An optical-fiber type power transmission device, comprises an optical fiber for transmitting the power from a power input end through a power output end of the optical fiber; an opaque protective sleeve over the optical fiber and having an inner diameter larger than the outer diameter of the optical fiber to define a gas passageway therebetween; and a tubular waveguide secured to the protective sleeve at the power output end of the optical fiber and projecting past the power output end. The tubular waveguide is unattached to the optical fiber to permit the fiber to move with respect to the tubular waveguide and protective sleeve during the bending of the device.

Patent
   4830462
Priority
Apr 10 1987
Filed
Dec 22 1987
Issued
May 16 1989
Expiry
Dec 22 2007
Assg.orig
Entity
Small
277
3
EXPIRED
1. An optical-fiber type power transmission device, comprising:
an optical fiber for transmitting the power from a power input end through a power output end of the optical fiber;
an opaque protective sleeve over the optical fiber and having an inner diameter larger than the outer diameter of the optical fiber to define a gas passageway therebetween;
and a tubular waveguide extending between said optical fiber and protective sleeve at the power output end of the optical fiber and projecting past said power output end, said tubular waveguide being unattached to said optical fiber to permit said fiber to move with respect to said tubular waveguide and protective sleeve during the bending of the device.
13. An optical-fiber type power transmission device, comprising:
an optical fiber for transmitting the power from a power input end through a power output end of the optical fiber;
an opaque protective sleeve over the optical fiber and having an inner diameter larger than the outer diameter of the optical fiber to define a gas passageway therebetween;
and a tubular waveguide extending between said optical fiber and said protective sleeve at the power output end of the optical fiber and projecting past said power output end;
said tubular waveguide being unattached to said optical fiber to permit said fiber to move with respect to said tubular waveguide and protective sleeve during the bending of the device;
said tubular waveguide being secured directly to the protective sleeve at the power output end of the optical fiber and having an inner diameter larger than the outer diameter of the optical fiber to provide a gas passageway therebetween.
2. The device according to claim 1, wherein said tubular waveguide is secured directly to the protective sleeve at the power output end of the optical fiber and has an inner diameter larger than the outer diameter of the optical fiber to provide a gas passageway therebetween.
3. The device according to claim 1, wherein said tubular waveguide is secured to a tubular housing overlaying the output end of the optical fiber, which housing is secured to said protective sleeve; the inner diameter of the housing being larger than the outer diameter of the optical fiber at said output end to provide a gas passageway therebetween.
4. The device according to claim 3, further including an optical window at the power output end of the optical fiber and secured between said waveguide and housing at the juncture thereof; the juncture of said waveguide and housing being provided with an annular recess overlying said optical window and with radial openings on both sides thereof to define a gas passageway from one side of the optical window to the opposite side thereof.
5. The device according to claim 3, wherein the output end of said housing is secured to said protective sleeve.
6. The device according to claim 5, wherein said protective sleeve is an inner protective sleeve and is secured to the housing at a location between the power output and input ends of the optical fiber; said device further including an outer protective sleeve clamped to an annular rib formed in the housing at the power output end thereof, and spaced from the outer face of the housing to define a gas passageway therebetween; said housing being formed with a gas passageway opening therethrough between said annular rib to which the outer protective sleeve is clamped and the location of the housing at which the inner protective sleeve is secured.
7. The device according to claim 1, wherein said tubular waveguide has a uniform inner diameter.
8. The device according to claim 1, wherein said tubular waveguide has a tapered inner diameter, decreasing towards its power output end.
9. The device according to claim 1, wherein said optical fiber is an infrared fiber of silver chloride or silver bromide crystal material.
10. The device according to claim 1, wherein said protective sleeve is polytetrafluoroethylene, polyethylene, or nylon.
11. The device according to claim 1, wherein said waveguide is a ceramic material.
12. The device according to claim 1, wherein said waveguide is stainless steel coated on its inner face with gold.
14. The device according to claim 13, wherein said tubular waveguide is secured to a tubular housing overlying the output end of the optical fiber, which housing is secured to said protective sleeve; the inner diameter of the housing being larger than the outer diameter of the optical fiber at said output end to provide a gas passageway therebetween.
15. The device according to claim 14, further including an optical window at the power output end of the optical fiber and secured between said waveguide and housing at the juncture thereof; the juncture of said waveguide and housing being provided with an annular recess overlying said optical window and with radial openings on both sides thereof to define a gas passageway from one side of the optical window to the opposite side thereof.
16. The device according to claim 14, wherein the output end of said housing is secured to said protective sleeve.
17. The device according to claim 16, wherein said protective sleeve is an inner protective sleeve and is secured to the housing at a location between the power output and input ends of the optical fiber; said device further including an outer protective sleeve clamped to an annular rib formed in the housing at the power output end thereof, and spaced from the outer face of the housing to define a gas passageway therebetween; said housing being formed with a gas passageway opening therethrough between said annular rib to which the outer protective sleeve is clamped and the location of the housing at which the inner protective sleeve is secured.
18. The device according to claim 13, wherein said tubular waveguide has a uniform inner diameter.
19. The device according to claim 13, wherein said tubular waveguide has a tapered inner diameter, decreasing towards its power output end.
20. The device according to claim 13, wherein said optical fiber is an infrared fiber of silver chloride crystal material.

