A microprocessor-based digital solid-state trip-unit for processing digital signals derived from analog signals supplied by current sensors. In order to reduce measurement error of the peak value of the signals due to signal sampling, the microprocessor samples a signal latched at the last peak. A countdown timer determines the latching time to include two or three peak values.

Patent
   4710845
Priority
Feb 25 1985
Filed
Feb 10 1986
Issued
Dec 01 1987
Expiry
Feb 10 2006
Assg.orig
Entity
Large
96
9
all paid
1. A digital solid-state trip-unit for an electrical circuit-breaker comprising:
current sensor means for generating analog current signals proportional to respective currents flowing through conductors protected by said circuit-breaker;
rectifier means for rectifying said current signals and for producing an analog signal representative of an instantaneous maximum value of said currents;
analog-to-digital converter means connected to said rectifier means for sampling said analog signal at a sampling period and for converting said analog signal to a sampled digitized signal;
microprocessor-based digital processing means connected to said analog-to-digital converter means including:
means for comparing, once during each processing cycle of said processing means, said sampled digitized signal with a latched peak value stored in said processing means,
means for replacing said stored value by said sample digitized signal and for setting a stored countdown period to a predetermined maximum value which is greater than one period of the analog current signals, if said means for comparing determine that said sampled digitized signal is greater than said stored latched peak value,
means for decrementing the stored countdown period if the countdown period is not equal to zero and if said means for comparing determines that said sampled digitized signal is less than said stored latched peak value,
means for erasing the stored latched peak value if the stored countdown period is equal to zero and if said means for comparing determines that said sampled digitized signal is less than said stored latched peak value, and
means for providing a circuit-breaker tripping order after a long time delay or after a short time delay, when said stored latch peak value exceeds respective predetermined levels; and
circuit-breaker trip means activated by said tripping order.
2. A trip-unit as recited in claim 1 wherein said digital processing means further comprises:
means for storing a value representative of the last peak value of the sample digitized signal which is lower than said stored latched peak value, said stored latched peak value being replaced by said stored last peak value when said stored latched peak value is erased.
3. A trip unit as recited in claim 1 wherein said sampling period of the analog-to-digital converter means is less than 5 milliseconds.
4. A strip unit as recited in claim 3 wherein said predetermined maximum value of the countdown period is between 20 and 100 milliseconds.
5. A trip unit as recited in claim 4 wherein said digital processing means controls said sampling period of said analog-to-digital converter means.
6. A trip unit as recited in claim 3 wherein said predetermined maximum value of the countdown period is between 20 and 60 milliseconds, and wherein said digital processing means further comprises means for storing a second countdown period having a second predetermined maximum value between 40 milliseconds and 1 second, and means for controlling display of the currents flowing through the circuit breaker.
7. A trip-unit as recited in claim 1 further comprising:
means for producing a first analog signal representative of a phase fault current and means for producing a second analog signal representative of a ground fault current, and wherein said digital processing means further comprises means for storing respective peak values of said phase fault current and said ground fault current.

The invention relates to a digital solid-state trip unit for an electrical circuit breaker. A microprocessor-based trip unit of the kind mentioned processes digital signals resulting from a sampling of the analog signals representative of the currents. Replacing the continuous analog signals by discrete digital signals gives rise to error on the measurement of the peak value of these signals, this error being greater the greater the sampling period in comparison with the period of the signal to be measured. The signal period corresponds to that of the mains and the sampling period is limited by the characteristics of the microprocessor.

It is important to increase the accuracy to ensure protective device discrimination, i.e. to eliminate a fault occurring at a point in the distribution system by the circuit breaker fitted immediately upstream from the fault and by this circuit breaker alone. Discrimination is provided by the difference between the non-tripping time and the tripping or breaking time of the circuit breakers. Two circuit breakers fitted in series are discrimating if the tripping time of the downstream breaker is lower than the non-tripping time of the upstream breaker, whatever the value of the fault current. Inaccuracy of these times limits discrimination or requires higher safety margins, resulting in a delay in breaking the fault current.

The object of the present invention is to improve the precision of the sampled signal for a given sampling period and to achieve a very small difference between the tripping and non-tripping times.

The trip unit according to the invention is characterized by the fact that it comprises a means of latching said sampled digitized signal at the last peak, the latched peak value of the signal being stored in memory and applied to the digital processing unit to provide the tripping function, and a countdown device which erases the latched peak value at the end of the countdown, the countdown time being at least equal to the time said signal passes two successive peaks, the countdown being restarted each time said signal exceeds said latched peak value.

The sampled signal, processed to provide the protection functions, is no longer the maximum value of this signal during the half-wave under consideration, but the maximum value or the last peak during two or more successive half-waves. The greater the number of half-waves considered, the closer the latched peak value is to the maximum value of the analog signal, a good approximation being already obtained by two half-waves. It is clear that the latching time must be limited as it determines the difference between the tripping and non-tripping times, which is to reduced as far as possible. This latching time results from a compromise and according to the invention it is determined by a countdown comprised between 20 to 40 milliseconds, which extends from two to four half-waves.

The method of latching at the last peak according to the invention is advantageously applied to short and long delay phase fault protection and to ground fault protection.

According to an embodiment of the invention, the stored latched peak value is not reset at the end of the countdown, but replaced by a value corresponding to the last signal peak lower than the latched peak value. The continuity indispensable for satisfactory operation is thus ensured.

