A catalyst construction and method of making is disclosed for treating automotive exhaust gases from a fossil fueled internal combustion engine. The construction comprises: (a) a substrate; (b) a coating on said substrate having comingled first and second phases, said first phase comprising ceria and precious metal in microscale intimacy and said second phase comprising precious metal substantially devoid of ceria and separated from the ceria in said first phase on a macroscale. The phases may be in particle form with (i) the first phase particles resulting from the codeposition of ceo2, precious metal, and Al2 O3 from an aqueous solution containing dissolved salts of ceo2 and precious metal and suspended particles of Al2 O3 ; and (ii) the second phase particles resulting from the codeposition of precious metal and Al2 O3 from an aqueous solution containing a dissolved salt of the precious metal and suspended particles of Al2 O3. Alternatively, the substrate has Al2 O3 thereon to increase its surface area, and the two-phase coating is adhered to said Al2 O3, said first phase resulting partially from the discontinuous deposition of ceo2 onto said Al2 O3 and partially from the continuous deposition of precious metal over said discontinuous ceo2 and over the exposed Al2 O3 ; the precious metal in immediate microscale contact with the ceo2 constitutes the first phase and the precious metal not immediately in microscale contact with the ceo2 constitutes the second phase.

Patent
   4782038
Priority
Oct 26 1987
Filed
Oct 26 1987
Issued
Nov 01 1988
Expiry
Oct 26 2007
Assg.orig
Entity
Large
16
17
all paid
1. A method of making a catalyst system, having an alumina-containing coated substrate, for treating automotive exhaust gases, comprising:
impregnating or depositing onto said substrate a two-phase coating in which a first phase comprises ceo2 and precious metal of the platinum group in microscale intimacy, and a second phase comprising precious metal of the platinum group substantially devoid of ceo2 and separated from said ceo2 in said first phase on a macroscale.
15. A catalyst construction for treating automotive exhaust gases from a fossil-fueled internal combustion engine, comprising:
(a) a substrate;
(b) a coating on said substrate having comingled first and second phases, said first phase comprising ceo2 and precious metal of the platinum group in microscale intimacy providing atomic scale intimacy between ceo2 and the precious metal, and said second phase comprising precious metal of the platinum group substantially devoid of ceo2 and separated from the ceo2 in said first phase on a macroscale in which the nearest atomic neighbor of an atom of said precious metal in said second phase is not Ce.
2. The method as in claim 1, in which said ceo2 is impregnated or deposited in an amount of 2-20% by weight of said coated substrate and said precious metal is impregnated or deposited in an amount of 0.05-0.5% by weight of said coated substrate.
3. The method as in claim 2, in which the weight ratio of the first phase to said second phase is in the range of 4:1 to 1:4.
4. The method as in claim 1, in which said precious metal is selected from the platinum group.
5. The method as in claim 1, in which said phases are in particle form with (i) the first phase particles resulting from the codeposition of ceo2, precious metal, and Al2 O3 from an aqueous solution containing dissolved salts of ceo2 and precious metal and suspended particles of Al2 O3, and (ii) the second phase particles resulting from the codeposition of precious metal and Al2 O3 from an aqueous solution containing a dissolved salt of said precious metal and suspended particles of Al2 O3.
6. The method as in claim 5, in which ceo2 is deposited in an amount of 2-20% by weight of said coated substrate, said precious metal is deposited in an amount of 0.05-0.5% by weight of the final coated substrate, and the ratio of Al2 O3 /ceo2 varies between 1:1 to 20:1.
7. The method as in claim 5, in which the codeposition of said first phase particles is carried out by (i) dissolving a salt of cerium and a salt of said precious metal in deionized water in which is suspended Al2 O3, (ii) drying said solution to produce a collection of Al2 O3 particles impregnated with ceo2 and precious metal, (iii) forming an aqueous slurry of said impregnated collection of first phase particles, and (iv) dipping said substrate in said slurry.
8. The method as in claim 5, in which deposition of said second phase particles is carried out by (i) dissolving a salt for said precious metal in deionized water in which is suspended Al2 O3, (ii) drying said solution to produce a collection of Al2 O3 particles impregnated with said precious metal, (iii) forming an aqueous slurry of said collection of second phase particles, (iv) dipping said coated substrate in said slurry, and (v) drying and calcining said doubly coated substrate.
9. The method as in claim 5, in which said precious metal of the platinum group is selected from the group consisting of Platinum, palladium, rhodium, ruthenium, iridium, osmium, and mixtures thereof.
10. The method as in claim 8, in which said drying is carried out by heating to about 75-100°C for about 3-5 hours, and said calcining is carried out by heating to about 800°C for about 3-5 hours.
11. The method as in claim 1, in which said substrate is coated with Al2 O3 prior to impregnation or deposition of said two-phase coating, said first phase resulting partially from the discontinuous deposition of ceo2 onto said coated Al2 O3 and partially from the continuous deposition of precious metal over said discontinuous ceo2 and over the exposed Al2 O3, said precious metal in immediate microscale contact with said ceo2 constituting said first phase and the precious metal not immediately in microscale contact with ceo2 constituting said second phase.
12. The method as in claim 11, in which said ceo2 is discontinuously deposited onto said Al2 O3 by the use of high temperature sintering or by use of Al2 O3 with and without ceo2 to give discontinuity.
13. The method as in claim 11, in which said ceo2 is present in an amount of 4-8% by weight of said coated substrate and said precious metal is present in an amount of 0.05-0.25% by weight of the coated substrate.
14. The method as in claim 13, in which Al2 O3 is present on said substrate in an amount of 25-30% by weight of the coated substrate and the ratio of Al2 O3 /ceo2 is in the range of 3:1 to 7:1.
16. The construction as in claim 15, in which said phases are in Particle form with (i) the first phase Particles resulting from the codeposition of ceo2, precious metal, and Al2 O3 from an aqueous solution containing dissolved salts of ceo2 and precious metal and suspended particles of Al2 O3, and (ii) the second phase particles resulting from the codeposition of precious metal and Al2 O3 from an aqueous solution containing a dissolved salt of said precious metal and suspended particles of Al2 O3.
17. The construction as in claim 15, in which said substrate carries Al2 O3 to increase its surface area, and said two-phase coating is superimposed over said Al2 O3, said first phase resulting partially from the discontinuous deposition of ceo2 onto said Al2 O3 and partially from the continuous deposition of precious metal over said discontinuous ceo2 and over the exposed Al2 O3, said precious metal in immediate microscale contact with said ceo2 constituting said first phase and the precious metal not immediately in microscale contact with said ceo2 constituting said second phase.
18. The construction as in claim 15, in which said substrate has a high surface area of at least 15-20 m2 /gram.
19. The construction as in claim 15, in which said precious metal of the platinum group is selected from the group consisting of platinum, palladium, rhodium, ruthenium, iridium, osmium, and mixtures thereof.
20. The method as in claim 8, in which said precious metal salt is selected from the group of chloroplatinic acid and platinic chloride.

