A connector assembly includes modules which intermate to interconnect electrical circuits between mother and daughter printed circuit boards. The modules are provided with resilient projections which latch on relative rotation of the modules, enabling the handling of resultant modular assemblies. High current carrying terminals of the modules have contact posts of different spacings and lengths from a contact point to assure equal resistivity to avoid hot spots for high current. A polarizing key locking feature is provided by a snap ring including a slot to permit engagement and disengagement by a simple tool such as a screwdriver.

Patent
   4790763
Priority
Apr 22 1986
Filed
Sep 15 1986
Issued
Dec 13 1988
Expiry
Apr 22 2006
Assg.orig
Entity
Large
114
21
EXPIRED
5. A pair of polarizing modules comprising:
first and second modules each having a dielectric housing member having a multifaced cavity therein, the said cavity of said first member being adapted to receive a polarizing projection therein;
a polarizing projection having a corresponding multifaced surface for receipt in said first member cavity in different rotational positions corresponding to the opposition of respective different faces of said first member cavity and projection, a forward end of the projection being free of a mating face of the first housing member for mating engagement with a corresponding multifaced cavity of the second module of the pair, the other end of the projection being formed with a groove adapted to receive locking means therein; and
locking means adapted to be inserted through an access opening in the first housing member to engage said groove to lock the projection axially in the first housing member in any one of the rotational positions, a one end portion of the locking means extending from the housing for engagement by a release tool to withdraw said locking means from the groove to release the projection for withdrawal from the first member cavity and rotation to another polarizing position.
1. A modular connector assembly for the distribution of power to a printed circuit board comprising;
pairs of first and second matable individual connector modules, the first connector module of each pair having a pluggable mating face and a board-engaging face and the second connector module of each pair having a complementary pluggable mating face and a board-engaging face, each first individual module of respective pairs being provided with means to link itself with adjacent first modules to form a composite connector body, and each second individual module of respective pairs being provided with means to link itself with adjacent second modules to form a complementary composit connector body; and
at least one pair of first and second polarizing modules, said first and second polarizing modules being linkable with respective adjacent first and second connector modules, each said first and second polarizing module including a dielectric housing member having a multifaced cavity therein, said first polarizing module further including a polarizing projection having a corresponding multifaced surface for receipt in said first cavity in different rotational positions corresponding to the opposition of respective different faces of the cavity and projection, a forward end of the projection being free of a mating face of the housing member for mating engagement with a corresponding multifaced cavity of said second polarizing module of the pair, the other end of the projection being formed with a groove adapted to receive locking means therein, and a locking means adapted to be inserted through an access opening in the housing to engage said groove to lock the projection axially in the housing in any one of the rotational positions, a one end portion of the locking means extending from the housing for engagement by a release tool to withdraw the locking means from the groove to release the projection for withdrawal from the cavity and rotation to another polarizing position.
2. The modular connector assembly as defined in claim 1 in which the projection is formed with a key receiving slot located to extend axially and eccentrically therealong, the housing member of the second module being provided with a key located to extend eccentrically out of the cavity of the second module from the mating face in one of several rotational positions, such that the key is received in the slot when the projection is mated with the cavity of the second module to provide polarized mating of the module pairs.
3. The modular connector assembly as defined in claim 1 wherein said locking means is a snap ring.
4. The modular connector assembly as defined in claim 3 wherein the one end portion of the snap ring is provided with an eye.
6. The pair of polarizing modules as defined in claim 5 wherein said projection is formed with a key receiving slot located to extend axially and eccentrically therealong, the housing member of the second module being provided with a key located to extend eccentrically outwardly of the cavity of said second module from the mating face in one of several rotational positions, such that the key is received in the slot when the projection is mated with the cavity of the second module to provide polarized mating of the module pairs.
7. The pair of polarizing modules as defined in claim 5 wherein said locking means is a snap ring.
8. The pair of polarizing modules as defined in claim 7 wherein the one end portion of the snap ring is provided with an eye.

This is a continuation-in-part application of U.S. patent application Ser. No. 855,225 filed Apr. 22, 1986, the disclosure of which is incorporated herein by reference.

The present invention relates to a programmable modular connector assembly for electronic packaging and, particularly, to an assembly for the distribution of power between printed circuit boards for use in data processing units of computers. It features modules which interlock each with the other to form the intermating halves of a connector assembly with different style modules for different power levels and for providing polarization featuring dimensions considerably smaller than heretofore possible with power type interconnections.

In times past, the architecture utilized for business machines, data processing, computers and the like, has generally been one which did not require high levels of distributed power. Rather, the power requirements were confined to a separate power supply unit with the several processor, compiler, logic or memory functions readily handled by power levels supplied by five, ten, or fifteen amperes. A typical power connector is shown in U.S. Pat. No. 4,234,436 issued Sept. 23, 1980 to Zimmerman et al.

