A unitary disposable conduit extends from the intravenous reservoir along a gravity-flow path to the patient, and incorporates a valve block containing an externally controlled flow-control valve. An electronic controller monitors the drop rate in a drop chamber which is an integral part of the disposable conduit, compares this rate with an operator-selected rate, and controls the valve by varying the current in a shape-memory actuator element whose movements, caused by the resultant Joule heating, are coupled to the valve to proportionally vary the flow rate in the conduit. The valve block is securely received within a recess in the controller, and is automatically coupled to the controller when inserted within this recess. The shape-memory actuator element may be incorporated within the disposable valve block, or may form a part of the controller, with a simple mechanical coupling to transmit its movements to the valve. The valve may be automatically or manually closed when the valve block is removed from the controller, or if power failure occurs.
|
10. A flow rate controller for use in gravity-fed liquid dispensing apparatus, comprising:
means defining a gravity feed flow path between a reservoir and a point of utilization of liquid; a valve having a member movable between a first position locking flow of a liquid along said flow path and a second position permitting generally uninhibited flow of a fluid along said flow path; means exerting a force for biasing said member to said first position; and a shape-memory element of a material having the intrinsic property of shape-memory and which transits between two different shape defining a first shape at a first temperature and a second shape at a second temperature and transiting through all intermediate shapes over the temperature range between between said first and second temperatures, said shape-memory element overcoming said force of said biasing means upon transiting from the lower to the higher of said first and second temperatures.
1. An intravenous flow controller for use in a gravity-fed intravenous liquid dispensing apparatus designed for intravenous adminstration of nutrients and medicaments at a preselected flow rate from a liquid reservoir at an upstream end thereof, downwardly along a flow path bounded over a portion of its length by a flexible intravenous tube, to a point of exit therefrom, said flow controller comprising:
flow-rate monitor and control means for monitoring the flow rate along said flow path and for producing in response to said flow rate an electrical valve control signal directly related to the difference between said flow rate and said preselected flow rate; valve means disposed along said flow path and connected to respond to said electrical valve control signal by varying said flow rate in response thereto in direct relation to the magnitude of said valve control signal, said valve means comprising: means for biasing said valve means to a closed position to prevent flow of liquid through the flexible intravenous tube, a shape-memory valve actuator element connected to actuate said valve means and made of a material which has the intrinsic property of shape memory and transits between two different crystalline phases whenever its temperature passes through a certain region of transition temperatures, said actuator element having a first physical shape defined by a first set of dimensions at temperatures above said transition temperature and a second physical shape defined by a second set of dimensions at temperatures below said transition temperature, and transiting through a region of shapes intermediate said first and second shapes as its temperature passes through said region of transition temperatures, and causing flow rate along said flow path to vary in response to said transiting through said region of transition temperatures; means to cause heating of said actuator element to change its temperature in direct relation to the magnitude of said valve control signal, whereby changes in physical shape of said actuator and, hence, flow rate are caused by changes in said valve control signal; said shape memory valve actuator overcoming said biasing means and causing opening of said valve means to permit flow of fluid only upon heating of said actuator above a prescribed minimum temperature.
2. A disposable flow-regulating conduit for use in a gravity-fed intravenous liquid dispensing apparatus designed for intravenous adminstration of nutrients and medicaments at a preselected flow rate from a liquid reservoir at an upstream end thereof, downwardly along a flow path bounded over a portion of its length by a flexible intravenous tube, to a point of exit therefrom, said apparatus including flow-rate monitoring and control means to monitor the flow of liquid downwardly along said flow path and to produce in response to the monitored flow rate an electrical control signal directly related to the difference between the monitored flow rate and the preselected flow rate, said flow-regulating conduit comprising;
a flexible tube of a length for extending generally from said reservoir to said point of exit; reservoir attachment means at an upstream end of said conduit for attachment to said reservoir and for communicating fluid downstream therefrom through said flexible tube; electrically operated valve means disposed along said flow path and electrically connected to response to said electrical control signal by varying said flow rate in response thereto in direct relation to the magnitude of said control signal, said electrically operated valve means comprising; a valve having means for occluding said flexible tube to prevent liquid flow therethrough, said valve having means to bias said valve to occlude said flexible tube, a shape-memory valve actuator element connected to operate said means for occluding and made of a material which has the intrinsic property of shape memory and transits between two different crystalline phases whenever its temperature passes through a certain region of transition temperatues, said actuator element having a first physical shape defined by a first set of dimensions at temperatures above said transition temperature and a second physical shape defined by a second set of dimensions at temperatures below said transition temperature, and transiting through a region of shapes intermediate said first and second shapes as its temperature passes through said region of transition temperatures, and causing flow rate along said flow path to vary in response to said transiting through said region of transition temperatures; means to cause heating of said actuator element to change its temperature in direct relation to the magnitude of said electrical control signal; said shape-memory valve actuator opposing the force of said means to bias from its second physical shape to its first physical state.
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
9. The flow-regulating conduit of
11. A flow rate controller as in
12. A flow rate controller as in
13. A flow rate controller as in
|
This is a continuation, of application Ser. No. 445,390, filed Nov. 30, 1982, now abandoned.
This invention relates generally to the field of medical appliances, and more particularly to an intravenous flow apparatus. Intravenous flow apparatuses provide a means of administering fluid nutrients and medicaments to medical patients without requiring intervention on the part of the patient and without the delayed incorporation and often destructive modification involved when substances are ingested through the alimentary system of the patient. Consequently, their use in management of trauma in the controlled administration of substances to comatose or otherwise debilitated patients, and in the treatment of a wide range of conditions has become so common as to require no lengthy introduction.
Fundamentally, the systems in use rely principally on gravity flow from a reservoir of liquid suspended above the patient, through a flexible tube terminating in a hypodermic needle inserted into a vein of the patient. Typically, flow rate has been regulated by the use of a relatively primitive roller-clamp which is manually operated by a nurse or other attendant so as to partially occlude the tube leading from the reservoir to the patient to achieve the desired flow rate.