1. Technical Field

This invention relates to the art of making and using catalysts for automotive use and, more particularly, to the art of making alumina-supported, precious metal catalysts, which support has been stabilized by the use of ceria.

2. Description of the Prior Art

The use of transition-type aluminas as a suitable support for automotive exhaust gas catalysts encounter at least one very significant problem. That is, as the temperature increases during use of such alumina supports, they undergo a phase change to alpha alumina. This instability is undesirable because it results in a severe loss of surface area and physical strength. These changes, in turn, lessen the effectiveness of the catalysts because of shrinkage, which causes lower activity and loss of catalyst due to attrition.

Several ingredients have heretofore been commercially employed as alumina stabilizers, namely, barium oxide, lanthanum oxide, and cerium oxide. These oxides are usually promoted by impregnating the catalyst substrate with a solution in which is dissolved a salt of such metals for such oxides. Calcination of such impregnated substrate results in a washcoat of the desired metal oxide.

Of such stabilizers, ceria also has the ability to absorb and store oxygen on the catalyst when an exhaust gas temporarily becomes oxygen-excess and to release oxygen when it becomes oxygen-short. Thus, if an insufficiency of oxygen, required for oxidation of CO or HC, should occur for a moment in a reaction gas, when ceria and a precious metal are intimately deposited on alumina, the reaction of the gas can be carried out by oxygen release from the cerium. This oxygen transfer characteristic of ceria further enhances the catalytic effectiveness of precious metals, particularly at and adjacent stoichiometric conditions.

