4)
Apr 08 19922 years to revive unintentionally abandoned end. (for year 4)
Apr 08 19938 years fee payment window open
Oct 08 19936 months grace period start (w surcharge)
Apr 08 1994patent expiry (for year 8)
Apr 08 19962 years to revive unintentionally abandoned end. (for year 8)
Apr 08 199712 years fee payment window open
Oct 08 19976 months grace period start (w surcharge)
Apr 08 1998patent expiry (for year 12)
Apr 08 20002 years to revive unintentionally abandoned end. (for year 12)