In operating the roller-clamp to regulate flow rate, the nurse observes the rate at which drops emerge from the reservoir into a transparent drop chamber prior to passing through the tube into the patient. By timing the drop-rate, it is possible to achieve regulation of flow rate which is adequate for some purposes.
However, this method of regulation is subject to significant errors both from the difficulty of achieving a desired initial flow rate, and from inevitable long-term changes in the rate.
In particular, the achievement of a desired initial flow rate depends not only on the skill and care of the attendant, but also on the degree to which fine adjustments can be easily secured with the existing apparatus. In this regard, the shortcomings of the relatively primitive roller-clamp make precise control difficult.
Moreover, even when the desired flow rate has initially been achieved, maintenance of this flow rate over a period of an hour or more without further attention and adjustment is highly doubtful. Since the roller-clamp operates by partially occluding the tube passing through it, and since the plastic materials used in forming such tubes are subject to relaxation over a period of time, there will nearly always be some long-term drift in flow rate.
Finally, the necessity to provide frequent attention by highly skilled nurses, and to risk the health of the patient in the event of malfunction of the apparatus are incentives to provide some better and more accurate means of flow regulation.
U.S. Pat. No. 4,300,552 issued Nov. 17, 1981 to Cannon, and details an intravenous flow apparatus in which regulation of flow rate is achieved by monitoring drop rate, comparing the rate with a preset value, and correspondingly adjusting a mechanical rotary valve by means of a stepper motor.
U.S. Pat. No. 4,265,240 issued May 8, 1981 to Jenkins, covering an intravenous apparatus for sequentially introducing two or more liquids, such as an antibiotic followed by a saline solution, into the patient's venous system from separate sources without permitting the introduction of air bubbles. Microprocessor control of a corresponding pair of flow regulators or pumps in the two branches of the flow apparatus is provided.
U.S. Pat. No. 4,137,940 issued Feb. 6, 1979 to Faisandier on a flow-control apparatus in which the drop rate is used to control the constriction of a flexible intravenous tube by energizing a motor to mechanically vary the distance separating a pair of constrictor members.
U.S. Pat. No. 3,991,972 issued Nov. 16, 1976 to Eaton, and covers an electrically operated valve in which a flexible tube forming the flow channel is variably constricted by an occlusive constrictor member. Variation of constriction, and hence of flow rate, is achieved by correspondingly varying the current in a heater wire and by coupling the resultant variations in length of the wire to the constrictor member through a motion-multiplying mechanical system.
An intravenous flow controller according to the present invention uses an optical drop sensor to monitor flow rate, and compact battery-operated electronic circuitry to compare the flow rate with a preselected desired flow rate. An electrical control signal is thus generated for controlling an electrically operated valve of a type which occlusively constricts the flexible intravenous tube a variable desired amount in response to the control signal to produce the desired drop rate.
The essential operating part of the valve is a shape-memory actuator element which is caused to undergo changes in shape in response to corresponding changes in the control signal. The changes in shape of the actuator element produce valve-actuating movement which varies the occlusive constriction of the flexible tube.
The disclosed embodiments all utilize the actuator to move a spring-biased occluding member. A spring driving the occluding member is biased with sufficient force, and in a direction such that it would cause total occlusion of the tube if no opposing force were present. The shape-memory actuator is connected to the spring such that the desired variable changes in shape of the actuator element withdraw the spring by varying amounts from full occlusive contact with the tube, and the amount of occlusion is thus made to depend on the movements of the shape-memory actuator.
The actuator element, which is a simple linear extensor in the disclosed embodiments, is formed of a material possessing the intrinsic property of shape-memory, whereby it can be caused to shorten upon heating and lengthen upon cooling when operating in a temperature actuated transition region. Consequently, the electrical control signal, with suitable current amplification, can control the length of the extensor element and thus operate the valve to control flow, merely by being connected to pass a current through the extensor element corresponding to the desired drop rate. As the current is varied, the temperature of the element is varied by Joule heating to produce a variable force in opposition to the spring force whereby the valve is proportionately opened or closed. In the disclosed embodiments, the spring member is sufficiently strong to elongate the shape-memory actuator element when that element is below its transition temperature and in its weaker state. As the temperature of the actuator element is increased by passing electrical current through it, the shape-memory effect causes the actuator element to proportionately become stronger, and shorten, and thus to move the spring-biased occluding member away from the tube. As the temperature of the actuating element is decreased by reduction of the current passed through it, the shape-memory element cools and becomes weaker and the spring member is able to elongate the actuating element and push the occluding member against the tube, thus closing the valve.
Use of the shape-memory actuator element is a distinct improvement over the use of such actuators as the heater wire in U.S. Pat. No. 3,991,972. The shape-memory actuator has a range of motion which is many times greater yet with similar force levels, and this allows direct valve actuation by the element without a motion multiplying mechanical system. These facts make it simpler, more accurate and more responsive than the patented device. Also, the present device requires fewer moving parts which are sources of error and or failure.
Both the extensor element and spring may be made a part of the disposable intravenous apparatus, or the extensor element may be included within the electronic controller module, with a simple mechanical connection to the spring in the disposable portion. In an alternative and preferred embodiment, both the spring and extensor element remain within the controller such that the disposable portion of the system is as inexpensive as possible.
In the first two of the above arrangements, the tube is automatically fully occluded when the disposable portion of the apparatus is removed from the control unit. In the preferred embodiment, a familiar roller-clamp is provided for terminating flow when desired. All of the embodiments provide that flow is automatically terminated in the event of lost power or the apparatus is turned off.
Full actuation of the valve requires sufficiently little power that the use of penlight batteries or a small rechargeable battery is practicable, and the entire apparatus is thus usable without being connected to power mains.