To utilize these dual advantages of ceria, there has developed two distinct manners of use of ceria for oxidation catalysts: (i) use of finely divided CeO2 as a codeposit with a small quantity of precious metal resulting in a microscale intimacy between the elements in the resulting coating, represented by U.S. Pat. Nos. 3,850,847; 4,448,895; 3,993,572; and 4,367,162; and (ii) a first deposition of CeO2 onto the substrate followed by a separate deposition of the usually small quantity of precious metal, but still resulting in a microscale intimacy between CeO2 and the precious metal, such as represented in U.S. Pat. Nos. 4,448,895; 4,591,580; 4,407,735; 4,476,246; 4,426,319; 4,153,579; 3,903,020; 4,157,316; 4,331,565; 4,189,404; 4,283,308; and 4,294,726.

As part of the research leading to this invention, it has been discovered that the use of cerium oxide with precious metals in microscale intimacy results in two problems: (a) a lack of tolerance to lead poisoning, and (b) the suppression of catalytic activity of saturated hydrocarbons.

With respect to the increase in lead poisoning, this is not only a problem for engines supplied with lead-containing gasoline supplies, such as is prevalent in Europe and Australia, but also for engines adapted to run on leadfree gasoline since lead is typically present such latter gasolines in trace amounts. To convert lead oxide to lead sulphate in exhaust gases requires oxidation of SO2 to SO3 ; the presence of SO3 converts lead oxide to harmless lead sulphate. But the presence of SO3 is dependent upon the catalytic oxidation of SO2 by the precious metal. Unfortunately, the microscale intimacy of ceria with the precious metal suppresses such catalytic activity. With respect to the suppression of catalytic activity for saturated hydrocarbons, this phenomena appears to be the result of the inability of ionic PdO to oxidize saturated hydrocarbons and the inhibition of the reduction of PdO to Pd by the presence of CeO2.

Accordingly, a primary object of this invention is to provide a catalyst construction for automotive emissions, derived from fossil fuels, that will retain the advantages of ceria use and eliminate problems associated with ceria use.

To achieve the above object, a catalyst construction is disclosed herein for treating automotive exhaust gases from a fossil fueled internal combustion engine, which construction comprises: (a) a substrate; (b) a coating on said substrate having comingled first and second phases, said first phase comprising ceria and precious metal in microscale intimacy and said second phase comprising precious metal substantially devoid of ceria and separated from the ceria in said first phase on a macroscale.

Advantageously, the phases for the coating are in particle form with (i) the first phase particles resulting from the codeposition of CeO2, precious metal, and Al2 O3 from an aqueous solution containing dissolved salts of CeO2 and precious metal and suspended particles of Al2 O3 ; and (ii) the second phase particles resulting from the codeposition of precious metal and Al2 O3 from an aqueous solution containing a dissolved salt of the precious metal and suspended particles of Al2 O3. Alternatively, the substrate has Al2 O3 thereon to increase its surface area, and the two-phase coating is adhered to said Al2 O3, the first phase resulting partially from the discontinuous deposition of CeO2 onto said Al2 O3 and partially from the continuous deposition of precious metal over said discontinuous CeO2 and over the exposed Al2 O3 ; the precious metal in immediate microscale contact with the CeO2 constitutes the first phase, and the precious metal not immediately in microscale contact with the CeO2 constitutes the second phase.

Advantageously, the precious metal is selected from the platinum group, and particularly from the group consisting of platinum, palladium, rhodium, ruthenium, iridium, osmium, and mixtures thereof.

Another aspect of this invention is a method of making a catalyst system, having an alumina-containing coated substrate, for treating automotive exhaust gases. The method comprises impregnating or depositing onto the substrate a two-phase coating in which a first phase comprises CeO2 and precious metal in microscale intimacy, and a second phase comprising precious metal substantially devoid of CeO2 and separated from the CeO2 in the first phase on a macroscale.