The present invention relates to optical-fiber type power transmission devices. The invention is particularly useful in infrared optical fibers for transmitting power in the order of 1-100 watts, e.g., for laser surgery; and the invention is therefore described below with respect to this application.

Optical fibers of the low-power type used for communication purposes are provided with an external cladding for purposes of protecting the fiber and also for purposes of decreasing the numerical aperture of the fiber, i.e., the divergence angle of the energy exiting from the fiber. It is also known to apply a metal ferrule or sleeve to the outer end of the optical fiber to protect it, and also to enable attachment of an accessory. Such ferrules are usually attached to the clad of the fiber end by mechanical means, e.g., by swaging or pinching the ferrule onto the fiber end.

However, such metal ferrules cannot be applied to unclad optical fibers used for transmitting power.

Thus, the ferrule if applied to uncladded fiber will absorb energy energizing from it unless the ferrule is of a transparent material suitable for that wavelength. Additional difficulties arise when using silver halide infrared transmitting fibers because of their high chemical reactivity.

Further, most of the power transmitting fibers have an external jacket to the fiber for gas cooling. Such an assembly attached with a ferrule would have drawbacks especially when used as a laser scalpel because of the difficult elongation of the jacket and fiber which could result during the manipulation of the assembly.

In addition, when using uncladded fiber having a large numerical aperature (i.e., a large divergence angle of the energy leaving the fiber tip), the distance from the fiber tip to the protruding protective ferrule must be kept at a minimum so that the highly divergent beam does not impinge on the ferrule. Further, the protective feature of the ferrule on the tip is effectively lost, especially in laser surgery procedure, where there is much debris, etc.

An object of the present invention is to provide an optical-fiber type power transmission device having advantages in the above respects.

According to the present invention, there is provided an optical-fiber type power transmission device comprising an optical fiber for transmitting the power from a power input end through a power output end of the optical fiber; an opaque protective sleeve over the optical fiber and having an inner diameter larger than the outer diameter of the optical fiber to define a gas passageway therebetween; and a tubular waveguide extending between the optical fiber and the protective sleeve at the power output end of the optical fiber and projecting past the power output end. The tubular waveguide is unattached to the optical fiber to permit the fiber to move with respect to the tubular waveguide and protective sleeve during the bending of the device.

Such a construction provides a number of important advantages which are particularly important when used with infrared optical fibers for transmitting power in laser surgery. Thus, the waveguide at the power output end of the optical fiber decreases the numerical aperture of the fiber, i.e., the divergence angle of the outputted power. This increases the power density applied to the tissue receiving the laser energy, decreases the sensitivity of the working tip to the tissue to receive the laser energy, and permits larger working distances between the tip and the tissue. In addition, the waveguide also protects the sensitive fiber tip; preferably the waveguide is dimensioned such that it projects past the fiber tip during all manipulations of the device. Further, by circulating a gas through the gas passsageway between the optical fiber and the protective sleeve and through the waveguide, (the waveguide thereby acting also as a nozzle), the heat build-up at the sensitive fiber tip is minimized, the fiber tip is maintained clean of contamination, and also the working area in front of the fiber tip is maintained free of smoke and other contamination.