The above and other features, objects and advantages of the present invention, together with the best mode contemplated by the inventors thereof for carrying out their invention, will become more apparent from reading the following detailed description of preferred and alternative embodiments of the invention while examining the associated drawing, the various figures of which represent:
FIG. 1 is an intravenous flow-control apparatus according to the present invention;
FIG. 2 is a block schematic diagram of the electronic circuitry of an intravenous flow-controller according to the present invention;
FIG. 3 is an exploded view, partially cut away, showing a preferred embodiment of the portion of the apparatus of FIG. 1 within the arrows 3--3;
FIG. 4a-b are side sectional views of alternative embodiments of the apparatus of the present invention;
FIG. 5 is an exploded perspective view of one embodiment of intravenous flow-controller according to the present invention;
FIGS. 6 and 7 are graphical illustrations of the characteristics of shape-memory materials useful in the present invention.
In FIG. 1, an intravenous liquid dispensing apparatus 1 designed for intravenous administration of nutrients and medicaments according to the present invention is shown to include a vertical support stand 3, from which is suspended a liquid reservoir 5 in the form of an intravenous fluid bottle. Although reservoir 5 has been illustrated in the form of a bottle, it will be understood that a disposable flexible plastic bag or any other suitable reservoir could be used as well. Since apparatus 1 relies on gravity feed, reservoir 5 is suspended at the upstream end of the apparatus, above a patient (not shown) to whom the contents of the reservoir are to be intravenously administered.
A disposable flow-regulating conduit 7 extending from the reservoir of to the patient forms a unitary, closed, aseptic flow system for conducting the intravenous fluid along a flow path extending from the reservoir to the patient. By thus making every element with which the intravenous fluid comes in contact a part of a single disposable system or conduit, aseptic conditions can be assured in manufacture, without relying on sterilization of any part of the system within the using hospital or other institution. Rather than increasing cost, such a design reduces it, because expensive personnel time need not be wasted in sterilization procedures. Moreover, the risk of contamination is vastly reduced.
Conduit 7 is formed principally of a flexible tube 9, for example of vinyl plastic, of a length sufficient to conveniently extend from reservoir 5 to a patient nearby. A transparent drop chamber 11 is adopted for convenient attachment in fluid communication with the liquid contents of reservoir 5 at the input or upstream end of conduit 7. Tube 9 extends downwardly from the lower end of chamber 11 and passes through a valve block 13, which also forms a part of conduit 7. Within valve block 13, flow rate is controlled as will become clear from the remainder of this description.
Continuing in a downstream direction, tube 9 terminates at an exit point in a hypodermic adapter 15, which serves as a means of connecting disposable conduit 7 to a standard-dimension hypodermic needle which is not shown, but which would be provided in a separate sterile package.
In order to monitor the flow rate through conduit 7, an optical drop sensor 17 is mounted surrounding drop chamber 11. Sensor 17 may contain a lamp and photocell, or a light-emitting diode and photo-diode, paired such that each drop of liquid falling through drop chamber 11 interrupts the path of light between the paired elements and generates a pulse signal in a known manner. A flexible cord 19 connects sensor 17 to an electronic flow controller 21 and provides a means of energizing the light source of sensor 17 and transmitting the resulting drop signal to controller 21.
It will be understood that although a principal purpose of this invention is the regulation and control of flow rate, a parameter having the dimensions of volume of fluid delivered per unit time, the parameter actually monitored and controlled by the embodiments of the invention is drop rate, which has the dimensions of drops of intravenous fluid per unit time. However, these two parameters differ only by the factor of drop volume, which will be assumed for the purposes of the present invention to be approximately constant, at least to the extent of being nearly invariant with time.
Flow controller 21 contains both a battery power supply (not shown) and the necessary electronics to accurately monitor and control flow rate, the control of flow rate being achieved by the connection of valve block 13 to controller 21 as will be discussed with respect to the remaining figures of the drawing. Controller 21 also provides the necessary elements of a user or attendant interface, and is provided for this purpose with an on-off switch 23, an audio alarm 25, such as a loudspeaker of piezo-electric variety, a flow-rate input device 27, such as a hex keypad, and a digital readout device 29, such as a liquid-crystal display, for indicating the measured flow rate.
Turning now to FIG. 2, a block diagram of the electronics necessary to achieve the functions of controller 21 is shown to include a drop signal generator 31, whose function would be fulfilled by drop sensor 17 in the embodiment of FIG. 1. Since the sort of signal provided by such drop sensors is often somewhat ragged, as illustrated by waveform 33, a signal conditioner 35 is provided for transforming waveform 33 into an idealized square-wave drop-count signal 37. Signal 37 is input to a comparator and signal processor 39.
Processor 39 receives inputs from a clock 41, and from a drop-rate input device 42, which would include the hex keypad or other input device 27 of FIG. 1. Processor 39 compares the user-preselected drop or flow rate with drop-count signal 37 and provides a drop-rate output signal to a drop-rate display 43, and an electrical control input signal to a valve driver 45. The valve driver increases the current output to increase flow rate and decreases current to decrease flow rate, zero flow rate being achieved at or before zero current.
In the event of a malfunction resulting in inability to achieve the correct flow rate, processor 39 also provides an alarm signal to alarm 47, which would include the audio alarm 25 in FIG. 1. Valve driver 45 conditions the control input signal from processor 39 to produce at the output of driver 45 a valve control signal capable of driving the flow-control valve associated with valve block 13, and would in general include a current-amplifier.
Within the context of the present invention, the electronic circuitry of FIG. 2 serves as a flow-rate monitor and control means which monitors flow rate along the unitary flow path extending from reservoir 5 to the patient, and derives from the monitored rate a valve control signal which is directly related to the difference between monitored flow rate and the rate preselected at input device 42. The system details may be as disclosed in U.S. Pat. No. 4,137,940.
Although the valve control signal output from valve driver 45 might, accordingly, be proportional to the difference between the monitored and preselected flow rates, other signal relationships such as logarithmic also fall within the scope of the invention. Consequently, the phrase "directly related" in this context is to be taken to mean whatever signal relationship is necessary to drive the flow-control valve associated with valve block 13 in a sense to reduce a disparity between monitored and preselected flow rates.