Again, advantageously, the phases for the coating of the method are in particle form with (i) the first phase particles resulting from the codeposition of CeO2, precious metal, and Al2 O3 from an aqueous solution containing dissolved salts of CeO2 and metal and suspended particles of Al2 O3 ; and (ii) the second phase particles resulting from the codeposition of precious metal and Al2 O3 from an aqueous solution containing a dissolved salt of the precious metal and suspended particles of Al2 O3.

In this second inventive aspect (i) the CeO2 is preferably deposited in an amount of 2-20% by weight of the final coated substrate, (ii) the precious metal is deposited in an amount of 0.05-0.5% by weight of the final coated substrate, and (iii) the ratio of Al2 O3 /CeO2 varies between 1:1 to 20:1. Preferably, the weight ratio of the first phase to the second phase is in the range of 4:1 to 1:4.

Advantageously, the codeposition of the first phase particles for the method is carried out by (i) dissolving in deionized water a salt of cerium and a salt of the precious metal and in which is suspended Al2 O3,(ii) drying and calcining the solution to produce a collection of Al2 O3 particles impregnated with CeO2 and precious metal, (iii) forming an aqueous slurry of the impregnated collection of first phase particles, and (iv) dipping the substrate in the slurry.

Preferably, the wet-coated substrate is dried by heating to about 75°C for about 3-5 hours. The second phase is prepared in a similar mode except that a salt of cerium is absent in solution for impregnating the Al2 O3. A second slurry is made using the dried and calcined precious metal impregnated Al2 O3 particles. The previously coated substrate is dipped in this second slurry, dried at about 75°C about for 3-5 hours. The coated assembly may then be calcined by heating to about 800°C for about four hours.

A third aspect of this invention is a method of using precious metal catalysts in the treatment of automotive exhaust gases, comprising: exposing such exhaust gases to a comingled two-phase catalyst construction, wherein a first phase comprises precious metal and ceria in microscale intimacy, and a second phase comprises precious metal substantially devoid of ceria and separated from the ceria in said first phase on a macroscale. The exhaust gases contain unsaturated hydrocarbons and lead oxide; the temperature of the exhaust gases, under treatment, is in the range of 250-1000°C and at 15,000-100,000 Hr-1 space velocity.

FIG. 1 is a graphical illustration of the effect of temperature on conversion efficiency of propane (a saturated hydrocarbon).

To disclose how a dual-phase catalyst construction can be provided having microscale intimacy between ceria and the precious metal in one phase and macroscale separation between the precious metal and ceria in the other phase, the following best mode for the construction and its method of making is presented.

Exhaust gases to be treated by the catalyst construction hereunder are emitted by internal combustion engines fueled by fossil fuel (gasoline or diesel fuel). In such exhaust gases, there will be found saturated hydrocarbons, such as propane, and a presence of lead varying in degree with the country or method of producing the fuel for the engine. The gases from such engines are delivered to the catalyst construction and pass therethrough at a space velocity advantageously in the range of 15,000-100,000 Hr-1 and at a temperature in the range of about 250°-1000°C

A suitable catalyst substrate having a high surface area to volume ratio, preferably a monolithic cordierite cellular body having at least 300 cells per square inch and a fresh BET area of at least 15 m2 /gm and a six mil wall thickness, is used. To achieve the high surface area to volume ratio of the substrate, it is conventional to apply a washcoat or slip of Al2 O3 to such substrate. Such Al2 O3 coating may also contain additional components selected from the group consisting of titania, zirconia, silica, magnesia, strontium oxide, and calcium oxide. Such coating will typically comprise between 3-25% by weight of the finished refractory supported catalyst. The Al2 O3 washcoat promotes a high surface area, typically about 20-30 m2 /gm. To stabilize such Al2 O3 and inhibit it from changing to alpha alumina at heated temperatures, stabilizing agents selected from the group consisting of CeO2, La2 O3, or BaO have been placed in intimate relationship with the Al2 O3. CeO2 is most desired because it not only acts as a stabilizer for Al2 O3, but promotes exhaust gas reactions and acts as an oxygen storer for precious metal catalysts, and may even alleviate some sulphur poisoning. Unfortunately, it has been discovered that CeO2 (i) promotes an intolerance to lead by acting as an inhibitor of the conversion of SO2 to SO3, the latter being so necessary to conversion of lead oxide to lead sufphate, and (ii) inhibits the oxidation of saturated hydrocarbons by slowing down the reduction of precious metal oxides to their elemental stage.