Still further, since the waveguide at the end is unattached to the optical fiber, the corrosion problem is substantially eliminated, and moreover the fiber end can be bent without producing stresses in the fiber since the fiber is free to move with respect to both the waveguide and the protective sleeve. Still further, the arrangement permits the construction of power transmission devices of very small diameter, as low as 2-3 mm, enable use of the device in endoscopes and catheters, for applying laser energy directly against selected tissue in body cavities or blood vessels.

Several embodiments of the invention are described below for purposes of example.

In one described embodiment, the tubular waveguide is secured directly to the protective sleeve at the power output end of the optical fiber and has an inner diameter larger than the outer diameter of the optical fiber to provide a gas passageway therebetween.

Two further embodiments of the invention are described below wherein the waveguide is secured indirectly to the protective sleeve, i.e., the waveguide is secured to a tubular housing overlying the output end of the optical fiber which housing is secured to the protective sleeve. The inner diameter of the housing is larger than the outer diameter of the optical fiber at the output end to provide a gas passageway therebetween. In addition, the device further includes an optical window at the power output end of the optical fiber and secured between the waveguide and housing at the juncture thereof, which juncture is provided with recesses to define a gas passageway from one side of the optical window to the opposite side thereof. Such a construction, including a window, even further protects the sensitive fiber tip, which is particularly important when the device is used in laser surgery.

Further features and advantages of the invention will be apparent from the description described below.

The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:

FIG. 1 is a longitudinal sectional view illustrating one embodiment of the invention;

FIG. 2 is a longitudinal sectional view illustrating a second embodiment of the invention; and

FIG. 3 is a longitudinal sectional view illustrating a third embodiment of the invention.

FIG. 1 illustrates the power output end of an optical fiber 2 of the infrared type, for example of silver chloride or silver bromide crystal material. The optical fiber 2 is provided with an opaque protective sleeve 4 extending for substantially the complete length of the optical fiber from its input end (not shown) to the illustrated output end, the sleeve 4 terminating slightly short of the power output end as shown in FIG. 1. The opaque protective sleeve 4 has an inner diameter larger than the outer diameter of the optical fiber 2 so as to define a gas passageway 6 therebetween.

A tubular waveguide 8 extends between the optical fiber 2 and the protective sleeve 4 at the power output end of the optical fiber 2 and projects past that end of the optical fiber sufficiently so as to protect the fiber tip under all conditions of bending the device. The tubular waveguide 8 has an outer diameter equal to the inner diameter of the opaque protective sleeve 4 and is secured thereto, as by adhesive bonding. The inner diameter of the tubular waveguide 8, however, is larger than the outer diameter of the optical fiber 2 so as to provide a gas passageway 10 therebetween communicating with gas passageway 6 between the optical fiber and the opaque protective sleeve 2.

Waveguide 8 is preferably in the form of a ceramic tube which is non-reactive with respect to the silver chloride or silver bromide crystal material of optical fiber 2. Another alternative would be to make waveguide 8 of a metal tube, such as stainless steel, having an inner coating of gold which is also non-reactive with respect to the material of the optical fiber 2.

The opaque protective sleeve 4 is preferably polytetraflourethyene. However, it could also be another suitable opaque material such as of polyethylene or nylon.

It will be seen that the waveguide 8 projecting past the power output end of the optical fiber 2, minimizes the numerical aperture and thus reduces the divergence angle of the power outputted from the fiber. As mentioned earlier, this enables the waveguide not only to protect the sensitive tip of the optical fiber 2, but also to concentrate the outputted energy to increase the power density, and to shape the beam applied to the tissue receiving the energy. In addition, this arrangement permits a larger working distance between the fiber tip and the tissue receiving the energy, and also decreases the dependence of the power received by the tissue to the distance between the tissue and the output tip. All the above advantages are particularly important when the device is used in laser surgery.

It will thus be seen that tube 8 acts not only as a waveguide for directing the optical energy to the output end of the device, but also acts as a nozzle for directing the gas flowing through passageways 6 and 10. This gas serves to dissipate the heat generated at the output end of the device, to maintain the fiber tip free of contamination, and also to remove the smoke, etc., from the working area thereby enabling the surgeon better to view the working area.