With the advent of higher complexity and speed of data processing and increasingly dense semiconductor packaging, the need for power distribution onto mother boards and even down to the daughter board level, has gradually arisen. However, difficulty has been encountered in adapting existing power type connectors and screw-down terminals to the electronic packaging required. The large terminal lugs utilized for power suppliers of a few years ago and the associated connectors heretofore used are simply too large, too cumbersome, and too difficult to use to satisfy present packaging requirements.

As a second aspect of the background of the invention, there are a number of power connectors which purport to be modular, including the type shown in the publication AMP Engineering and Purchasing Guide, published by AMP Incorporated, Harrisburg, Pa. 17105, pages 10-3, 10-5, copyright 1976. One of the problems with using connectors of this type for power distribution is that the axial stresses and loads necessary to generate high normal forces for the higher current carrying capability of their contact systems require special treatment when such are applied to printed circuit boards and the relatively fragile circuit structures associated therewith. Additionally, experience has revealed problems of utilizing terminal contacts of the type shown with solder production techniques as well as problems with current distribution in such contacts in use at the higher current levels. This latter problem is one of concentration of current density with a resulting heating creating hot spots and possible de-soldering inherent in the contact design.

Finally, with respect to power connectors of the type embraced by the present invention, there is a need for a polarization which is flexible and adaptable and more readily changeable than heretofore available, prior teaching being found in U.S. Pat. No. 3,491,330 issued Jan. 20, 1970 to H. E. Barnhart et al.

Accordingly, it is an object of the invention to provide a board-to-board pluggable connection using a connector assembly which is programmable in the sense of being able to mix several different types of power connectors with polarization modules to form a connector assembly for interconnecting printed circuit boards. It is a further object of the invention to provide a connector assembly for interconnecting printed circuit boards. It is a further object of the invention to provide a connector assembly having power distribution modules of relatively high current level to make power distribution in electronic packaging more feasible. It is yet a further object to provide power contact terminals capable of carrying currents on the order of fifteen to fifty amperes or more with mimimum stresses generated to their associated board members and with power distribution characteristics optimized. It is yet a further object to provide a novel and compact polarization structure capable of being readily changed to provide a number of different settings easily and quickly and with simple tools.

All these objects should be achieved by structures which are capable of being manufactured by conventional mass production techniques to permit economic feasibility.

According to the invention, there is provided a modular connector assembly for distributing different levels of power between printed circuit boards, as for example, from a mother board to a daughter board. The connector assembly is modular in the sense that it contains a number of individual connector modules which mate each with the other and interlock in a novel fashion to form a composite connector half which can be handled independently of the structure of the printed circuit board to which the half is attached. These modules are of mixed type with a variety of power carrying contacts, polarization modules, and even signal modules. All have relatively low profiles and dimensions such that, when interlinked to form a modular connector assembly half, are prealigned for intermating with a corresponding modular connector assembly half similarly interlinked and mountable on printed circuit boards to form the power distribution for circuit functions. In consequence, the circuit boards may be connected and disconnected from each other for servicing or repair by a simple plugging action.

In accordance with the invention, a variety of different power level terminals are provided for the connector assembly which feature an intermatability and functioning which is self-contained in terms of maintaining relatively high force contacts without stressing unduly the connector assembly and board associated therewith. The contacts each have multiple current carrying legs dimensioned to ensure even distribution of current from the contact points of intermating to the current carrying conductors of the boards on which they are mounted.

Polarizing modules include polarizing elements which may be rapidly fixed in position to provide a particular polarization without a requirement for other than a rudimentary tool, and yet provide a wide variety of polarization possibilities.

FIG. 1A is a perspective view showing the mating halves of the modular connector assembly of the invention mounted on printed circuit boards in order to distribute power from one to the other of the boards.

FIGS. 1B and 1C are side elevational views of one end of the connector assembly of FIG. 1A, the mother and daughter boards, respectively;

FIG. 2 is a perspective view showing adjacent modules of the assembly of FIG. 1A;

FIGS. 3A and 3B are side views, much enlarged, of the latching structures of the modules;

FIGS. 4A and 4B are, respectively, much enlarged perspective views of the matable current carrying contact terminals;

FIGS. 5A and 5B are sectional views in orthogonal planes showing a mated current carrying module with the contacts of FIGS. 4A and 4B;

FIG. 5C is a perspective view, of a cap member utilized in the connector of FIGS. 5A and 5B;

FIGS. 6A and 6B are perspective views of the male and female versions of higher current carrying power contact terminals of the invention;

FIG. 7 is a partly sectional view of a connector incorporating the contacts of FIGS. 6A and 6B;

FIG. 8A is an enlarged perspective view of a polarization and adjacent module shown in FIG. 1A;

FIG. 8B is a side elevational view of the modules of FIG. 8A, partly in section;

FIG. 8C is an end view of the detent locking ring utilized to lock the polarization plug in place in the housing;

FIG. 8D is a perspective view, much enlarged, of the polarization module which mates with the module shown in FIGS. 8A and 8B;

FIG. 8E is a perspective of the receptacle which intermates with the polarization plug of FIGS. 8A and 8B;

FIGS. 9A and 9B are cross-sectional views of other examples of polarizing modules before and after mating;

FIGS. 10A and 10B are end views of the polarizing modules shown in FIG. 9; and

FIG. 11 is a plan view of the mated polarizing modules of FIG. 9.