To maintain the above advantages of CeO2 in conjunction with Al2 O3, and eliminate the above disadvantages, a two-phase catalyst coating is used. The substrate or two-phase coating may also contain other surface extenders, stabilizers, or promoters as long as they do not functionally inhibit the desired effects of CeO2 and the precious metals.

The refractory substrate may, however, be physically formed as discrete parts, such as pellets or extrudites, and may be selected from other materials such as mullite, birconia, titania, spinel, silica, silica/alumina, or alumina. The monolith construction is preferred because it is more durable by avoiding the shifting of discrete parts due to thermal changes of the container which may result in the destructive grinding of such parts, such as pellets. The substrate may also be a metal requiring similar coating techniques.

An aqueous slip or slurry is prepared with alumina particles impregnated with cerium oxide and precious metal. The Al2 O3 particles in each of the phases will act as the surface extender provided in prior art constructions by an Al2 O3 washcoat. The monolith substrate is then preferably dipped in such slip or slurry to wet the monolith and coat it with the ceria and precious metal impregnated alumina particles. The coating should be applied so that it provides a coating in the range of 18-40 gm/ft3, preferably about 20 gm/ft3.

The alumina is preferably derived from agglomerated gamma alumina powder having a high surface area (180 m2 /gm BET area. Such alumina typically has an average particle size of about 20 nm, a density of about 2.9 gm/cm3, and a purity greater than 99.6% alumina.

The cerium oxide is impregnated into the alumina preferably by forming a slurry of the alumina powder in deionized water to which is added a water solution A of Ce(NO3)3 --6H2 O. Advantageously, such solution A is prepared by adding about 69 grams of the cerium salt to about 320 grams of distilled water and mixing thoroughly. Such solution A is then added to an alumina slurry which has been prepared by suspending a mixture of about 168 grams of the powdered alumina in about 1000 grams of distilled water; solution A is blended into such slurry and mixed thoroughly. Other water soluble salts may, of course, be used in amounts to achieve the equivalent amount of cerium hydroxide precipitate as here illustrated. The uniform, adhered coating of cerium hydroxide on the alumina granules was obtained by the addition of ammonium hydroxide in amounts sufficient to achieve complete precipitation of the cerium. The precipitation occurs in accordance with the following reaction:

Ce(NO3)3 +3NH4 OH→Ce(OH)3 +3NH4 NO3

The resulting aqueous suspension of coated alumina granules is then filtered and the residue thoroughly washed using distilled water and dried at about 75°C i.e., 75-100°C for about two hours to produce a dry cake. The resulting alumina granules in such cake, coated by the hydrated oxide of cerium Ce2 O3 ×H2 O, constitutes a partially impregnated alumina particle needed for phase one.

The dry cake is crushed to pass a 48 mesh screen and ball milled in water to form a slurry. About 740 grams of the crushed and ball milled impregnated alumina granules is mixed with about 1100 grams of distilled water, to which may be added a small amount of a dispersant or a binder, to form a second slurry. A solution B is prepared using a salt of a precious metal selected from the group consisting of palladium, platinum, rhodium, ruthenium, iridium, osmium, and mixtures thereof. The precious metal may be added as a salt in the form of a nitrate, chloride, tetramine, or nitrate. Advantageously, the precious metal salt is selected from the group of chloroplatinic acid and platinic chloride. To about 75 grams of distilled water, about 13 grams of chloroplatinic acid (containing about 39.5% platinum) is added. This solution B is then added, preferably by drops, to the second slurry and mixed thoroughly. Such mixing was continued for at least 15 minutes and the viscosity was allowed to stabilize by letting the slurry stand for several hours. Such slurry thus becomes the medium for a first dipping of the monolith. Excess slurry is blown off and the wet coating is dried at about 75°C in ambient air for about two hours.

Alternatively, the solutions A and B may be added to a single slurry containing suspended Al2 O3, avoiding the two-step impregnation of the Al2 O3 particles. Moreoever, deposition or impregnation may also be carried out by spraying or other equivalent means. Alternatively, CeO2 may be discontinuously deposited onto the Al2 O3 by use of high temperature sintering or by use of Al2 O3, some with and some without CeO2 to give discontinuity.