Other advantages and characteristics will become more clearly apparent from the following description of an embodiment of the invention, given as examples only and represented in the accompanying drawings, in which:

FIG. 1 is a block diagram of the trip unit according to the invention;

FIG. 2 shows the trip unit front panel with the setting and signalling devices;

FIGS. 3 and 4 represent the tripping curves of the two versions of the trip unit according to the invention;

FIG. 5 is the flow chart of the rating change function;

FIG. 6 shows the variation of the signals processed by the microprocessor for inverse time functions;

FIG. 7 is the flow chart of the latching function at the last peak;

FIG. 8 is the flow chart of the long inverse time delay function;

FIG. 9 is the flow chart of the short inverse time delay function;

FIG. 10 is the flow chart of the overall tripping function;

FIG. 11 is the detailed diagram of the analog processing loop.

PAC General structure

In FIG. 1, an electrical distribution system with four conductors RSTN supplying a load (not represented) comprises a circuit breaker 10 to interrupt the circuit in its open position. The mechanism 12 of the circuit breaker 10 is controlled by a biased relay 14, ordering tripping of the circuit breaker in the event of an overload, short-circuit or ground fault. Each phase conductor RST has associated with it a current transformer 16, which delivers a signal proportional to the current flowing through the associated conductor, the signal being applied to a double alternation rectifier bridge 18. The outputs of the three rectifier bridges 18 are connected in series in a circuit, comprising in series a resistor 20, a Zener diode 22 and a diode 24 to provide, at the terminals of the resistor 20 a voltage signal proportional to the maximum value of the current flowing through the conductors RST, and at the terminals of the diodes 22, 24 a power supply voltage to the electronic circuits. The voltage signal is applied to the inputs of the two amplifiers 26, 28 with different gains and the output of each amplifier 26, 28 is connected on the one hand to an input 1, 3 of a multiplexer 29 and on the other hand to a divider bridge 30, 32, whose midpoint is connected to an input 2, 4 of the multiplexer 29. The assembly, amplifiers 26, 28 and divider bridges 30, 32, belongs to a voltage signal calibration circuit 34, described in detail hereinafter and marked with a dashed line in FIG. 1.

The calibration circuit 34 comprises a third amplifier 36, which receives a signal delivered by the summing transformer 38, whose primary windings are constituted by the conductors NRST running through a toroid, having a secondary winding 40 which delivers a signal in the event of an ground fault. The output of the amplifier 36 is connected to input 5 of the multiplexer 29 and to a divider bridge 41, whose mid-point is connected to input 6 of the multiplexer 29. Inputs 1 to 6 are connected in parallel by diodes 44 to the emitter of a transistor 42 whose collector is grounded and whose base is biased by a preset voltage, for example 5 Volts, corresponding to the maximum value applicable to the multiplexer 29. It can easily be seen that the multiplexer 29 receives signals representative of the phase current on the four inputs 1 to 4 and signals representative of the earth current on the two inputs 5, 6. These signals, notably the ground fault ones, can naturally be generated differently, for instance from signals supplied by the current transformers 16.

The multiplexer 29, for example an ADC0808 multiplexer from the National Semiconductor Corporation, is controlled by the address and monitoring line 46 connected to the outputs 1 of a microprocessor 48. Depending on the address supplied by the microprocessor 48, the signal from one of the inputs 1-6 of the multiplexer 29 is transmitted by the output S of the multiplexer 29 to an 8-bit analog-to-digital converter 50. A bus 52 connects the output of the analog-to-digital converter 50 to an input, output 2 of the microprocessor 48. A block 54 of eight multiplexed switches 72-86 is connected to the microprocessor 48, on the one hand by a connection to the bus 52 and on the other hand at 3 by an address link 56. Each switch 72-86 has eight distinct setting positions of the tripping parameters, described hereinafter.

An output register 58 is connected to the microprocessor 48 by a 6-bit link 60 and a 1-bit link 62 for transmission on 7 output channels S1 to S7 of the control and signalling orders. The output S1 is connected to the relay 14 to control tripping of the circuit breaker 10, whereas the outputs S2 to S6 are connected to control panel display means 64, located on the front of the circuit breaker, notably of the trip unit housing containing the control and tripping on fault circuits and components. The output S7 is connected to an analog tripping control described hereinafter. A non-volatile ROM 66 is connected to a connection 4 of the microprocessor 48 to supply it with the execution program and the permanent data stored in the form of arrays. The recorded program corresponds to the functions performed by the trip unit. A single trip unit can be designed for several ranges of functions and each range naturally has its own special program. The program selected can be recorded in the ROM at the time of manufacture or according to a preferred embodiment, the various programs are recorded in different memories, the trip unit being customized by selection of the appropriate memory, when fitting. The control circuitry, contained in a block 68 connected to an input 5 of the microprocessor 48, comprises the circuits necessary for operation of the microprocessor, in particular the clock for sequencing instruction running, the reset and analog circuitry.

The microprocessor is for example the model MC 146805 marketed by the Motorola Corporation, which contains the standard resources, such as the CPU, interfaces, volatile RAM, and computing unit.

The digital tripping control described above has associated with it a conventional instantaneous trip unit 70, receiving the analog phase signal at the output from the rectifier bridges 18. The unit 70 compares this signal with a preset pick-up value, and emits a tripping order transmitted to the relay 14, when the pick-up level is reached as described hereinafter in detail. The unit 70 ensures a speed of tripping greater than that of the digital trip unit.

It should be noted that FIG. 1 and the corresponding description contain the essential elements for operation of the trip unit, the accessory elements of the analog and digital parts, such as the power supplies, bias resistors and capacitors, fleeting signal registers and memories, having been omitted so as not to make the description unnecessarily long.