Referring now to FIGS. 1A, 1B, and 1C, references is first made to those constituents of an electronic package labeled "M" for mother board and "DA" for daughter board, which form the essence of electronic packaging in a wide array of functional devices. The mother board is employed to carry signals to and from the system, along with appropriate grounding paths and power. The daughter board more typically contains the actual functioning elements, logic and memory, for controllers, microprocessors, and a host of other circuit entities. With respect to FIGS. 1A-1C, a connector assembly has halves 10 and 10' which carry the various power, ground, and signal circuits from the mother board M to the daughter board DA, it being understood that, in a typical application, there would be a plurality of daughter boards for each mother board, with each board DA representing a given function of the system.

Board DA, through its associated connector assembly half 10', is plugged into board M through its connector assembly half 10 to interconnect the circuit paths shown in phantom in an exemplary fashion in the FIGS. 1A-1C. It is to be understood that board DA will be unplugged from and re-plugged to board M for repair, replacement, upgrading, or a variety of useful purposes. While not shown and not always necessary, it is to be understood that a card guide or card cage may be utilized in conjunction with board M to accommodate and hold board DA or members like DA in an overall structural package. In the illustrative embodiment of FIG. 1A, connector assembly modules are shown and labeled A through G, and A' through G'. Modules A and G are polarizing modules which mate with corresponding modules of half 10' labeled A' and G'. Module B is included to show a type of signal module which may be included with the assembly of the invention having multiple pins and sockets, but which will hereinafter not be described in detail. Modules C and D represent one form of current carrying connector, and modules E and F represent another kind of power module having a power capacity higher than that of C and D.

Also shown particularly in FIGS. 1A and 1C is the relationship of projections 12 and 12' which are integral with the housings of the modules, and which fit within holes within the printed circuit boards, respectively, to hold the modular connector assembly half in position prior to soldering or other operations during assembly of components onto circuit boards. Also shown in FIGS. 1B and 1C are the terminal legs 104, 124, respectively, which extend through the mother and daughter boards and are soldered thereto to effect an interconnection of the circuit paths thereon to the connector terminals contained within the housings C and C'. Also shown particularly in FIGS. 1A-1C are polarization elements which will be hereinafter detailed, and which are arranged in projecting male and receptacle female relationship so as to intermate first and, thus, give guidance for the subsequent engagement of the projecting portions of the half 10' into the corresponding cavities of the mother board connector half 10.

In summary, the invention connector assembly may be seen to be comprised of a variety of different types of modules which nest with each other to form a connector assembly half and fit within the printed circuit boards of a circuit assembly to carry electrical and electronic circuit paths in distribution from primary to secondary package.

In FIG. 2, the rear side of modules G and F, and module E, are shown after unlatching from F. The modules E, F, and G may typically be made to include an outer shell or housing member such as shown with respect to F as 20, which is made to contain a terminal of suitable conducting material to be hereinafter detailed, such terminal being shown as including a leg 70 respectively, rear or terminating portions seen to project from F in FIG. 2. The forward portions of contact spring elements 126 can be seen in part protruding forward in module E. The linking of the modules can be achieved manually by grasping module E between thumb and forefinger, rotating through ninety degrees, and moving to the left, in FIG. 2, so that the projection 22 enters socket 42 of module E, module E being vertical as shown. Thereafter, E is rotated ninety degrees relative to module F.

As this is accomplished, module E is pressed against the module F so that the face of housing member 20 shown as 24 presses against the face 44 of module E, so that latching projections integrally moulded with the housing member 26 and 28 engage complementary portions of a housing member 40 of module F. All the electrical power modules include, on opposite faces, similar portions permitting linking of the different modules, with the exception of the end modules which contain appropriate latching projections on one side only.

As shown in FIGS. 3A and 3B, during latching, the resilient latching projection 26 enters a cavity 47 associated with projection 46. Portion 26 includes leading surfaces 26 and 27 and are tapered relative to the axis of closure of the module halves in opposite senses so that, as 26 approaches 46, it will be guided therewithin with relative ease and engage with an overcentre snap action when apices 34 and 50 ride over each other. The dimensions of the housing members 20 and 40 are such that, as the latches are engaged, housing surfaces will bottom so that the outer flat surface portions of 20 and 40 are parallel and form, in essence, a flat level surface.

It is to be pointed out that the rotary latching action of the modules, in essence, locks the modules together so that the subassembly of a connector half may be configured, handled, and loaded into a printed circuit board without falling apart or risk of the relative displacement of modules, which could cause subsequent mating problems. It is also pointed out that this is not the case with modules that link by translational sliding together along the mating axis of or transversely thereof.