A slurry of suspended Al2 O3 particles is prepared to which is added solution B. About 700 grams of Al2 O3 and about 88 grams of solution B are utilized. The coated substrate is dipped in the second phase slurry and dried.

The finished catalyst should have a composition by weight of about 0.05-50% precious metal, 2-20% CeO2, and 20-40% Al2 O3, with the coating being 22-61% by weight of the finished catalyst. The ratio of Al2 O3 /CeO2 should be in the range of 1:1 to 20:1.

The above catalyst construction provides a two-phase precious metal catalyst construction with a first phase comprised of alumina particles impregnated with ceria and precious metal in microscale intimacy (due to the codeposition of the ceria and precious metal together from a slurry or slip preparation), and a second phase comprised of precious metal impregnated into a separate collection of alumina particles (which, when deposited over the previously coated alumina particles, forms a phase where the precious metal is not only substantially devoid of ceria but is separated from ceria in the first phase on a macroscale). Microscale intimacy is herein defined to mean atomic proximity between Ce and the precious metal. Macroscale separation is defined herein to mean that in no instance in the matrix of the second phase can the nearest atomic neighbor of an atom of the precious metal be cerium.

The first phase is effective to provide oxidation of automotive exhaust gases; the precious metal in the first phase oxidizes aromatic and olefinic hydrocarbons, all of which are unsaturated, as well as carbon monoxide. As indicated earlier, such a microscale intimacy between the ceria and precious metal inhibits the oxidation reaction of SO2 to SO3 which is a necessary constituent to oxidize lead oxide to a harmless constituent of lead sulphate. Thus, the first phase is not effective in oxidizing lead oxide and so is intolerant to lead poisoning of the gaseous constituents. The ceria in the first phase operates very effectively to enhance the oxidation capabilities of the precious metal catalyst and acts as an oxygen storage mechanism so that during excess oxygen conditions the ceria oxidizes to higher valance, and, in a reducing condition, is able to give up such stored oxygen to continue oxidation during conditions which are slightly less than stoichiometric.

The second phase has precious metal separated on a macroscale from the ceria in the first coating and thus is capable of oxidizing saturated hydrocarbons (such as C3 H8, propane), and is also effective in promoting the oxidation of SO2 to SO3 to facilitate completion of the oxidation of lead oxide.

Several tests were undertaken to corroborate the intended effects of this invention. First, a model reaction analysis was undertaken wherein a first catalyst sample coating was prepared similar solely to the first phase of this invention, including precious metal (platinum), ceria, and gamma alumina. The deposited ingredients of such first phase were in an amount of 3.7 weight percent for cerium, 0.7% for platinum, and 15-20% for gamma alumina.

The other sample coating was comprised essentially of the second phase of this invention, namely, a precious metal (platinum) and gamma alumina. In this second saple, the platinum was applied in an amount of 0.7 weight percent.

Each of these coating samples was applied as a slip coating to a cordierite cellular ceramic monolith. The coated monolith samples were subjected to a simulated exhaust gas flow at a level of about SV=60,000 Hr-1 ; the exhaust gas contained 1000 ppm of propane C3 H8 and 2% oxygen. As shown in FIG. 1, the sample equivalent to the first phase demonstrated a low efficiency for oxidizing propane, and particularly at lower temperatures; the sample equivalent to the second phase had a high capability of conversion over a broader range of temperatures. As shown in Table I, sample 2 (equivalent to the first phase) had a relatively poor capability of oxidizing SO2 to SO3 at various temperatures as indicated. This was not true of sample 1 (equivalent to the second phase) containing simply platinum devoid of CeO2, which had a much higher efficiency for converting SO2 at the same various temperatures. This demonstrates the need for macroscale separation of PM and CeO2 for preventing lead poisoning.

TABLE I
______________________________________
SO2 OXIDATION (%) OVER Pt AND Pt/Ce CATALYSTS
T °C.
Sample Loading 400 450 500 550
______________________________________
1 Pt (0.07 wt. %)
80 88 92 82
2 Pt (0.07 wt. %) +
52 54 56 57
Ce (3.7 wt. %)
______________________________________

In another series of samples, the high temperature oxidizing effects of a three-way catalyst performance was examined. The precious metal loadings for this series are as indicated in Table II.