FIGS. 3a-b illustrates a preferred embodiment of the portion of FIG. 1 within the arrows 3--3. In particular, FIG. 3b shows the details of an electrically operated valve means disposed along the flow path from reservoir 5 to the patient. In accordance with the present invention, such a valve means responds to the valve control signal output from valve driver 45 of FIG. 2 by varying flow rate along the flow path in direct relation to the control signal.
In FIG. 3b, valve block 13 is provided with a housing 51 of molded plastic, for example, having a thumb-operated shutoff roller 53 which may be rolled upwardly or downwardly to variably occlude tube 9, permitting manual adjustment of flow rate when desired. As far as presently described, the embodiment of FIG. 3 is the well known roller clamp in widespread use in hospitals.
However, valve block 13 of FIG. 3b also provides for automatic, continuously monitored control of flow rate in accordance with the present invention, through the provision of a mounting tongue 55 projecting from the lower edge of block 13. As shown, tongue 55 includes a pair of vee-shaped or dovetail mounting rails 57, only one of which is shown, extending vertically along its sides. Valve block 13 is securely received within a recess 59 provided with correspondingly shaped grooves 61 within controller 21.
As seen in FIG. 3b within recess 59, flow rate is varied and controlled by compressively occluding the portion of tube 9 lying in contact with tongue 55, which serves in this regard as a rigid backer member to support tube 9. For this purpose, a spring-biased occluding member 63, together with a stop pin 65 is provided. Member 63 may be formed of a resilient material such as beryllium copper or stainless steel by a series of punching, bending and folding operations, and may be provided in this way with a thumb-tab 67 for manually withdrawing member 63 from contact with tube 9 when desired. Member 63 is provided with a convex occluding projection 69 which presses into and occludes tube 9 in order to control flow.
Stop in 65 is positioned so as to create sufficient force through flexure of member 63 to fully occlude tube 9 in the absence of an opposing force. In accordance with the present invention, a shape-memory valve actuator element 71 is provided for withdrawing member 63 from full occlusive contact with tube 9 in order to provide the variable, partial occlusion needed to adequately control flow.
Actuator element 71 may be a single strand of wire of a shape-memory material, or it may preferably be a loop of such wire, extending around member 63 and terminating at the left in FIG. 3 by attachment to a pair of electrical contacts (not shown). In either case, element 71 may be made of a suitable shape-memory material such as one of the nickel-titanium alloys known under the trade name Nitinol, and may have a diameter of 0.005 to 0.010 inch, for example.
Shape memory materials such as the Nitinol alloys are characterized by the ability to transit between two crystalline states, such as between the austenitic and martensitic states, whenever their temperature is caused to pass through a certain region of transition temperatures. Moreover, strain of such materials produced in the lower temperature state can be substantially fully recovered by transition to the higher temperature state.
Consequently, actuator element 71 may be stretched while in its low temperature martensitic state prior to being connected to member 63. Upon subsequent heating to the high temperature austenitic phase, the element 71 will recover to its initial length, and the resultant motion can be employed to move member 63 progressively, resulting in controllable valve actuation.
Although the requisite heating of member 71 in response to a control signal could be obtained with a separate, indirect heater energized with the output signal from valve driver 45 in FIG. 2, in accordance with the present invention, such heating can be more efficiently secured by producing a current directly in member 71, which is then heated by the resultant Joule dissipation in proportion to the square of the current.
In the context of the present invention, a means to cause heating of a shape-memory valve actuating member such as member 71 in response, to the valve control signal produced by valve driver 45 might comprise a separate, indirect heater placed close to the valve-actuating member and energized with the valve control signal, or might simply comprise the necessary electrical contacts and connections to form the valve actuating member into a circuit connected directly, inductively, or otherwise to the output of valve driver 45.
In FIGS. 4a-b, alternative embodiments in which at least a portion of the valve structure has been mounted within a modified valve block 13' are illustrated. These valve structures according to the present invention are illustrated as they would appear in cross-section within valve block 13'. In each embodiment, a central bore 49 extends vertically through block 13 for receiving tube 9 passing therethrough.
In the embodiments of FIGS. 4a-b, a spring-biased occluding member 63 similar to member 63 of FIG. 3a is provided. As before, a stop pin 65 serves to bias member 63 through flexure sufficiently to fully occlude tube 9 in the absence of any countervailing force while a thumb-tab 67 similar to the thumb-tab 67 of FIG. 3a is provided for manually withdrawing member 63 from full occlusion of tube 9 for priming the system, for example. Since tube 9 is fully occluded by member 63 unless withdrawn, the production and control of the requisite flow rate in the system obviously requires some means of progressively withdrawing member 63 from its position of full occlusion.
In the embodiment of FIG. 4a, such a means has been provided in the form of a draw-rod 73 having one end attached to member 63, as by being looped therearound, and extending leftwardly in FIG. 4a through an aperture in block 13' to terminate in an enlarged end portion 75. Alternatively, member 63 could have been provided during manufacture with a projection shaped like draw-rod 73. By means of end 75, rod 73 may be drawn to the left by a suitable movable actuator located within controller 21.
In accordance with the present invention, such a movable actuator may include, as the motion-producing element, a shape-memory element, which would be physically located within controller 21 in the event that the valve mechanism of FIG. 4a is to be employed. However, the shape-memory element may also be incorporated within the disposable valve mechanism, to operate directly upon spring-biased member 63, as in FIG. 4b.
FIG. 4b employs the same structure as FIG. 4a with the exception that the means for applying a force to member 63 to cause progressive opening of the valve is a shape-memory element 71', similar to the element 71 of FIG. 3a. That is element 71' is either a single strand or a loop of wire, as of 0.005 to 0.010 inch diameter, made of a material having the intrinsic property known as shape memory.
Element 71 is preferably formed into a loop extending at the right in FIG. 4b around member 63, and terminating at the left in a pair of electrical contacts 77, only one of which is shown, the other being behind the contact 77 illustrated in the drawing. As in the case of FIG. 3a, by producing and controlling a current through this loop, the extensor element can be caused to lengthen and shorten to produce controlled valve actuation merely by control of the energizing current as by the circuit of FIG. 2.