The control panel 64 contains eight switches 72-86 which are the eight switches of the block 54 illustrated in FIG. 1. Each eight-position switch cooperates with a resistive network to select one of the eight distinct values, transmitted to the microprocessor 48 when the block 54 is requested for information. The panel 64 also houses five light-emitting diodes or indicator lamps 90-98 and a test unit connector 88.

The trip unit according to the invention can be used for two types of function, a protection function on phase and ground fault and a protection function on phase fault and a load-shedding function.

FIG. 3 illustrates, on a logarithmic scale, the phase and ground protection tripping curves.

The long delay pick-up ILR, that is to say the current intensity beyond which the long delay trip cycle is triggered, can be adjusted by the switch 80. The time after which the circuit breaker trips depends on the current intensity, the relation being an inverse time one, I2 t=T1=constant, which in logarithmic coordinates is expressed by the sloping right-hand segment 100. The long delay time can be adjusted by the switch 78 which modifies the constant T1.

If the current intensity exceeds a second pick-up, in this case the short delay pick-up ICR, the trip unit triggers a short delay trip, which occurs before the long delay trip. The curve representing the short delay trip comprises two successive segments, the inverse time segment 102, represented by the relation I2 t=T2, and the definite time T3 segment 104. The switch 84 adjusts the short delay pick-up ICR and the switch 82 that of the definite short delay time T3. Switching over from the definite time characteristic to the inverse time one is set at a constant current value.

A third pick-up, IIN, higher than the pick-up ICR and adjustable by means of the switch 86, triggers the instantaneous trip cycle, whose time delay T4 corresponds to the trip unit response time which is not adjustable.

Above a fourth pick-up IR the instantaneous analog trip unit 70 operates under normal operating conditions to cause extra-fast opening of the circuit breaker 10.

In FIG. 3, an overload pick-up Is can also be seen, with a slightly lower abscissa than that of the long delay pick-up ILR, which when exceeded indicates the proximity of the long delay pick-up and the risk of tripping. The switch 76 adjusts the overload pick up setting Is. This pick-up Is overshoot signal can be used for simplified load-shedding control, for instance to break a non-priority circuit. As soon as the current reverts below the pick-up Is, the output is deactivated and the shed circuit is reconnected.

The curve representing the ground protection comprises a ground protection pick-up IP and a definite time delay T5. The pick-up IP setting can be adjusted by the switch 74 and the time delay T5 by the switch 72.

The state of the trip unit at a given moment is displayed on the panel 64 by the light-emitting diodes or indicator lamps 90-98, represented on the curves in FIG. 3. The indicator lamp 90, represented by a solid circle on the ground protection pick-up IP, is lit when the circuit breaker 10 trips on a ground fault. It remains lit until external action is taken, for example resetting. The indicator lamp 92, represented by four alternate black and white circular sections, lights up when the overload pick-up Is is exceeded and goes out automatically as soon as the current drops below this pick-up level. The indicator lamp 94 lights up when the long delay pick-up ILR is exceeded, and goes out if the current value drops below this pick-up level before the end of the time delay. An overload trip, controlled by the long delay circuit, is signalled by the indicator lamp 96 whereas a short delay and instantaneous trip causes the indicator lamp 98 to come on. External action is required to put the indicator lamps 96, 98 out. These setting and display techniques are well known in the art, and it is pointless describing them in detail. The setting accuracy can be improved by using switches 72-86 having a greater number of positions or according to a preferred embodiment by a combination of two setting adjustment means, more particularly of the switch 76 and of the other setting switches. A combination of this kind gives 64 setting positions, the switch 76 serving a dual purpose, made possible by a sufficiently large gap between the pick-ups Is and ILR. Independent switches may be added to achieve this kind of combination.

The same unit can be used for another version of protection, illustrated by the curves in FIG. 4. In this version the phase protection tripping curve is the same as the one illustrated in FIG. 3, but ground protection is not provided. The switches 72, 74 and indicator lamps 90, 92 associated with this function are available and the software is modified to provide a load-shedding and restoring function illustrated by the curves 106, 108. The load-shedding pick-up IDE setting, lower than the long delay pick-up ILR, is adjustable by means of the switch 72, the indicator lamp 90 signalling a load-shedding operation. The load-restoring pick-up IRE, different from and lower than the load-shedding pick-up IDE, is adjustable by the switch 74 and signalled by the indicator lamp 92. The load-shedding curve 106 is an inverse time curve parallel to the long delay protection curve 100, whereas the load-restoring curve 108 is a definite time curve. The settings should always cause load-shedding to occur before a long delay trip.

The various protections and functions of the trip unit require a wide current measurement range. An overall range of 0.4 In (In being the rated current) for the lowest long delay pick-up and 12 In for the highest instantaneous trip pick-up is achieved, i.e. a ratio of 30 to 1. To obtain a sufficiently high accuracy, notably a resolution of 1%, the number representing 0.4 In must have at least the value 100, which results in a value of 3000 for the maximum current of 12 In. The number 3000 requires 12-bit coding, but a 12-bit analog-to-digital converter is slow and expensive.