TABLE II
______________________________________
HIGH TEMPERATURE OXIDIZING EFFECTS ON
THREE WAY CATALYST PERFORMANCE
Pretreatment: 940°C in air (4 hrs.) after pulsator aging
for 13,000 simulated miles.
% Conversion (R = 1.0)
Sam- PM = Pt/Rh % CO % C3 H6
% C3 H8
ple (5/1) TWC 450°C
450°
450°
550°C
______________________________________
3 [PM/CeO2 ]/Al2 O3 +
96 100 70 76
PM/Al2 O3
(20 G PM/ft3)
4 [PM/CeO2 ]/[Al2 O3 ]
91 100 33 45
(35 G PM/ft3)
5 [PM/CeO2 ]/[Al2 O3 ] +
90 100 31 42
PM (30 G PM/ft3)
______________________________________

Sample 3 contains a first phase coating of precious metal and cerium oxide in microscale intimacy, impregnated onto Al2 O3, and precious metal impregnated onto Al2 O3 in a second phase coating thereover. The precious metal (PM) included platinum and rhodium in a 5:1 ratio, which is characteristic for a three-way catalyst. Sample 4 contained only a first phase coating consisting of cerium oxide and precious metal (in microscale intimacy) impregnated onto Al2 O3, and with a higher precious metal loading.

In a fifth sample, precious metal and ceria (in microscale intimacy) were impregnated onto Al2 O3 to form a first phase, and precious metal was coated onto the first phase without Al2 O3 to promote microscale intimacy in another manner with the first phase.

All of the precious metal catalyst loadings were pretreated in air by heating at 943°C for four hours after having been subjected to a pulsator aging at 13,000 simulated miles. Pulsator aging is defined herein to mean durability testing of catalyst with isodane containing lead, phosphorus, and sulphur. This is a conventional test.

As shown in Table II, the carbon monoxide had its highest conversion efficiency for sample 3 and the ability to convert unsaturated hydrocarbons (C3 H6, such as propylene) was excellent, and the saturated hydrocarbons (C3 H8, such as propane) also were at their highest conversion efficiencies. This is in contrast to samples 4 and 5, where the CO conversion efficiency dropped and the saturated hydrocarbon conversion efficiency dropped dramatically. Without some portion of the precious metal being separated on a macroscale from CeO2, poor oxidation of saturated HC occurs.

While various examples of the invention have been illustrated and described, it will be noted that changes and modifications may be made without departing from the invention, and it is intended to cover in the appended claims all such modifications and equivalents as fall within the true spirit and scope of the invention.

Gandhi, Haren S., Watkins, William L. H.