The foregoing action of engagement and latching of the modules of the present invention further permits subassembly and handling of the modules without the use of additional frames or holding and mounting structures piror to loading into printed circuit boards. With respect to the housing members of the modules, it is to be observed in FIG. 2 that cavities 29 are provided which correspond to cavities 49 in housing member 49 of E, such that when the modules E and F are mated, cavities of hexagonal shape cross section are developed. These cavities serve the purpose of reducing plastic usage and provide cooling spaces.

Referring now to FIGS. 4A, 4B, 5A and 5B, as shown, electrical terminals of mating terminals 60 and 80 are fitted within the modules C and C' to effect a power connection therebetween. Terminal 60 thus terminates a conductive path 71 on board DA and the terminal 80 terminates a conductive path 81 on board M. Terminal 60 includes a forward U-section receptacle contact portion 62, relatively long and narrow, which is formed with longitudinal and transverse embossments 64 and 65, which stiffen portion 62, relatively long and narrow, which is formed with longitudinal and transverse embossments 64 and 65, which stiffen portion 62. A locking barb 66 extends from the base of the U and engages an interior projection of the housing member of module C' to latch the terminal 60 therewithin. The mouth portion 60 is beveled at 67 and there are included on the rear end upstanding projections 69 which anchor an insulating cap described below.

Projecting at right angles to the mating axis, as shown in FIG. 4A, are a row of three pairs of aligned posts 70 which fit through apertures in the daughter board DA and are terminated to path 71 by soldering to carry current through the terminal 60 to the daughter board. Rearwardly successive posts are of decreasing effective length with respect to the daughter board DA (as shown in FIG. 5B) to balance out the effective resistance of the terminals, the bulk resistance of the forward posts being increased relative to the rearward posts, so that current flowing through the terminal 60 will be more evenly distributed. This evens out the heat generated by current flow as the terminal provides six paths of relatively equal total resistance to the current carried by terminal 60 and to conductive foil 71 of board DA. As can be seen by the cross section in FIGS. 5A and 5B, the rear portions of terminal 60 are of thicker stock than the forward portion better to carry high currents concentrated therein.

Equalizing the current flow by varying the length of the posts enables the posts to be of standard cross-sectional size, obviating any requirement for the provision of nonstandard conductive pads on the circuit boards which would add to the cost of application. In addition, this enables the posts to be located in spaced-apart relation, providing both a stable mounting for the terminal and an evenly distributed current flow in the circuit board.

As shown in FIG. 4B, terminal 90 includes multiple contact posts 82 and a like number of forward cantilever spring contact fingers 84 aligned with respective posts, providing conductive paths of equal length and resistance from the mother board to the forward portion 62 of the mating terminal 60.

Alternate fingers 84 diverge from a planar body portion 85 and their ends 86 are curved back towards each other in opposite senses, permitting mating with terminal 60 without stubbing and providing multiple points of contact on the opposite sides of the terminal 60 for optimum current distribution. The male terminal is very inexpensive to manufacture yet provides an effective current carrying connection.

Terminals 60 and 80 are preferably made of a high conductivity material, better than ninety percent IACS, the conductivity of the international standard for copper. For reference, the thickness of the terminal 60 in its thickest portion was on the order of 0.030 inches and the thickness of the contact element 80 was on the same order of thickness, with the spring fingers having a length from root to contact point on the order of 0.37 inches. The contact surfaces of both terminals were plated with silver over nickel to a thickness appropriate to power contacts. The posts 70 and 80 were typically plated with matte tin finish suitable for soldering processes.

As can be discerned from FIGS. 5A, 5B and 5C, the mating portions of the housing members of module pairs C and C' are in a male-female configuration, with the contact elements recessed from the forward faces thereof in order to avoid shorting. The housing member of module C' is open-ended and molded with deformed tubular portion 88 and a channel section rearward portion 89 with the channel mouth open to the circuit board. A plastic cap member 90 snaps into the rear of module C' by fingers 92 engaging the projections 69 and the rearmost of the legs 70 of terminal 60. The provision of plug 90 assures insulation of the terminals 60 while permitting the housing member to be molded in a simple straight-draw mold.

The contact system including terminals 60 and 80 has a design rating in excess of fifteen amperes at 280 volts D.C. so that each module C' has a design rating of thirty amperes or better. It should be noted that this relatively high current rating is achieved in a very narrow box-like configuration which is of considerable importance in minimizing use of board real estate, possibly the most costly aspect of multilayer and heavy gauge, high current, printed circuit board manufacture.

In the embodiment, the housing member of modules C and C' were made of 420 SEO VALOX, a G.E. engineering plastic having temperature rating of 150°C

Referring now to FIGS. 6A through 7, there are shown other, higher currently carrying modules, including a female terminal 100 of modules E' and F' for mounting in the daughter board DA and a male terminal 120 of modules E and F and associated with the mother board. Terminal 100 includes a forward, mating receptacle portion of rectangular cross section, the front end of which includes a beveled surface 102 to minimize stubbing, and the rear board connecting portion of which includes upstanding projections 104 for mounting cap member 140 (FIG. 7) which serve to engage in a similar fashion to that described above.

