A method of controlling the steam quality leaving parallel circuits of once-through steam generators using untreated feedwater having high solids concentration wherein control valves in each circuit are actuated by signals generated by the electrical conductivities of the water phase leaving each circuit and the feedwater entering the generator unit.
|
1. A method of control to obtain equal steam quality having liquid and steam phases leaving each parallel tube circuit of a multi-tube once-through, forced circulation steam generating unit utilizing untreated feedwater having high concentrations of dissolved solids comprising:
measuring the electrical conductivity of the water phase of the fluid leaving each parallel tube circuit; measuring the electrical conductivity of the feedwater entering the steam generating unit; generating a control signal from the ratio of the water phase conductivity to the feedwater conductivity, and actuating flow control valves in each parallel tube circuit by the control signal to maintain a given, fixed value of the conductivity ratio for each tube circuit.
|
This invention relates in general to the control of steam quality from a once-through forced circulation boiler supplying steam and water mixtures to an oil field for enhanced oil recovery.
Steam injection is used in the oil industry to promote the flow of viscous, heavy oils or liquid hydrocarbons from tar sands to producing wells by heating the deposits and reducing their viscosity. Currently, practically all steam generators for this service are small, portable, once-through type units fired with oil or gas. They generally utilize available, untreated water at the site which contains high concentrations of dissolved solids. Small size units consist of a single tube formed into a helix or having a serpentine flow path. Steam quality leaving these monotube boilers is controlled to about 90% steam by weight. Larger units consist of three or more tubes in parallel. Flow to each circuit is metered and controlled for an average outlet quality of about 80% steam by weight. The lower quality steam and consequent higher water flow in the output of the multi-tube unit compared to a monotube design is to provide an added factor of safety for flow unbalances and upset heat absorption rates. It is vital to successful operation of these once-through units utilizing untreated feedwater to prevent evaporation to dryness in any tube which could result in the deposition of solids in that tube, leading to tube failure and a forced outage.
The invention provides a method of control for the safe, efficient operation of multi-tube once-through forced circulation steam generator units using untreated feedwater having high concentrations of dissolved solids by continuous measurement of the conductivity of the water phase of the wet steam leaving each circuit and comparing this to the inlet boiler water conductivity. These conductivity ratios actuate flow control valves at the inlet of each circuit to maintain equal steam quality leaving each circuit, thus eliminating the effects of flow unbalances and upset heat absorption rates.
The sole FIGURE in the drawing is schematic representation of a once - through steam generating unit.
The drawing is a schematic representation of a oncethrough steam generating unit or boiler 10 comprising three parallel tube circuits 12 and illustrating features of the invention. It should be understood, however, that a greater or lesser number of parallel tube circuits 12 may be used in the invention. Feedwater line 18 introduces high solids concentration untreated feedwater to pump 20 from which flow is directed to inlet header 30. The parallel tube circuits 12 connect to inlet header 30 and receive liquid flow therefrom. Flow control valves 22 are located at the inlet of each circuit. Tube circuits 12 enter steam generating unit 10 and absorb heat generated from the combustion of fuel and air introduced by burners 14. Exhaust combustion gas leaves unit 10 via flue 16. A steam and water mixture leaves the boiler and enters outlet header 32 which collects the mixture for delivery to outlet pipe 28. A metering device 34 measures the steam and water mixture output leaving the outlet header 32 and transmits a signal to a controller, not shown, which regulates the feedwater output of pump 20 to satisfy the boiler output demand. Meters 24 measure the electrical conductivity of the water phase at the outlet of each circuit 12. Meter 26 measures the electrical conductivity of the feedwater. These conductivities are continuously monitored and any variation of the ratio of outlet to inlet conductivity in any circuit 12 from a chosen fixed value will signal the control valve 22 in the at circuit to open or close thus maintaining equal steam quality in each circuit 12. For example, if the desired steam quality leaving each circuit 12 is 80%, the ratio of outlet to inlet conductivity should be maintained at a value of 5 by a control signal actuating valves 22. Other values of the conductivity ratio as a function of steam quality are given in Table 1.
TABLE 1 |
______________________________________ |
Q W R |
______________________________________ |
90 10 10 |
80 20 5 |
70 30 3.33 |
60 40 2.50 |
50 50 2 |
______________________________________ |
where,
Q=outlet quality, percent steam by weight leaving circuit,
W=percent water by weight in steam leaving circuit,
R=conductivity ratio=100/ W
This method of determining steam quality by electrical conductivity is based on the fact that dissolved solids, whether acids, bases or salts, are quite completely ionized in dilute solution, and therefore conduct electricity in direct proportion to the total solids dissolved. The increased concentration of dissolved solids in the water phase leaving each circuit 12 compared to that of the feedwater is reflected in a similar increase in electrical conductivity.
The inventive method provides an inexpensive, accurate means of eliminating tube failures and hazardous operation of once-through steam generating units having multiple parallel circuitry utilizing untreated feedwater of high dissolved solid concentration.
While in accordance with the provisions of the statutes there is illustrated and described herein a specific embodiment of the invention and those skilled in the art will understand that changes may be made in the form of the invention covered by the claims, and that certain features of the invention may sometimes be used to advantage without corresponding use of the other features.