Similarly, in the case of FIG. 4a, the requisite movement of member 63 may be secured by placing the shape-memory extensor element in controller 21, with mechanical means to couple the resultant movements to draw rod 73. Turning to FIG. 5, the means of receiving block 13 of FIG. 4a or 4b operatively within the housing of controller 21 are shown to comprise a correspondingly-shaped recess 59 in the side of controller 21. A pair of vee-shaped or dovetail grooves 61, and a correspondingly-shaped pair of rails 57 on block 13 provide a secure connection.
A pair of electrical contactors 79 are provided for mating with contacts 77 in the embodiment of FIG. 4b. Although not shown, any suitable known means of securely grasping end portion 75 of the embodiment of FIG. 4a could have been provided in place of contactors 79.
FIG. 6 is a generalized stress-strain diagram of the class of materials known as shape-memory materials. Such materials are characterized by having a low-temperature martensitic phase illustrated by characteristic 18 in FIG. 6, and a high-temperature austenitic phase illustrated by characteristic 20 in FIG. 6, and by the ability to transit between the very different physical characteristics of these two phases whenever their temperature passes through a certain range of transition temperatures which is an intrinsic characteristic of the material.
In particular, if such materials are cooled below the transition temperature such that they are in the martensitic phase, and are then stressed sufficiently to physically deform them into what is an apparently permanent new shape, upon heating above the transition temperature, all of the deformation which occurred in the martensitic phase will be reversed, and the original shape will be recovered. That is, the deformed object will simply revert to the shape in which it existed prior to the cycle of cooling, deformation and reheating.
In accordance with the present invention, particularly good use of this characteristic can be made by employing shape-memory material to form a valve actuator element, such as actuator elements 71 or 71' of FIGS. 3a and 4b, respectively. By stretching these elements while they are in their low-temperature martensitic phase, they will contract to their unstretched length whenever their temperature is raised through the transition temperature range. The resulting movement can be employed to operate a variable constriction valve as in the already described embodiments.
FIG. 6 shows the relationships between stress and strain involved in such a use of shape-memory materials. If the extensor element has been formed of the material of FIG. 6 and is then stretched while at a temperature below the transition temperature, the stress-strain relationship is depicted by characteristic 18, labeled "Martensitic Phase" in FIG. 6.
During the deformation involved in stretching the actuator element, the shape-memory material undergoes increasing stress and strain until, at point 22, the resulting deformation is sufficient and the stress is removed. Stress thereupon goes to zero, and strain or deformation recovers by a small amount, leaving the material in the condition represented by point 24.
If the actuator element is subsequently reheated above the transition temperature such that the material is caused to enter the austenitic phase, strain will recover along the abscissa (which is the locus of zero-stress conditions) until the austenitic phase characteristic is reached, and would actually reach the origin in the total absence of any mechanical constraints.
However, some stress will be present because of the force exerted by spring-biased occluding member 63 and 63' in FIGS. 3a and 4a-b, such that the equilibrium stress-strain state may be represented by point 26 on charactistic 20. As FIG. 6 shows, point 26 is actually quite close to the origin, such that the actuator element has very nearly fully recovered to its initial length.
Reference is now made to FIG. 7 wherein is illustrated typical force vs. extension characteristics of the mechanism of the invention at different temperatures T0 -T5. At T0, it is assumed that a control current flows that maintains the temperature of the linear extension element below the transition temperature, i.e., in the martensitic phase. Thus the wire 71' in FIG. 4b is fully extended under force of the spring actuator 63' and the tube 9 is blocked. At temperature T5, the wire 71' has achieved its austenitic phase, the wire achieves its initial length, raises the spring actuator 63' and the tube 9 is fully open. At any of the intermediate temperatures T1 -T4, the extension of the wire 71' is decreased to the extent illustrated along extension line 80 and the tube 9 is blocked or unblocked to the degree corresponding to the illustrated extension. The current output from valve driver 45 will remain constant only when the drop rate produced equals the drop rate desired.
Although the illustrated embodiments have all employed a linear extensor element in combination with an opposing spring, the invention is not so limited. Many other geometries employing a shape-memory actuator element will suggest themselves to workers skilled in the art. Such geometries as a curved shape-memory actuator element having different radii of curvature in its two phases could be used as well. The actuator element need not operate to constrict the flexible tube through the intermediary element of an occluding member as it does in the disclosed embodiments, but may operate directly upon the tube to achieve the necessary occlusion and flow control.
Moreover, a linear extensor element could be fabricated in such a way that it lengthens, and pushes rather than pulls an opposing spring as temperature rises through the transition range. All such embodiments fall within the purview of this specification, and within the scope of our invention.
Also, in FIG. 7 is shown flow rate versus temperature for a typical flow-rate controller employing an extensor element made of a binary or ternary compound of nickel and titanium having a transition temperature range of 60-80 degrees Celsius in the absence of stress. In particular, a useful compound of this sort would be a binary composition having from 49.5 to 51.0 atomic % of nickel.
The effect of the stress provided by member 63 on extensor element 71, is that the transition temperature range has been enlarged to extend approximately between temperatures T1=50 and T2-100 degrees Celsius. As the temperature of the extensor element will vary as a monotonically increasing function of the electrical current used to heat it, one can see how the electronic monitoring and control device of FIG. 2 would variably adjust the flow-rate controlling apparatus to give any desired flow rate.
It is noteworthy that the relationship between temperature and flow rate is subject to a hysteresis effect. The temperature of the extensor required for an arbitrary flow rate is higher if the extensor temperature is achieved by heating up to the arbitrary flow rate than it is by cooling downward to the arbitrary flow rate. This effect can be used to advantage to minimize power useage in the extensor by designing the electronic controller to adjust flow rate by approaching the proper temperature of the extensor from above rather than below. Since the same flow rate can be achieved this way at a lower extensor temperature, less current and, hence, less power is required in the extensor wire to achieve the desired flow rate.