A row of pairs of posts 104, 106, 108 extend along a rear of the terminal, having different lengths for even current distribution to the daughter board circuit paths 101. Terminal 100 is also of dual thickness stock with a thinner receptacle portion and a correspondingly thicker rear portion to improve conductivity. Terminal 100 may be formed with longitudinally and transversely extending embossments 110 and 112 providing transverse and longitudinal stiffening.

The male terminal 120 is made of dual thickness stock and includes a series of cantilever spring contact fingers 122, extending generally coaxially forwardly and rearwardly, respectively, from locations equally spaced around the periphery of a tubular body portion. The contact fingers 122 diverge radially outwardly towards their free ends which are bent inwardly to avoid stubbing on mating.

The housing member of module E is integrally molded with a centrally located, forwardly extending, tapering tubular projection 130, having a free end of further reduced diameter extending beyond the free ends of the terminal, the body portion and contact fingers of which are received in a recess defined between the projection 130 and an outer wall 136 of the module. The divergence maintains a separation between the projection 130 and contact portions of the contact finger adjacent the free ends, and avoids a rolling action on engagement with the housing member of module E'.

The spacing between the free end of the projection and the outer wall of the module housing member is sufficiently small to preclude entry of a finger portion inadvertently to contact the finger 122 in the unmated condition.

The stock for terminal 100 was, in this example, made of the Olin material previously mentioned, with a maximum thickness of 0.048 inches and a minimum thickness of 0.030 inches. The terminal 120 was similarly comprised and of stock 0.048 inches in thickness. The spring fingers 122 were roughly 0.150 inches in width, and 0.450 inches in length. This provided a design rating for the terminals of 50 amperes at a voltage of 280 D.C. with a heat rise characteristic of 20° delta temperature. The rubbing and bearing contact interfaces of 100 and 120 were plated similarly to those described above.

As shown in FIGS. 8A-8C, the polarizing module A' includes a housing member 150 molded of a suitable dielectric plastic material.

The ends of each housing 150 have profiles 160 providing fingerpieces to facilitate handling. A blind-ended hexagonal cavity 168 opens to the mating face and is intersected by a slot 190 formed at the base of access recess 192. Projecting from the mating face of 150 is a mating part of a polarizing plug 162 of a semihexagonal shape having a forward beveled or pointed end 164 providing a lead-in surface to assist in intermating. A rear hexagonal mounting portion 166 of the plug fits within the hexagonal cavity 168 of the housing member. A peripheral groove is formed adjacent the rear end of portion 166 defining a locking head 172. A snap ring 180 is inserted through the counterbore 192 so that legs 182 and 184 of the snap ring are received in the groove 170 to lock the plug in the housing cavity 168. Free ends of the legs 182, 184 are formed with beveled surfaces such as 183 and 185, to facilitate movement of the snap ring into the groove. Snap ring 180 is preferably bowed, as shown in FIG. 8B, to provide frictional retention within 190 and has a removal eye 186 concealed within the recess 192 to prevent inadvertent dislodgement.

A tool such as the blade of a small screwdriver 200 can be inserted along recess 192 and into eye 186 to lever out the snap ring 180 upwardly, releasing the rear body 166 for axial withdrawal from the cavity 168 and reorientation. Reverse leverage may be used to urge the snap ring into locking engagement in the groove.

As shown in FIGS. 8D and 8E, the mating polarizing module 150' is of similar construction, including a hexagonal cavity 220 into which is locked a polarizing key 222 with a head 224 at the rear end of a short mounting portion extending from a short semihexagonal mating portion concealed within the cavity defining, with the cavity wall, a socket receiving the polarizing projection 162.

It will be apparent from the foregoing that the removal and replacement of the polarizing projection in a different position can be achieved very speedily with a very simple structure without the need for screws and other fastening elements requiring time-consuming manipulation, particularly difficult when mounted on the confined space of a printed circuit board.

In second examples of polarizing modules 230, 232 shown in FIGS. 9A and 9B, the housing members 234, 236, respectively, are essentially similar in shape to those of the above-described modules, being formed with respective hexagonal section cavities 238, 240 receiving a polarizing projection and key 242, 244, respectively, and intersected by snap ring receiving slots 246, 248, respectively. Access recesses 250, 252 are formed with guiding abutment surfaces 254, 256 for a release tool, such as the blade of a screwdriver inserted into an eye 247 provided in tab 249 of the ring 258. Each snap ring 258 is formed with three radially inwardly protruding groove engaging lands 259, 260, 261 at a free end of each leg and at a central location, respectively, as best seen in FIGS. 10A and 10B. The end walls of the mating modules are provided with a resilient cantilever latching arm 264 having a latching eye 266 receiving a latching ramp 268 in known manner.