Patent Priority Assignee Title
5063193, Jun 06 1990 General Motors Corporation Base metal automotive exhaust catalysts with improved activity and stability and method of making the catalysts
5075275, Jul 06 1989 MAZDA MOTOR CORPORATION, A CORP OF JAPAN Catalyst for purification of exhaust gases
5248650, Jan 10 1992 Nissan Motor Co., Ltd. Catalysts for the purification of exhaust gas
5286699, Dec 09 1988 Nippon Shokubai Kagaku Kogyo Co., Ltd. Exhaust gas purifying catalyst suppressing the generation of hydrogen sulfide and method of making the catalyst
5462907, Nov 26 1991 Engelhard Corporation Ceria-alumina oxidation catalyst
5491120, Nov 26 1991 Engelhard Corporation Oxidation catalyst with bulk ceria, a second bulk metal oxide, and platinum
5580535, Nov 26 1991 Engelhard Corporation System and method for abatement of food cooking fumes
5627124, Nov 26 1991 Engelhard Corporation Ceria-alumina oxidation catalyst
5756053, Nov 26 1991 Engelhard Corporation System and method for abatement of food cooking fumes
6077808, Aug 08 1997 Mazda Motor Corporation Exhaust gas purifying catalyst and process of producing the same
6153160, Nov 26 1991 Engelhard Corporation Catalytic oxidation method
6165935, Jun 07 1995 Asec Manufacturing General Partnership Palladium catalyst washcoat supports for improved methane oxidation in natural gas automotive emission catalysts
6248684, Nov 19 1992 Englehard Corporation Zeolite-containing oxidation catalyst and method of use
6255249, Nov 26 1991 Engelhard Corporation Oxidation catalyst and method of use
6274107, Nov 19 1992 Engelhard Corporation Zeolite-containing oxidation catalyst and method of use
7601671, Oct 28 2004 Asec Manufacturing General Partnership; UMICORE AG & CO KG Drying method for exhaust gas catalyst
Patent Priority Assignee Title
3850847,
3903020,
3993572, Aug 04 1972 Engelhard Corporation Rare earth containing catalyst composition
4153579, Jan 23 1978 General Motors Corporation Platinum, rhodium, and palladium catalyst for automotive emission control
4157316, Aug 27 1975 Engelhard Corporation Polyfunctional catalysts
4189404, Jan 06 1977 Engelhard Corporation Catalyst and process of its preparation
4283308, Jul 12 1978 Nippon Shokubai Kagaku Kogyo Co., Ltd. Auto exhaust gas catalyst, and process for production thereof
4294726, Feb 23 1979 DEUTSCHE GOLD-UND SILBER-SCHEIDEANSTALT VORMALS ROESSLER, A GERMAN CORP Catalyst for the purification of exhaust gases of internal combustion engines
4331565, Nov 28 1980 General Motors Corporation Method for forming high surface area catalyst carrier and catalyst using same
4367162, Mar 06 1980 KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, 41-1, AZA YOKOMICHI, OAZA NAGAKUTE-CHO, AICHI-GUN, AICHI-KEN, JAPAN Catalyst for purifying exhaust gases and a method for producing the catalyst
4407735, Jun 19 1981 Nissan Motor Company, Limited; NISSAN MOTOR CO LTD Method of impregnating spheres of activated alumina for use in catalyst support with cerium
4426319, Mar 09 1981 Procatalyse Catalyst for treatment of exhaust gases from internal combustion engines
4448895, Nov 11 1981 Nippon Shokubai Kagaku Kogyo Co. Ltd. Process for preparation of catalyst for cleaning exhaust gases and catalyst prepared by the process
4476246, Jan 26 1983 W R GRACE & CO -CONN Doubly promoted platinum group metal catalysts for emission control
4581343, May 19 1983 Pro-Catalyse Process for the preparation of a pollution control catalyst for internal combustion engine exhaust system/catalytic converter
4591580, Jan 26 1983 W R GRACE & CO -CONN Stabilized and doubly promoted platinum group metal catalysts for emission control and method of making same
4714694, Jun 30 1986 Engelhard Corporation Aluminum-stabilized ceria catalyst compositions, and methods of making the same
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 16 1987GANDHI, HAREN S FORD MOTOR COMPANY, THEASSIGNMENT OF ASSIGNORS INTEREST 0048320384 pdf
Oct 21 1987WATKINS, WILLIAM L H FORD MOTOR COMPANY, THEASSIGNMENT OF ASSIGNORS INTEREST 0048320384 pdf
Oct 26 1987Ford Motor Company(assignment on the face of the patent)
Mar 01 1997FORD MOTOR COMPANY, A DELAWARE CORPORATIONFORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0114670001 pdf
Date Maintenance Fee Events
Mar 27 1992M183: Payment of Maintenance Fee, 4th Year, Large Entity.
May 05 1992ASPN: Payor Number Assigned.
Jan 29 1996M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Mar 31 2000M185: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Nov 01 19914 years fee payment window open
May 01 19926 months grace period start (w surcharge)
Nov 01 1992patent expiry (for year 4)
Nov 01 19942 years to revive unintentionally abandoned end. (for year 4)
Nov 01 19958 years fee payment window open
May 01 19966 months grace period start (w surcharge)
Nov 01 1996patent expiry (for year 8)
Nov 01 19982 years to revive unintentionally abandoned end. (for year 8)
Nov 01 199912 years fee payment window open
May 01 20006 months grace period start (w surcharge)
Nov 01 2000patent expiry (for year 12)
Nov 01 20022 years to revive unintentionally abandoned end. (for year 12)