In operation, I have found that a Nitinol wire having a length of 1.5 to 2.0 inches, and a resistance of approximately 4 ohms can be employed as the extensor element with currents approximating 150 mA, such that power consumption is less than 100 mW, and with a resultant accuracy of drop rate control of considerably better than 5%.
Although this invention has been described with some particularity with respect to a specific set of embodiments which, taken together, comprise the best mode known to the inventors for carrying out their invention, it will be understood that many changes could be made, and many alternative embodiments thus derived, without departing from the scope of the invention. Consequently, the scope of the invention is to be determined only from the following claims:
Krumme, John F., Hodgson, Darel E.
Patent | Priority | Assignee | Title |
10016140, | Jun 13 2012 | KONINKLIJKE PHILIPS N V | Automated non-magnetic medical monitor using shape memory actuators |
10022498, | Dec 16 2011 | ICU Medical, Inc | System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy |
10166328, | May 29 2013 | ICU Medical, Inc | Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system |
10272195, | Feb 09 2006 | DEKA Products Limited Partnership | Infusion pump assembly |
10322277, | Nov 24 2010 | ACIST Medical Systems, Inc. | Contrast media injector syringe inlet valve system |
10342917, | Feb 28 2014 | ICU Medical, Inc | Infusion system and method which utilizes dual wavelength optical air-in-line detection |
10376687, | Oct 16 2012 | ACIST Medical Systems, Inc. | Controlling flow in a medical injection system |
10430761, | Aug 19 2011 | ICU Medical, Inc | Systems and methods for a graphical interface including a graphical representation of medical data |
10463788, | Jul 31 2012 | ICU Medical, Inc | Patient care system for critical medications |
10578474, | Mar 30 2012 | ICU Medical, Inc. | Air detection system and method for detecting air in a pump of an infusion system |
10596316, | May 29 2013 | ICU Medical, Inc. | Infusion system and method of use which prevents over-saturation of an analog-to-digital converter |
10635784, | Dec 18 2007 | ICU Medical, Inc | User interface improvements for medical devices |
10656894, | Dec 27 2017 | ICU Medical, Inc. | Synchronized display of screen content on networked devices |
10850024, | Mar 02 2015 | ICU Medical, Inc | Infusion system, device, and method having advanced infusion features |
10850089, | May 24 2012 | DEKA Products Limited Partnership | Flexible tubing occlusion assembly |
10874793, | May 24 2013 | ICU Medical, Inc. | Multi-sensor infusion system for detecting air or an occlusion in the infusion system |
11004035, | Aug 19 2011 | ICU Medical, Inc. | Systems and methods for a graphical interface including a graphical representation of medical data |
11029911, | Dec 27 2017 | ICU Medical, Inc. | Synchronized display of screen content on networked devices |
11077245, | Dec 31 2007 | DEKA Products Limited Partnership | Pump assembly with switch |
11135360, | Dec 07 2020 | ICU Medical, Inc | Concurrent infusion with common line auto flush |
11246985, | May 13 2016 | ICU Medical, Inc. | Infusion pump system and method with common line auto flush |
11278671, | Dec 04 2019 | ICU Medical, Inc | Infusion pump with safety sequence keypad |
11318249, | Feb 09 2006 | DEKA Products Limited Partnership | Infusion pump assembly |
11324888, | Jun 10 2016 | ICU Medical, Inc. | Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion |
11339774, | Feb 09 2006 | DEKA Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
11344668, | Dec 19 2014 | ICU Medical, Inc | Infusion system with concurrent TPN/insulin infusion |
11344673, | May 29 2014 | ICU Medical, Inc | Infusion system and pump with configurable closed loop delivery rate catch-up |
11357910, | Dec 31 2007 | DEKA Products Limited Partnership | Pump assembly with switch |
11364335, | Apr 05 2006 | DEKA Products Limited Partnership | Apparatus, system and method for fluid delivery |
11376361, | Dec 16 2011 | ICU Medical, Inc. | System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy |
11395877, | Feb 09 2006 | DEKA Products Limited Partnership | Systems and methods for fluid delivery |
11408414, | Feb 09 2006 | DEKA Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
11413391, | Feb 09 2006 | DEKA Products Limited Partnership | Patch-sized fluid delivery systems and methods |
11426512, | Feb 09 2006 | DEKA Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
11433177, | May 29 2013 | ICU Medical, Inc. | Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system |
11478623, | Feb 09 2006 | DEKA Products Limited Partnership | Infusion pump assembly |
11497686, | Dec 31 2007 | DEKA Products Limited Partnership | Apparatus, system and method for fluid delivery |
11497846, | Feb 09 2006 | DEKA Products Limited Partnership | Patch-sized fluid delivery systems and methods |
11523972, | Apr 24 2018 | DEKA Products Limited Partnership | Apparatus, system and method for fluid delivery |
11524151, | Mar 07 2012 | DEKA Products Limited Partnership | Apparatus, system and method for fluid delivery |
11534542, | Dec 31 2007 | DEKA Products Limited Partnership | Apparatus, system and method for fluid delivery |
11534543, | Feb 09 2006 | DEKA Products Limited Partnership | Method for making patch-sized fluid delivery systems |
11559625, | Feb 09 2006 | DEKA Products Limited Partnership | Patch-sized fluid delivery systems and methods |
11560964, | Aug 21 2020 | ACIST MEDICAL SYSTEMS, INC | Valve actuation device coupling |