The calibration circuit 34 according to the invention adapts the range of the analog loop to that of the 8-bit analog-to-digital converter 50 while respecting the accuracy of 1%. To this end, the gain of the amplifier 26 is selected to transform an analog signal, corresponding to a maximum current of 14 In, applied to its input as a maximum signal, for example of 5 Volts, occurring on input channel 2 of the multiplexer 29 which will be digitized by the value 256 at the output of the analog-to-digital converter 50. The divider bridge 30, of ratio 2, applies a double signal to channel 1 and the maximum value of 5 Volts is not exceeded so long as the analog signal at the input of the amplifier 26 remains below 7 In. Similarly, the amplifier 28 applies to input 4 of the multiplexer 29 a maximum signal for a current value of 1.7 In and to input 3 a maximum signal for a current value of 0.85 In. It can easily be seen that the ratio of the gains of the amplifiers 26, 28 is 8. The microprocessor 48 selects one of the channels 1 to 4 in terms of the current value, in this instance channel 2 for a current between 7 and 14 In, channel 1 for a current between 1.7 and 7 In, channel 4 for a current between 0.85 and 1.7 In, and channel 3 for a current lower than 0.85 In. The microprocessor 48 multiplies the digitization by a factor which takes account of the channel selected, to re-establish the initial level of the signal. Operation of this calibration circuit is set out in the flow chart illustrated in FIG. 5:

The microprocessor 48 activates channel 2 (14 In) and digitizes the corresponding signal. If the result is greater than the value 128, the digitization is multiplied by 16 and stored in a RAM. If the result is lower than 128, digitization is carried out on channel 1 (7 In) and when the result is greater than 64 the digitization is multiplied by 8 and the result is stored in the RAM. When the result is lower than 64, digitization is performed on channel 4 (1.7 In), and if the digitization is greater than 128, it is multiplied by 2 before being stored in the memory. For a result lower than 128, digitization is performed on channel 3 (0.85 In), and the result is stored directly in the memory. The range of the 8-bit analog-to-digital converter 50 is thus adapted to the current variation range from 0.4 In to 12 In ensuring sufficiently high accuracy. It should be noted that the number of channels and thereby the number of ratings may be increased for greater accuracy or amplitude range or that this number of channels may on the other hand be decreased to achieve the opposite.

Referring to FIG. 1, it can be seen that the ground fault signal will be applied only to the 2 channels 5 and 6. The range of this signal is smaller than that of the phase fault and the two ratings are sufficient. Selection of the two channels 5, 6 by the microprocessor 48 is performed in the manner described above, and which it is pointless repeating.

The use according to the invention of the multiplexer 29 and of the calibration circuit 34 enables the ranges of the analog loop and of the digital loop to be matched simply.

Switching over from the analog loop to the digital loop is expressed by a sampling of the signals processed. The value of the digital signal remains constant throughout the sampling period and this period is determined by the sampling frequency set by the microprocessor 48. This period, for example 1.84 milliseconds, must be compared to the alternating signal half-wave period of 10 milliseconds, and it is clear that the error introduced by sampling is not negligible. The chronogram in FIG. 6a shows on the one hand the variation curve 110 of a rectified full-wave analog signal, in terms of time, and on the other hand the curve 112 of the corresponding sample available at the output of the analog-to-digital converter 50. These curves 110, 112 show up the error mentioned above, notably on the peak value of the signals, which may reach 10%. The level of this peak value, which determines tripping and tripping time delay, is apparent from the foregoing description. The error on the peak value measurement affects the tripping time delay, and this inaccuracy particularly hampers tripping discrimination. We know that in an electrical distribution system several circuit breakers are connected in series, the tripping characteristics of these circuit breakers being staggered in order to provide tripping discrimination, only the circuit breaker directly upstream from the fault opening to eliminate the fault, the other circuit breakers remaining closed to supply the non-faulty branches of the distribution system. Time discrimination is achieved when the non-tripping time of the upstream circuit breaker is greater than the tripping time, i.e. than the total breaking time of the downstream circuit breaker. The tripping and non-tripping curves, of the type illustrated in FIGS. 3 and 4, of series-mounted circuit breakers should be displaced sufficiently to avoid any intersection of these curves. These discrimination problems, and the advantages of having as small a difference as possible between the tripping and non-tripping time in order to break the fault current as quickly as possible while still supplying power to the non-faulty parts of the installation, are well known in the art.

According to the invention, the accuracy of the sampled peak value is increased by latching and storing the last peak and processing this value latched at the last peak to provide the protection functions.

The five values represented by the curves in FIGS. 6a, b, c, d, e, are stored in a RAM. These values are:

MESURI which is the measurement of the sample current processed at a time t.

MESURI-1 which is the measurement of the sample current processed at a time t-1.

INTPHA which is the sampled value of the phase current, latched at the last peak.

DERCRE which is the value of the last peak lower than the value INTPHA.

TEMPEC which is the time gone by managed as a countdown.

FIG. 7 represents the processing flow chart:

At the time t1 the microprocessor 48 calls and processes the sampled current measurement signal MESURI supplied by the analog-to-digital converter 50 (FIG. 6a). This signal MESURI is compared with the stored phase current signal INTPHA (FIG. 6d), latched at the last peak. If MESURI is higher than INTPHA the peak value is increasing and the DERCRE value, which represents the value of the last peak lower than the INTPHA signal, is reset.

The MESURI value is recorded in the MESURI-1 memory (FIG. 6c) and in the INTPHA memory (FIG. 6d). The TEMPEC value (FIG. 6e), which manages the countdown, is set to the maximum and the INTPHA value is processed by the microprocessor 48 in the manner described above to provide the protection functions.

If the value MESURI is lower than the current INTPHA, for example at the time t2 corresponding to the descending phase of the analog signal, the measurements MESURI and MESURI-1 are compared. At the time t2 the measurement MESURI is not greater than MESURI-1 and the MESURI value is entered in the MESURI-1 memory. Then a check is made to see whether TEMPEC is equal to zero, which is not the case at the time t2 and TEMPEC is decremented. The current INTPHA is processed to provide the protection function.