The polarizing projection 242 is molded of plastic material with a hexagonal section body with a snap ring receiving groove 270 at a rear end and an eccentrically located, axially longitudinally extending key receiving slot 272.

The cavity 240 of module 232 has a hexagonal section counterbore 274 at a rear end of smaller cross-sectional size than a front projection receiving portion 275 receiving a hexagonal section rear body portion 276 of the key 244 which is locked in position in a similar manner to projection 242. A forward mating portion 278 of the key is semihexagonal section and projects through the front cavity portion 275 at an eccentric location. Both the mating portion 278 of the key and a forward portion of the projection protrude from the mating face beyond mating ends of the other modules and internest when mated, as shown in FIG. 9B, with the opposed faces, avoiding a need for an excessively long projection for effective guiding which would arise and disturb the uniform geometry of the modular assembly if a projection from only one module were provided.

In summary, the invention embraces a modular concept which allows intermating of several different kinds of modules in a way which fixes dimensions and allows a preassembly of modules piror to insertion in printed circuit boards, and provides several types of power terminals having themselves features to better assure distribution of current without hot spots, and a particular type of polarization which allows considerable flexibility in adapting to electrical and electronic packaging.

Weber, Ronald M., Van Scyoc, William C.

Patent Priority Assignee Title
10096921, Mar 19 2009 FCI USA LLC Electrical connector having ribbed ground plate
10720721, Mar 19 2009 FCI USA LLC Electrical connector having ribbed ground plate
10741945, Aug 26 2013 FCI USA LLC Replacement electrical connectors
5011436, Aug 31 1987 AMP Incorporated Hermaphroditic keys
5013262, Jun 26 1989 Hosiden Electronics Co., Ltd. Multi-contact socket
5116229, Dec 17 1990 TALL TOWER LED, LLC Light unit terminals maintained in bent condition
5125849, Jul 09 1990 AMP Incorporated Connector guide means
5161990, Jul 02 1990 GP Batteries (Malaysia) SDN BHD Universal plug for replacement rechargeable battery for telephones
5178561, Sep 14 1990 Thomas & Betts Corporation Insulating plug for use in electric connectors
5190469, Jun 03 1992 Electrical cord end connector
5217381, Sep 04 1990 Siemens Aktiengesellschaft Coding mechanism having integrated special contacts for electrical assemblies pluggable onto a backplane wiring
5277595, Jun 29 1992 Berg Technology, Inc Power receptacle for a daughterboard
5295843, Jan 19 1993 The Whitaker Corporation Electrical connector for power and signal contacts
5326285, Dec 14 1992 Cooper Industries, Inc. Connection arrangement between terminal blocks
5356300, Sep 16 1993 WHITAKER CORPORATION, THE Blind mating guides with ground contacts
5376012, Feb 12 1992 FCI Americas Technology, Inc Power port terminal
5547385, May 27 1994 WHITAKER CORPORATION, THE Blind mating guides on backwards compatible connector
5709554, Feb 12 1996 TALL TOWER LED, LLC Angled circuit connector structure
5713744, Sep 28 1994 The Whitaker Corporation Integrated circuit socket for ball grid array and land grid array lead styles
5807119, Nov 08 1996 TYCO ELECTRONICS SERVICES GmbH Mechanical coupling device
5879198, Apr 11 1996 Yazaki Corporation; Toyota Jidosha Kabushiki Kaisha Butt type terminal unit with touch prevention structure
5885088, Jul 14 1997 Molex Incorporated Electrical connector assembly with polarization means
5951306, Mar 29 1996 The Whitaker Corporation; WHITAKER CORPORATION, THE Modular connector assembly
6059615, Jan 31 1997 Berg Technology, Inc. Modular cable to board power connector
6135795, Jul 15 1997 Hon Hai Precision Ind. Co., Ltd. Electrical connector with cover
6146211, Nov 09 1998 Yazaki Corporation Terminal
6196878, Nov 22 1996 Siemens Aktiengesellschaft Arrangement for coded and uncoded plug-in modules and device for connecting external lines using the arrangement
6269539, Jun 25 1996 Fujitsu Takamisawa Component Limited Fabrication method of connector having internal switch
6319075, Apr 17 1998 FCI Americas Technology, Inc Power connector
6496377, Aug 08 1994 Cooper Technologies Company Vehicle electric power distribution system
6517358, Dec 12 2000 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Method and system for directly interconnecting storage devices to controller cards within a highly available storage system
6780027, Jan 28 2003 FCI Americas Technology, Inc. Power connector with vertical male AC power contacts