Patent | Priority | Assignee | Title |
10598049, | Oct 03 2017 | ENVIRO POWER, INC | Evaporator with integrated heat recovery |
11204190, | Oct 03 2017 | Enviro Power, Inc. | Evaporator with integrated heat recovery |
11261760, | Sep 05 2013 | ENVIRO POWER, INC | On-demand vapor generator and control system |
5307766, | Mar 12 1993 | EMERSON PROCESS MANAGEMENT POWER & WATER SOLUTIONS, INC | Temperature control of steam for boilers |
5850809, | Feb 16 1995 | NORTEK GLOBAL HVAC UK LIMITED | Steam-raising system |
5960808, | Jun 18 1997 | PPG Industries Ohio, Inc | Method of controlling the amount of sanitizing agent in an aqueous medium |
7765807, | Oct 12 2005 | SIEMENS ENERGY GLOBAL GMBH & CO KG | Method for warming-up a steam turbine |
8240370, | Dec 18 2009 | Air Products and Chemicals, Inc.; Air Products and Chemicals, Inc | Integrated hydrogen production and hydrocarbon extraction |
8414666, | Dec 18 2009 | Air Products and Chemicals, Inc. | Integrated hydrogen production and hydrocarbon extraction |
9097143, | Feb 07 2008 | City University | Generating power from medium temperature heat sources |
9182114, | Dec 22 2011 | FCCL Partnership | Steam generator and method for generating steam |
9671106, | Dec 22 2011 | FCCL Partnership | Steam generator and method for generating steam |
Patent | Priority | Assignee | Title |
3412714, | |||
3428557, | |||
4269211, | Feb 05 1979 | Texaco Inc. | Steam manifold distribution system for providing equal quality of steam in two lines |
4273146, | Jan 05 1979 | PHILLIPS PETROLEUM COMPANY, A CORP OF DEL | Cooling tower operation with automated pH control and blowdown |
4460008, | Dec 23 1982 | BETZ ENTEC,INC A CORP OF OKA | Indexing controller apparatus for cooling water tower systems |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 25 1987 | BANWEG, ANTON | BABCOCK & WILCOX COMPANY, THE, NEW ORLEANS, LOUISIANA A CORP OF DE | ASSIGNMENT OF ASSIGNORS INTEREST | 004802 | /0229 | |
Nov 25 1987 | WIENER, MURRAY | BABCOCK & WILCOX COMPANY, THE, NEW ORLEANS, LOUISIANA A CORP OF DE | ASSIGNMENT OF ASSIGNORS INTEREST | 004802 | /0229 | |
Dec 14 1987 | The Babcock & Wilcox Company | (assignment on the face of the patent) | / | |||
Jun 18 1998 | BABCOCK & WILCOX COMPANY, THE | McDermott Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009396 | /0001 | |
Feb 21 2006 | McDermott Technology, Inc | The Babcock & Wilcox Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017186 | /0749 | |
Feb 22 2006 | The Babcock & Wilcox Company | CREDIT SUISSE, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT | SECURITY AGREEMENT | 017344 | /0565 | |
Nov 20 2007 | The Babcock & Wilcox Company | THE BABCOCK & WILCOX POWER GENERATION GROUP, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 021998 | /0870 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | AMERICON, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | DIAMOND POWER EQUITY INVESTMENTS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | DIAMOND POWER INTERNATIONAL, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | PALM BEACH RESOURCE RECOVERY CORPORATION | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | POWER SYSTEMS OPERATIONS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | REVLOC RECLAMATION SERVICE, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | NATIONAL ECOLOGY COMPANY | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | NORTH COUNTY RECYCLING, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | The Babcock & Wilcox Company | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | DIAMOND POWER CHINA HOLDINGS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | DIAMOND POWER AUSTRALIA HOLDINGS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | DIAMOND OPERATING CO , INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | APPLIED SYNERGISTICS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | B & W SERVICE COMPANY | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | BABCOCK & WILCOX CHINA HOLDINGS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | BABCOCK & WILCOX CONSTRUCTION CO , INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | BABCOCK & WILCOX DENMARK HOLDINGS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | BABCOCK & WILCOX EBENSBURG POWER, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | BABCOCK & WILCOX EQUITY INVESTMENTS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | AMERICON EQUIPMENT SERVICES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | BABCOCK & WILCOX INTERNATIONAL, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 | |
May 03 2010 | Credit Suisse AG, Cayman Islands Branch | BABCOCK & WILCOX INTERNATIONAL SALES AND SERVICE CORPORATION | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 024776 | /0693 |
Date | Maintenance Fee Events |
Dec 13 1991 | M173: Payment of Maintenance Fee, 4th Year, PL 97-247. |
Jan 25 1996 | M184: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 24 1996 | ASPN: Payor Number Assigned. |
Jan 27 2000 | M185: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 26 1991 | 4 years fee payment window open |
Jan 26 1992 | 6 months grace period start (w surcharge) |
Jul 26 1992 | patent expiry (for year 4) |
Jul 26 1994 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 26 1995 | 8 years fee payment window open |
Jan 26 1996 | 6 months grace period start (w surcharge) |
Jul 26 1996 | patent expiry (for year 8) |
Jul 26 1998 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 26 1999 | 12 years fee payment window open |
Jan 26 2000 | 6 months grace period start (w surcharge) |
Jul 26 2000 | patent expiry (for year 12) |
Jul 26 2002 | 2 years to revive unintentionally abandoned end. (for year 12) |