At the time t3 corresponding to the rising phase of the following half-wave, the measurement MESURI is still lower than the current INTPHA, but it is higher than MESURI-1 (increasing phase). The measurement MESURI is compared with the peak DERCRE and as MESURI is greater than DERCRE the value MESURI is entered in the memory before continuing with the aforementioned program of entering the value MESURI in the MESURI-1 memory and the other operations. In the example according to FIG. 6, the sampled peak value of the second half-wave is lower than that of the first half-wave and it can be seen that the stored INTPHA value retained for processing is the higher peak value. Actually the two half-waves of the analog signal are identical, the difference of the sampled peak values resulting from the sampling. By latching, according to the invention, at the last peak, in this case by retaining the first higher peak value instead of the second, the error is notably reduced. The value of the second peak is stored temporarily in the DERCRE memory.

At the time t4 of the third half-wave, MESURI exceeds INTPHA again and DERCRE is zero reset in the way described for the first half-wave, MESURI replacing the value MESURI-1 and INTPHA in the memory. TEMPEC is reset to the maximum value and the new sampled peak value INTPHA is latched.

The amplitude of half-waves 4 and 5 is lower than that of the third half-wave and the countdown proceeds normally until the time t5 when zero is reached. Referring to the flow chart it can be seen that if TEMPEC is equal to zero and DERCRE is different from zero, which is the case in t5, the value DERCRE replaces the value INTPHA in the memory and DERCRE is zero reset.

It can easily be understood that during the countdown period TEMPEC, which is for example 22 milliseconds, the processed value, stored in INTPHA, corresponds to the sampled value latched at the last peak, the countdown being restarted each time the peak value is again exceeded. This latched value takes account of at least two peak values for a 50 Hz alternating current each half-wave of which has a duration of 10 milliseconds. If for the 22 milliseconds the peak values remain lower than the latched peak value INTPHA, the latter is replaced by the value DERCRE which is the last latched peak value lower than INTPHA. If the peak values are increasing, the processed signal immediately takes this increase into account, whereas if they are decreasing a time delay of 22 milliseconds occurs. Latching at the last peak has no effect on the instantaneous trip, but for the short delay and long delay trip it enables the sampling error to be reduced. The time delay of 22 milliseconds may cause an unjustified trip, but the influence is small considering the time delays in the order of a second of such trips. The 22 milliseconds are a compromise between a greater accuracy on the peak value and as small a difference as possible between the tripping and non-tripping time. It is obvious that the time delay can be increased to include a larger number of half-waves thus increasing the accuracy, notably when the peak value is measured or displayed independently from control of the circuit breaker. The process of latching at the last peak has been described above for a phase fault, but it is used with the same advantages for ground fault protection.

The inverse long delay trip function I2 t=constant, represented by the straight line 100 in FIG. 3, is equivalent to that of the bimetallic strip of a conventional circuit breaker which heats up when the current is higher than a first pick-up and cools down if the current is lower than this pick-up. According to the invention, this inverse function is performed by computing a thermal image of a bimetallic strip represented by a stored digital value. During the heating phase this stored value is incremented by a preset factor to express the temperature rise, whereas this stored value is decremented during a cooling phase. Tripping occurs when the stored value exceeds a pick-up level. This thermal image makes it possible to take the previous state into account and to give an accurate account of the temperature of the bimetallic strip or of the equipment protected by the circuit breaker.

The long delay inverse function is performed by the program of the microprocessor 48, illustrated by FIG. 8 and described hereinafter. The current INTPHA is the aforementioned value of the phase current latched at the last peak. The microprocessor 48 compares the value INTPHA with the pick-up ILR displayed by the switch 80. If the current INTPHA is not higher than the pick-up ILR, the overload bit, which supplies the indicator lamp 94, is reset, the indicator lamp 94 thereby being out. A check is made to see whether a multiplying factor MULRR (Cooling long delay multiplier), stored in the RAM, is equal to zero. If not, the multiplier MULRR is decremented and the program is looped. If the multiplier MULRR is equal to zero, this multiplier is initialized at a number determined by the position of the long delay time switch 78 and a value TETALR (Temperature TETA of a simulated bimetallic strip for the long delay function) recorded in the RAM, is multiplied by a reduction factor representing the cooling down of the equivalent bimetallic strip, the new value TETALR being substituted for the previous one in the memory. This sequence corresponds to a cooling down of the bimetallic strip.

A heating phase starts up when the current INTPHA becomes greater than the pick-up ILR. In a similar way to that of the cooling-down phase, a check is made to see whether a multiplying factor MULRE (Heating long delay multiplier) is equal to zero. If not, the multiplier MULRE is decremented and the program is looped. If the multiplier MULRE is equal to zero, the overload bit takes the value 1 to light the indicator lamp 94 and the multiplier MULRE is initialized at a number determined by the switch 78. An arithmetic and logic unit of the microprocessor 48 executes a current squaring operation and computes a value DTETAE (Delta TETA heating) representing the heating, which is added to the previous stored value TETALR to determine the new image temperature. If the latter is greater than a maximum value TETAMAX, the trip bit goes to 1 and causes tripping of the circuit breaker. If not the program is looped.

The role of the multiplying factors MULRR and MULRE is to adjust the rhythm of incrementation or decrementation of the digitized thermal image. It can be seen that setting the multipliers to the number three causes operation, one time out of three, which results in a time delay three times longer. These multipliers allow a choice of the long delay tripping curve.