6814590, May 23 2002 FCI Americas Technology, Inc Electrical power connector
6848950, May 23 2003 FCI Americas Technology, Inc. Multi-interface power contact and electrical connector including same
6848953, Apr 17 1998 FCI Americas Technology, Inc. Power connector
6869294, Apr 17 1998 FCI Americas Technology, Inc. Power connector
6890221, Jan 27 2003 FCI Americas Technology, Inc Power connector with male and female contacts
6935902, Aug 05 2004 TOPOWER COMPUTER INDUSTRIAL CO , LTD Coupler device for power supply facility
6951490, Sep 25 2002 Tyco Eletro-Electronica LTDA Apparatus, methods and articles of manufacture for an adjustable pin header assembly
7037142, Jan 28 2003 FCI Americas Technology, Inc Power connector with safety feature
7059919, Apr 17 1998 FCI Americas Technology, Inc Power connector
7065871, May 23 2002 FCI Americas Technology, Inc. Method of manufacturing electrical power connector
7070464, Apr 17 1998 FCI Americas Technology, Inc. Power connector
7074071, Jul 30 2001 Harting Electronics GmbH & Co. KG Plug connector
7083477, Jul 29 2005 International Business Machines Corporation Providing mechanical support for modular interconnect systems
7137845, Jul 30 2001 Harting Electronics GmbH & Co. KG Plug connector
7140925, Jan 28 2003 FCI Americas Technology, Inc. Power connector with safety feature
7168963, May 23 2002 FCI Americas Technology, Inc. Electrical power connector
7190070, Apr 10 2003 Semikron Elektronik GmbH Modular power semiconductor module
7303401, Jun 23 2005 FCI Americas Technology, Inc. Electrical connector system with header connector capable of direct and indirect mounting
7309242, Apr 17 1998 FCI Americas Technology, Inc. Power connector
7314377, Apr 17 1998 FCI Americas Technology, Inc Electrical power connector
7374436, Apr 17 1998 FCI Americas Technology, Inc. Power connector
7488222, Apr 17 1998 FCI Americas Technology, Inc. Power connector
7641500, Apr 04 2007 FCI Americas Technology, Inc Power cable connector system
7726982, Jun 15 2006 FCI Americas Technology, Inc Electrical connectors with air-circulation features
7749009, Jan 31 2005 FCI Americas Technology, Inc. Surface-mount connector
7762857, Oct 01 2007 FCI Americas Technology, Inc.; FCI Americas Technology, Inc Power connectors with contact-retention features
7837515, Jan 31 2008 Yazaki Corporation Combined-type connector
7862359, Dec 31 2003 FCI Americas Technology LLC Electrical power contacts and connectors comprising same
7905731, May 21 2007 FCI Americas Technology, Inc. Electrical connector with stress-distribution features
7976317, Dec 04 2007 Molex, LLC Low profile modular electrical connectors and systems
7985095, Jul 09 2009 International Business Machines Corporation Implementing enhanced connector guide block structures for robust SMT assembly
7985097, Dec 20 2006 Amphenol Corporation Electrical connector assembly
8062046, Dec 31 2003 FCI Americas Technology LLC Electrical power contacts and connectors comprising same
8062051, Jul 29 2008 FCI Americas Technology, Inc Electrical communication system having latching and strain relief features
8070533, Jul 09 2010 Alltop Electronics (Suzhou) Co., Ltd. Power connector with improved locking member exposed to the exterior
8096814, Apr 17 1998 FCI Americas Technology LLC Power connector
8187017, Dec 17 2010 FCI Americas Technology LLC Electrical power contacts and connectors comprising same
8251754, Jul 09 2010 Alltop Electronics (Suzhou) Ltd Power connector with improved locking member exposed to the exterior
8323049, Jan 30 2009 FCI Americas Technology LLC Electrical connector having power contacts
8337255, Oct 29 2009 Sumitomo Wiring Systems, Ltd. Connector and series of connectors
8435047, Dec 04 2007 Molex, LLC Modular connectors with easy-connect capability
8469720, Jan 17 2008 Amphenol Corporation Electrical connector assembly
8727791, Jan 17 2008 Amphenol Corporation Electrical connector assembly
8814578, Dec 04 2007 Molex, LLC Modular connectors with easy-connect capability
8845368, Aug 31 2012 Amazon Technologies, Inc. Electrical connectors
8888522, Sep 30 2008 PHOENIX CONTACT GMBH & CO KG Electric plug-in connection system
8905651, Jan 31 2012 FCI Dismountable optical coupling device
8944831, Apr 13 2012 FCI Americas Technology LLC Electrical connector having ribbed ground plate with engagement members
9017114, Sep 09 2009 Amphenol Corporation Mating contacts for high speed electrical connectors
9048583, Mar 19 2009 FCI Americas Technology LLC Electrical connector having ribbed ground plate
9136652, Feb 07 2012 FCI Americas Technology LLC Electrical connector assembly
9166340, Apr 15 2013 Siemens Aktiengesellschaft Connector
9190745, Jan 17 2008 Amphenol Corporation Electrical connector assembly