11596737, | May 29 2013 | ICU Medical, Inc. | Infusion system and method of use which prevents over-saturation of an analog-to-digital converter |
11597541, | Jul 03 2013 | DEKA Products Limited Partnership | Apparatus, system and method for fluid delivery |
11599854, | Aug 19 2011 | ICU Medical, Inc. | Systems and methods for a graphical interface including a graphical representation of medical data |
11617826, | Feb 09 2006 | DEKA Products Limited Partnership | Patch-sized fluid delivery systems and methods |
11623042, | Jul 31 2012 | ICU Medical, Inc. | Patient care system for critical medications |
11642283, | Dec 31 2007 | DEKA Products Limited Partnership | Method for fluid delivery |
11690952, | Feb 09 2006 | DEKA Products Limited Partnership | Pumping fluid delivery systems and methods using force application assembly |
11701300, | Dec 31 2007 | DEKA Products Limited Partnership | Method for fluid delivery |
11723841, | Dec 31 2007 | DEKA Products Limited Partnership | Apparatus, system and method for fluid delivery |
11738139, | Feb 09 2006 | DEKA Products Limited Partnership | Patch-sized fluid delivery systems and methods |
11766554, | May 24 2012 | DEKA Products Limited Partnership | Flexible tubing occlusion assembly |
11786651, | Feb 09 2006 | DEKA Products Limited Partnership | Patch-sized fluid delivery system |
11868161, | Dec 27 2017 | ICU Medical, Inc. | Synchronized display of screen content on networked devices |
11883361, | Jul 21 2020 | ICU Medical, Inc. | Fluid transfer devices and methods of use |
11890448, | Feb 09 2006 | DEKA Products Limited Partnership | Method and system for shape-memory alloy wire control |
11894609, | Dec 31 2007 | DEKA Products Limited Partnership | Split ring resonator antenna adapted for use in wirelessly controlled medical device |
11904134, | Feb 09 2006 | DEKA Products Limited Partnership | Patch-sized fluid delivery systems and methods |
4731069, | Nov 30 1982 | Graseby Medical Limited | Intravenous tube and controller therefor |
4820268, | Nov 05 1986 | NIKKISO CO., LTD. | Transfusion apparatus |
4878646, | Aug 15 1988 | FRESENIUS USA, INC , CO OF MA; Fresenius Aktiengesellschaft; FRESENIUS USA, INC AND FRESENIUS AKTIENGESELLSCHAFT | Pinch valve mechanism for a parenteral infusion system |
5154704, | Oct 31 1990 | IV clamp with tube clip | |
5184703, | Apr 12 1988 | KONI, B V | Shock absorber with piston valve for adjustable damping |
5254102, | Aug 23 1991 | Apparatus for controlling the rate of dripping of intravenous fluid | |
5443734, | Mar 05 1990 | Applied Separations, Inc. | Programmable solid phase extraction and elution device |
5496182, | Jul 29 1993 | Beta Phase, Inc. | Connector device for electrically interconnecting printed circuit board like members |
5512168, | Mar 05 1990 | Applied Separations, Inc. | Programmable solid phase extraction and elution device |
5601894, | Jul 06 1995 | Johns Hopkins Hospital | Insulated intravenous administration tubing and drip chambers |
5788212, | Jul 26 1996 | Gas Technology Institute | Pressure relief device with shaped memory alloy thermally activated trigger |
6142979, | Sep 13 1996 | ZEVEX, A UTAH CORPORATION | Pinch clip occluder system for infusion sets |
6279869, | Nov 23 1999 | Proportional flow control valve | |
6494225, | Nov 23 1999 | ECP Family Properties | Proportional flow control valve |
6595950, | May 11 2000 | Zevex, Inc. | Apparatus and method for preventing free flow in an infusion line |
6623447, | May 11 2000 | Zevex, Inc. | Apparatus and method for preventing free flow in an infusion line |
6659976, | Apr 16 2001 | ZEVEX, INC | Feeding set adaptor |
6679263, | Jun 18 2002 | TELEFLEX LIFE SCIENCES PTE LTD | Automatic high temperature venting for inflatable medical devices |
6749591, | Mar 27 1995 | Zevex, Inc. | Pinch clip occluder system for infusion sets |
6923785, | May 11 2000 | Zevex, Inc. | Apparatus and method for preventing free flow in an infusion line |
6979311, | May 11 2000 | ZEVEX, INC | Apparatus and method for preventing free flow in an infusion line |
7070575, | Apr 16 2001 | Zevex, Inc. | Adaptor for feeding sets |
7150727, | May 11 2000 | ZEVEX, INC | Apparatus and method for preventing free flow in an infusion line |
7260932, | Mar 06 2006 | TheraFuse, Inc. | Shape memory alloy latching valve |
7367963, | May 11 2000 | Zevex, Inc. | Apparatus and method for preventing free flow in an infusion line |
7377148, | May 28 2004 | Vital Signs, Inc | Capacitor-based gas detection in an intravenous fluid delivery system |
7448553, | Apr 19 2005 | DELTA FAUCET COMPANY | Fluid mixer |
7458520, | Apr 19 2005 | DELTA FAUCET COMPANY | Electronic proportioning valve |
7475827, | Apr 19 2005 | DELTA FAUCET COMPANY | Fluid mixer |
7547295, | May 08 2004 | Vital Signs, Inc | Gas removal in an intravenous fluid delivery system |
7584898, | Jul 01 2005 | DELTA FAUCET COMPANY | Manual override for electronic proportioning valve |
7695448, | May 28 2004 | Vital Signs, Inc | Flow control in an intravenous fluid delivery system |
7722598, | Apr 04 2003 | Medtronic, Inc. | Apparatus and system for delivery of drug therapies |
7815612, | May 11 2000 | ZEVEX, INC | Apparatus and method for preventing free flow in an infusion line |
7976513, | May 11 2000 | Zevex, Inc. | Apparatus and method for selectively controlling flow in an infusion line |
7998121, | Feb 06 2009 | Zevex, Inc. | Automatic safety occluder |
8215157, | Oct 04 2007 | Baxter International Inc; BAXTER HEALTHCARE S A | System and method for measuring liquid viscosity in a fluid delivery system |