The short delay inverse time function is performed in a similar manner by the flow chart set out in FIG. 9. If the current INTPHA is lower than the pick-up ICR, the temperature of a bimetallic strip simulated for the short delay function TETACR is multiplied by a reduction factor representing the cooling-down and the new value is entered in the RAM. If the current INTPHA exceeds the pick-up ICR, a check is made to see whether the square of the sampled current latched at the last peak DTETACR, which corresponds to heating, is greater than a given maximum stop value BUTCR, corresponding to the switchover from inverse time tripping to definite time tripping of the short delay function. If not, the value TETACR is replaced in the memory by the incremented value TETACR+DTETACR and a check is made to see whether this new value TETACR exceeds the trip pick-up TETACRMAX. If it does, a tripping order is transmitted to the relay 14 providing inverse time short delay protection. When the temperature rise DTETACR is greater than the stop value BUTCR, the latter value is substituted for DTETACR and added to the value TETACR in the previously described manner to bring about a trip or not depending on whether the new value TETACR representing the simulated temperature of the bimetallic strip is greater than the pick-up TETACRMAX or not.

FIG. 10 represents the main circuit breaker program according to the invention. After the resets, the microprocessor 48 acquires the setting parameters entered by the switches 72-86 of the block 54. Then it reads the phase current and ground current values supplied by the multiplexer 29, all this data being recorded in the RAM. The microprocessor 48 then proceeds with sampling of latching at the last peak of the phase current and ground current in the previously described manner. It then processes the instantaneous function checking whether the phase current latched at the last peaks exceeds the instantaneous trip pick-up IIN or not. The program is then subdivided into two branches run alternatively, the first consisting in computing the square of the current necessary to determine the inverse time function, and the second in successive processing of the long delay, short delay and ground fault protection function. This separation of the processing operations enables the program time to be reduced to a value of 1.84 milliseconds. The signalling and tripping instructions are emitted and a fresh cycle is executed after a synchronization standby respecting the cycle time of 1.84 milliseconds.

Operation of the above-mentioned digital processing trip unit is imperfect when a large short-circuit occurs and during the start-up period. Digital processing is fast, but not instantaneous and this delay may in certain cases lead to the destruction of the protected installation and/or of the circuit breaker. According to the present invention, the digital processing loop is shunted by an analog processing loop to provide an additional instantaneous protection. The rectified signal, proportional to the current in the conductors RST and present at the output of the rectifier bridges 18, is processed in the analog unit 70, to generate an instantaneous tripping order transmitted to the relay 14 when preset pick-ups are exceeded. Referring more particularly to FIG. 11, it can be seen that the signal applied to the input of the unit 70 is amplified in an operational amplifier 114 whose output is connected to an input of the comparator 116, whose output is connected to the relay 14. The other input of the comparator 116 is connected to the point 118 of a divider bridge with two series-mounted resistors 120, 122. A shunting circuit formed by a resistor 124 and a transistor 126 in series is connected parallel to the resistor 122. The transistor 126 is controlled by an order emitted on the output S7 of the register 58 to interrupt or close the shunting circuit. It can easily be seen that the divider bridge 120, 122 and the shunting circuit 124, 126 determine two different pick-ups IR, IR1 depending on whether the transistor 126 is blocked or conducting, the comparator 116 comparing the signal with these pick-ups to emit the tripping order when these pick-ups are exceeded. Referring to FIG. 3, it can be seen that the pick-up IR is higher than the digital instantaneous trip pick-up IIN, the pick-up IR1 being slightly lower than or equal to the pick-up IIN. The pick-up IR is selected when the output S7 is activated, i.e. when the digital processing loop operates. If the digital loop is not activated the analog loop intervention pick-up is reduced to the value IR1.

The instantaneous analog trip unit operates in the following manner:

In normal operation the analog trip unit does not intervene, overloads and short-circuits being dealt with by the digital trip unit. The analog trip unit operating pick-up is set to the value IR and only a short-circuit of an exceptional value greater than the pick-up IR is dealt with by both loops, the analog loop preceding the digital loop and ordering the trip. This fast trip ensures protection of the circuit breaker.

In the start-up period, notably on circuit breaker closing, the digital loop is inactive for a short start-up period and the analog trip unit pick-up is automatically reduced to the lower value IR1 by the lack of a signal on the output S7. Should a short-circuit occur, in particular on closing on a fault, the analog trip unit intervenes as soon as the pick-up IR1 is exceeded protecting both the circuit breaker and the installation. The analog loop in addition acts as a back-up should the digital loop fail and increases the reliability of the trip unit without giving rise to notable complications. It should be noted that changing the analog trip unit pick-up can be performed in a different way.

The trip unit acording to the invention combines the advantages of analog trip units and digital trip units without notable complications.