9257778, Apr 13 2012 FCI Americas Technology LLC High speed electrical connector
9461410, Mar 19 2009 FCI Americas Technology LLC Electrical connector having ribbed ground plate
9543703, Jul 11 2012 FCI Americas Technology LLC Electrical connector with reduced stack height
9564696, Jan 17 2008 Amphenol Corporation Electrical connector assembly
9780493, Sep 09 2009 Amphenol Corporation Mating contacts for high speed electrical connectors
9831605, Apr 13 2012 FCI Americas Technology LLC High speed electrical connector
9871323, Jul 11 2012 FCI Americas Technology LLC Electrical connector with reduced stack height
9941614, Jun 23 2014 IRISO ELECTRONICS CO , LTD Connection structure of connector capable of managing a large electric current
D618180, Apr 03 2009 FCI Americas Technology, Inc.; FCI Americas Technology, Inc Asymmetrical electrical connector
D618181, Apr 03 2009 FCI Americas Technology, Inc.; FCI Americas Technology, Inc Asymmetrical electrical connector
D619099, Jan 30 2009 FCI Americas Technology, Inc Electrical connector
D653621, Apr 03 2009 FCI Americas Technology LLC Asymmetrical electrical connector
D718253, Apr 13 2012 FCI Americas Technology LLC Electrical cable connector
D720698, Mar 15 2013 FCI Americas Technology LLC Electrical cable connector
D727268, Apr 13 2012 FCI Americas Technology LLC Vertical electrical connector
D727852, Apr 13 2012 FCI Americas Technology LLC Ground shield for a right angle electrical connector
D733662, Jan 25 2013 FCI Americas Technology LLC Connector housing for electrical connector
D745852, Jan 25 2013 FCI Americas Technology LLC Electrical connector
D746236, Jul 11 2012 FCI Americas Technology LLC Electrical connector housing
D748063, Apr 13 2012 FCI Americas Technology LLC Electrical ground shield
D750025, Apr 13 2012 FCI Americas Technology LLC Vertical electrical connector
D750030, Apr 13 2012 FCI Americas Technology LLC Electrical cable connector
D751507, Jul 11 2012 FCI Americas Technology LLC Electrical connector
D766832, Jan 25 2013 FCI Americas Technology LLC Electrical connector
D772168, Jan 25 2013 FCI Americas Technology LLC Connector housing for electrical connector
D790471, Apr 13 2012 FCI Americas Technology LLC Vertical electrical connector
D816044, Apr 13 2012 FCI Americas Technology LLC Electrical cable connector
RE41283, Jan 28 2003 FCI Americas Technology, Inc. Power connector with safety feature
RE44556, May 23 2002 FCI Americas Technology LLC Electrical power connector
Patent Priority Assignee Title
2724814,
3437983,
3491330,
3611272,
3627942,
3693296,
3714617,
3753216,
3884544,
3944316, Aug 26 1974 Cooper Industries, Inc Electrical connectors with keying means
4046452, Apr 16 1975 AMP Incorporated Electrical connector housing having an improved locking means
4159862, Dec 12 1977 Fabri-Tek Incorporated Removable female polarizing guide for electrical connectors
4171862, Apr 09 1977 Ellenberger & Poensgen GmbH Terminal board for electrical equipment
4178545, May 09 1977 Dale Electronics, Inc. Electrical resistor testing fixture
4224486, Mar 05 1979 AMP Incorporated Shunt protected power connector
4277126, Jan 23 1979 Malco Releasable key arrangement for an electrical connector
4376565, Feb 17 1981 AMP Incorporated Electrical connector keying means
4451107, Aug 23 1982 AMP Incorporated High speed modular connector for printed circuit boards
4519667, May 06 1982 Rockwell International Corporation Electrical connector
4580868, Mar 05 1984 AMP-HOLLAND B V Keying system for electrical connectors
FR2493051,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 15 1986AMP Incorporated(assignment on the face of the patent)
Sep 15 1986WEBER, RONALD M AMP INCORPORATED, P O BOX 3608, HARRISBURG, PA , 17105ASSIGNMENT OF ASSIGNORS INTEREST 0046050084 pdf
Sep 15 1986VAN SCYOC, WILLIAM C AMP INCORPORATED, P O BOX 3608, HARRISBURG, PA , 17105ASSIGNMENT OF ASSIGNORS INTEREST 0046050084 pdf
Date Maintenance Fee Events
Jul 14 1992REM: Maintenance Fee Reminder Mailed.
Dec 13 1992EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Dec 13 19914 years fee payment window open
Jun 13 19926 months grace period start (w surcharge)
Dec 13 1992patent expiry (for year 4)
Dec 13 19942 years to revive unintentionally abandoned end. (for year 4)
Dec 13 19958 years fee payment window open
Jun 13 19966 months grace period start (w surcharge)
Dec 13 1996patent expiry (for year 8)
Dec 13 19982 years to revive unintentionally abandoned end. (for year 8)
Dec 13 199912 years fee payment window open
Jun 13 20006 months grace period start (w surcharge)
Dec 13 2000patent expiry (for year 12)
Dec 13 20022 years to revive unintentionally abandoned end. (for year 12)