8343111, | Apr 01 2008 | HSBC Bank USA, National Association | Anti-free flow mechanism for enteral feeding pumps |
8414522, | Feb 09 2006 | DEKA Products Limited Partnership | Fluid delivery systems and methods |
8414563, | Dec 31 2007 | DEKA Products Limited Partnership | Pump assembly with switch |
8425470, | Apr 01 2008 | ZEVEX, INC | Anti-free-flow mechanism for enteral feeding pumps |
8491543, | Feb 06 2009 | HSBC Bank USA, National Association | Automatic safety occluder |
8491570, | Dec 31 2007 | DEKA Products Limited Partnership | Infusion pump assembly |
8496646, | Feb 09 2006 | DEKA Products Limited Partnership | Infusion pump assembly |
8545445, | Feb 09 2006 | DEKA Products Limited Partnership | Patch-sized fluid delivery systems and methods |
8579884, | Feb 09 2006 | DEKA Products Limited Partnership | Infusion pump assembly |
8585377, | Feb 09 2006 | DEKA Products Limited Partnership | Pumping fluid delivery systems and methods using force application assembly |
8863772, | Aug 27 2008 | DEKA Products Limited Partnership | Occluder for a medical infusion system |
8876787, | Apr 01 2008 | ZEVEX, INC | Anti-free-flow mechanism for enteral feeding pumps |
8911414, | Oct 01 2010 | HSBC Bank USA, National Association | Anti free-flow occluder and priming actuator pad |
8998850, | Feb 09 2006 | DEKA Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
9017296, | Apr 01 2008 | ZEVEX, INC | Safety occluder and method of use |
9028440, | Jan 23 2008 | DEKA Products Limited Partnership | Fluid flow occluder and methods of use for medical treatment systems |
9134735, | Sep 30 2011 | ICU Medical, Inc | Intravenous flow rate controller |
9134736, | Sep 30 2011 | ICU Medical, Inc | Intravenous flow rate controller |
9162027, | Feb 09 2006 | DEKA Products Limited Partnership | Infusion pump assembly |
9265925, | Oct 16 2012 | ACIST MEDICAL SYSTEMS, INC | Controlling flow in a medical injection system |
9364655, | May 24 2012 | DEKA Products Limited Partnership | Flexible tubing occlusion assembly |
9492612, | Feb 09 2006 | DEKA Products Limited Partnership | Patch-sized fluid delivery systems and methods |
9526830, | Dec 31 2007 | DEKA Products Limited Partnership | Wearable pump assembly |
9700711, | May 24 2012 | DEKA Products Limited Partnership | Flexible tubing occlusion assembly |
9839776, | Jan 23 2008 | DEKA Products Limited Partnership | Fluid flow occluder and methods of use for medical treatment systems |
9931461, | Dec 31 2007 | DEKA Products Limited Partnership | Pump assembly with switch |
D503799, | Sep 09 2002 | ZEVEX, INC | In-line occluder |
D503978, | Sep 09 2002 | ZEVEX, INC | In-line occluder |
D504506, | Jun 28 2002 | ZEVEX, INC | Feeding pump cartridge |
D505199, | Jun 28 2002 | ZEVEX, INC | Feeding pump cartridge |
D536783, | Jun 28 2002 | Zevex, Inc. | Enteral feeding pump cassette connector |
D634005, | Sep 09 2002 | Zevex, Inc. | In-line occluder |
D635664, | Sep 09 2002 | Zevex, Inc. | In-line occluder |
D672455, | Oct 01 2010 | ZEVEX, INC | Fluid delivery cassette |
Patent | Priority | Assignee | Title |
3403238, | |||
3613732, | |||
3985134, | Nov 26 1973 | Rhone-Poulenc S.A. | Extracorporeal blood circuit |
3990443, | Oct 14 1975 | Keating of Chicago, Inc | Drop rate sensing and regulating apparatus |
3991972, | Apr 21 1975 | ITL Technology Inc. | Electrically operated proportionate valve |
4105028, | Oct 12 1976 | Positive control intravenous fluid administration | |
4237940, | Jan 05 1979 | Malco Products, Inc. | Apparatus for reinforcing a duct |
4261388, | May 19 1978 | Watlow Electric Manufacturing Company | Drop rate controller |
4265240, | Apr 16 1979 | ALARIS MEDICAL SYSTEMS, INC | Apparatus for providing a controlled introduction of intravenous fluid to a patient |
4300552, | Sep 01 1978 | ALARIS MEDICAL SYSTEMS, INC | Apparatus for controlling the flow of intravenous fluid to a patient |
DE2733702, | |||
EP62365, | |||
GB1578741, | |||
GB2054200, | |||
WO8201651, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 29 1985 | Beta Phase, Inc. | (assignment on the face of the patent) | / | |||
Jan 13 1986 | Alchemia | BETA PHASE, INC | ASSIGNMENT OF ASSIGNORS INTEREST | 004506 | /0715 | |
Dec 11 1987 | BETA PHASE, INC , | AVI, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 004833 | /0043 | |
Oct 20 1995 | BETA PHASE, INC | Minnesota Mining and Manufacturing Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 007815 | /0651 | |
Dec 05 1996 | Minnesota Mining and Manufacturing Company | Graseby Medical Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008321 | /0566 |
Date | Maintenance Fee Events |
May 05 1987 | ASPN: Payor Number Assigned. |
Sep 25 1990 | REM: Maintenance Fee Reminder Mailed. |
Dec 28 1990 | M273: Payment of Maintenance Fee, 4th Yr, Small Entity, PL 97-247. |
Dec 28 1990 | M277: Surcharge for Late Payment, Small Entity, PL 97-247. |
Oct 04 1994 | REM: Maintenance Fee Reminder Mailed. |
Feb 26 1995 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 24 1990 | 4 years fee payment window open |
Aug 24 1990 | 6 months grace period start (w surcharge) |
Feb 24 1991 | patent expiry (for year 4) |
Feb 24 1993 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 24 1994 | 8 years fee payment window open |
Aug 24 1994 | 6 months grace period start (w surcharge) |
Feb 24 1995 | patent expiry (for year 8) |
Feb 24 1997 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 24 1998 | 12 years fee payment window open |
Aug 24 1998 | 6 months grace period start (w surcharge) |
Feb 24 1999 | patent expiry (for year 12) |
Feb 24 2001 | 2 years to revive unintentionally abandoned end. (for year 12) |