Demeyer, Pierre

Patent Priority Assignee Title
4873603, Feb 24 1988 MITSUBISHI DENKI KABUSHIKI KAISHA, A CORP OF JAPAN Circuit breaker
4876622, Aug 03 1988 General Electric Company Circuit breaker warning relay and control accessory
4920476, May 27 1988 WESTINGHOUSE ELECTRIC CORPORATION, A CORP OF PA Electronic control for lighting panelboards
5019956, Nov 16 1988 Terasaki Denki Sangyo Power control apparatus
5041737, Jan 25 1990 SCHWEITZER, ENGINEERING LABORATORIES, INC Programmable bus-tie relay having a plurality of selectable setting groups
5311392, Aug 30 1991 SIEMENS INDUSTRY, INC Dual processor electric power trip unit
5335135, Aug 30 1991 SIEMENS INDUSTRY, INC Fault recording system for an electric power trip unit
5498956, Aug 30 1991 SIEMENS INDUSTRY, INC Distributed current and voltage sampling function for an electric power monitoring unit
5512883, Nov 03 1992 Method and device for monitoring the operation of a motor
5581433, Apr 22 1994 Unitrode Corporation Electronic circuit breaker
5793596, Apr 22 1994 Unitrode Corporation Floating positive circuit breaker
5974545, Sep 22 1997 General Electric Company Circuit breaker trip unit processor initialization program
6037555, Jan 05 1999 ABB Schweiz AG Rotary contact circuit breaker venting arrangement including current transformer
6087913, Nov 20 1998 ABB Schweiz AG Circuit breaker mechanism for a rotary contact system
6114641, May 29 1998 ABB Schweiz AG Rotary contact assembly for high ampere-rated circuit breakers
6166344, Mar 23 1999 GE POWER CONTROLS POLSKA SP Z O O Circuit breaker handle block
6172584, Dec 20 1999 General Electric Company Circuit breaker accessory reset system
6175288, Aug 27 1999 ABB Schweiz AG Supplemental trip unit for rotary circuit interrupters
6184761, Dec 20 1999 ABB Schweiz AG Circuit breaker rotary contact arrangement
6188036, Aug 03 1999 General Electric Company Bottom vented circuit breaker capable of top down assembly onto equipment
6204743, Feb 29 2000 General Electric Company Dual connector strap for a rotary contact circuit breaker
6211757, Mar 06 2000 ABB Schweiz AG Fast acting high force trip actuator
6211758, Jan 11 2000 ABB Schweiz AG Circuit breaker accessory gap control mechanism
6215379, Dec 23 1999 ABB Schweiz AG Shunt for indirectly heated bimetallic strip
6218917, Jul 02 1999 General Electric Company Method and arrangement for calibration of circuit breaker thermal trip unit
6218919, Mar 15 2000 General Electric Company Circuit breaker latch mechanism with decreased trip time
6225881, Apr 29 1998 ABB Schweiz AG Thermal magnetic circuit breaker
6229413, Oct 19 1999 ABB Schweiz AG Support of stationary conductors for a circuit breaker
6232570, Sep 16 1999 General Electric Company Arcing contact arrangement
6232856, Nov 02 1999 General Electric Company Magnetic shunt assembly
6232859, Mar 15 2000 GE POWER CONTROLS POLSKA SP Z O O Auxiliary switch mounting configuration for use in a molded case circuit breaker
6239395, Oct 14 1999 General Electric Company Auxiliary position switch assembly for a circuit breaker
6239398, Feb 24 2000 General Electric Company Cassette assembly with rejection features
6239677, Feb 10 2000 GE POWER CONTROLS POLSKA SP Z O O Circuit breaker thermal magnetic trip unit
6252365, Aug 17 1999 General Electric Company Breaker/starter with auto-configurable trip unit
6259048, May 29 1998 GE POWER CONTROLS POLSKA SP Z O O Rotary contact assembly for high ampere-rated circuit breakers
6262642, Nov 03 1999 GE POWER CONTROLS POLSKA SP Z O O Circuit breaker rotary contact arm arrangement
6262872, Jun 03 1999 General Electric Company Electronic trip unit with user-adjustable sensitivity to current spikes
6268991, Jun 25 1999 General Electric Company Method and arrangement for customizing electronic circuit interrupters
6281458, Feb 24 2000 General Electric Company Circuit breaker auxiliary magnetic trip unit with pressure sensitive release
6281461, Dec 27 1999 General Electric Company Circuit breaker rotor assembly having arc prevention structure
6300586, Dec 09 1999 General Electric Company Arc runner retaining feature
6310307, Dec 17 1999 ABB Schweiz AG Circuit breaker rotary contact arm arrangement
6313425, Feb 24 2000 General Electric Company Cassette assembly with rejection features
6317018, Oct 26 1999 GE POWER CONTROLS POLSKA SP Z O O Circuit breaker mechanism
6326868, Jul 02 1997 ABB Schweiz AG Rotary contact assembly for high ampere-rated circuit breaker
6326869, Sep 23 1999 ABB Schweiz AG Clapper armature system for a circuit breaker
6340925, Mar 01 2000 ABB Schweiz AG Circuit breaker mechanism tripping cam
6346868, Mar 01 2000 ABB Schweiz AG Circuit interrupter operating mechanism
6346869, Dec 28 1999 ABB Schweiz AG Rating plug for circuit breakers
6362711, Nov 10 2000 General Electric Company Circuit breaker cover with screw locating feature
6366188, Mar 15 2000 ABB Schweiz AG Accessory and recess identification system for circuit breakers
6366438, Mar 06 2000 ABB Schweiz AG Circuit interrupter rotary contact arm
6373010, Mar 17 2000 ABB Schweiz AG Adjustable energy storage mechanism for a circuit breaker motor operator
6373357, May 16 2000 ABB Schweiz AG Pressure sensitive trip mechanism for a rotary breaker
6377144, Nov 03 1999 General Electric Company Molded case circuit breaker base and mid-cover assembly
6379196, Mar 01 2000 ABB Schweiz AG Terminal connector for a circuit breaker
6380829, Nov 21 2000 ABB Schweiz AG Motor operator interlock and method for circuit breakers
6388213, Mar 17 2000 General Electric Company Locking device for molded case circuit breakers
6388547, Mar 01 2000 General Electric Company Circuit interrupter operating mechanism
6396369, Aug 27 1999 ABB Schweiz AG Rotary contact assembly for high ampere-rated circuit breakers
6400245, Oct 13 2000 General Electric Company Draw out interlock for circuit breakers
6400543, Jun 03 1999 ABB Schweiz AG Electronic trip unit with user-adjustable sensitivity to current spikes
6404314, Feb 29 2000 General Electric Company Adjustable trip solenoid
6421217, Mar 16 2000 ABB Schweiz AG Circuit breaker accessory reset system
6429659, Mar 09 2000 General Electric Company Connection tester for an electronic trip unit
6429759, Feb 14 2000 General Electric Company Split and angled contacts
6429760, Oct 19 2000 General Electric Company Cross bar for a conductor in a rotary breaker
6448521, Mar 01 2000 ABB Schweiz AG Blocking apparatus for circuit breaker contact structure
6448522, Jan 30 2001 ABB Schweiz AG Compact high speed motor operator for a circuit breaker
6459059, Mar 16 2000 ABB Schweiz AG Return spring for a circuit interrupter operating mechanism
6459349, Mar 06 2000 ABB Schweiz AG Circuit breaker comprising a current transformer with a partial air gap
6466117, Mar 01 2000 ABB Schweiz AG Circuit interrupter operating mechanism
6469882, Oct 31 2001 ABB S P A Current transformer initial condition correction
6472620, Mar 17 2000 ABB Schweiz AG Locking arrangement for circuit breaker draw-out mechanism
6476335, Mar 17 2000 ABB Schweiz AG Draw-out mechanism for molded case circuit breakers
6476337, Feb 26 2001 ABB Schweiz AG Auxiliary switch actuation arrangement
6476698, Mar 17 2000 General Electric Company Convertible locking arrangement on breakers
6479774, Mar 17 2000 ABB Schweiz AG High energy closing mechanism for circuit breakers
6496347, Mar 08 2000 General Electric Company System and method for optimization of a circuit breaker mechanism
6531941, Oct 19 2000 General Electric Company Clip for a conductor in a rotary breaker
6534991, Mar 09 2000 General Electric Company Connection tester for an electronic trip unit
6559743, Mar 17 2000 ABB Schweiz AG Stored energy system for breaker operating mechanism
6586693, Mar 17 2000 ABB Schweiz AG Self compensating latch arrangement
6590482, Mar 01 2000 ABB Schweiz AG Circuit breaker mechanism tripping cam
6639168, Mar 17 2000 General Electric Company Energy absorbing contact arm stop
6678135, Sep 12 2001 General Electric Company Module plug for an electronic trip unit
6710988, Aug 17 1999 General Electric Company Small-sized industrial rated electric motor starter switch unit
6724286, Feb 29 2000 General Electric Company Adjustable trip solenoid
6747535, Mar 27 2000 General Electric Company Precision location system between actuator accessory and mechanism
6804101, Nov 06 2001 ABB S P A Digital rating plug for electronic trip unit in circuit breakers
6806800, Oct 19 2000 ABB Schweiz AG Assembly for mounting a motor operator on a circuit breaker
6882258, Feb 27 2001 ABB Schweiz AG Mechanical bell alarm assembly for a circuit breaker
6919785, May 16 2000 ABB S P A Pressure sensitive trip mechanism for a rotary breaker
6995640, May 16 2000 General Electric Company Pressure sensitive trip mechanism for circuit breakers
7301742, Sep 12 2001 General Electric Company Method and apparatus for accessing and activating accessory functions of electronic circuit breakers
Patent Priority Assignee Title
4291355, Jul 30 1979 General Electric Company Programmable overload circuit
4324987, May 26 1978 Cyborex Laboratories, Inc. System and method for optimizing shed/restore operations for electrical loads
4351012, Apr 15 1980 Westinghouse Electric Corp. Circuit interrupter with digital trip unit and means to enter trip settings
4371947, Mar 27 1979 Tokyo Shibaura Denki Kabushiki Kaisha ROM Controlled protective relay system for power transmission network
4377836, Apr 15 1980 Westinghouse Electric Corp. Circuit interrupter with solid state digital trip unit and positive power-up feature
4544982, May 07 1982 General Electric Company Electrical equipment protection apparatus and method
4589052, Jul 17 1984 General Electric Company Digital I2 T pickup, time bands and timing control circuits for static trip circuit breakers
DE3247439,
WO8102496,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 20 1986DEMEYER, PIERREGERIN, MERLIN RUE HENRI TARZEASSIGNMENT OF ASSIGNORS INTEREST 0045150460 pdf
Feb 10 1986Merlin Gerin S.A.(assignment on the face of the patent)
Date Maintenance Fee Events
May 12 1988ASPN: Payor Number Assigned.
May 24 1991F169: Payment is in Excess of Amount Required. Refund Scheduled.
May 24 1991M173: Payment of Maintenance Fee, 4th Year, PL 97-247.
May 24 1991R173: Refund - Payment of Maintenance Fee, 4th Year, PL 97-247.
May 15 1995M184: Payment of Maintenance Fee, 8th Year, Large Entity.
May 24 1999M185: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Dec 01 19904 years fee payment window open
Jun 01 19916 months grace period start (w surcharge)
Dec 01 1991patent expiry (for year 4)
Dec 01 19932 years to revive unintentionally abandoned end. (for year 4)
Dec 01 19948 years fee payment window open
Jun 01 19956 months grace period start (w surcharge)
Dec 01 1995patent expiry (for year 8)
Dec 01 19972 years to revive unintentionally abandoned end. (for year 8)
Dec 01 199812 years fee payment window open
Jun 01 19996 months grace period start (w surcharge)
Dec 01 1999patent expiry (for year 12)
Dec 01 20012 years to revive unintentionally abandoned end. (for year 12)