FIG. 2 illustrates another construction that may be used at the power output tip of the optical fiber, therein designated 102. The construction illustrated in FIG. 2 also includes an opaque protective sleeve 104 over the optical fiber, and a waveguide (nozzle) 108 secured to the optical sleeve 104 at the power output end of the optical fiber and projecting past the power output end. In this case, however, waveguide 108 is not secured directly to the opaque protective sleeve 104, but rather is secured to a housing 120 which is in turn secured to the protective sleeve. In addition, the construction illustrated in FIG. 2 further includes an optical window 122 at the power output end of the optical fiber 102 and secured at the juncture between the waveguide 108 and housing 120.

As shown in FIG. 2, housing 120 has an inner diameter larger than the outer diameter of the optical fiber 102 so as to provide a gas passageway 124 between the optical fiber and the housing. This passageway communicates with gas passageway 106 between the optical fiber and the opaque protective sleeve 104. Housing 120 is enlarged in diameter just forwardly of the output end of optical fiber 102 and is formed with a tubular socket 125 forwardly of the output end of the fiber receiving a tubular stem 126 formed at the end of waveguide 108. Any suitable means may be used for securing the waveguide in socket 125 of housing 120, for example by a press fit, swaging, or adhesive. Optical window 122 is secured between the tip of stem 126 and the end of socket 125 so as to be spaced slightly forwardly of the output end of the optical fiber 102.

As shown in FIG. 2, the end of socket 125 is formed with an annular recess 127 so as to overlie both sides of window 122. At one side of window 122, socket 125 is formed with a plurality of radially-extending openings 128; and at the opposite side of the window, stem 126 of waveguide 108 is likewise formed with a plurality of radially-extending openings 129. Recess 127 and openings 128, 129 thus define a plurality of gas passsageways from one side of optical window 122 to the opposite side for the gas applied to passageways 106 and 124. The gas circulating through these passageways prevents build up of heat at the optical window in the output end of the optical fiber 102, dissipates the heat from this region, and clears the working area of smoke, etc.

The inner diameter of waveguide (nozzle) 108 is preferably tapered in the construction illustrated in FIG. 2, decreasing in diameter towards the output end. This further decreases the divergence spot size at the exit from the nozzle, and increases the power density of the beam applied to the tissue.

FIG. 3 illustrates a construction similar to that of FIG. 2, including an optical fiber 202, an opaque protective sleeve 204, a waveguide (nozzle) 208, a housing 220, an optical window 222, and air passageways defined by annular recess 227 and radial openings 228, 229 around the optical window so as to permit gas flow from one side to the opposite side of the window. In the construction illustrated in FIG. 3, however, the opaque protective sleeve 204 is an inner protective sleeve, the construction also including an outer protective sleeve, therein designated 230. The outer protective sleeve 230 has an inner diameter larger than the outer diameter of the inner protective sleeve 204 so as to define an air passageway 232 between the two sleeves.

The outer protective sleeve 230 is attached to housing 222 by means of a clamp 234 applied over the end of sleeve 230 and secured to a rib 236 formed in the outer face of housing 220 substantially in alignment with the output end of the optical fiber 202. Housing 220 is extended inwardly towards the input end of the optical fiber, and the inner protective sleeve 232 is secured to this inner end of the housing by any suitable means, such as by an adhesive. Housing 220 is further formed with a plurality of openings 238 connecting gas passageway 232 between the outer sleeve 230 and the inner sleeve 204, and gas passageway 224 between the housing and the optical fiber.

In the construction illustrated in FIG. 3, when gas is applied to passageway 232 between the two sleeves 204 and 230, the gas passes through openings 238 into passageway 224. Part of the gas circulates across the inner face of the optical window 220 and out through passageway 206 between the inner sleeve 204 and the optical fiber 202; whereas another part of the gas passes through the passageways formed by recess 227 and opening 228, 229 to the opposite side of the optical window and out through the end of waveguide (nozzle) 208. It will thus be seen that the gas circulates across both faces of the optical window 222, thereby maintaining it, as well as the tip of the optical fiber 202 and the working area in front of it, free of contamination, while also preventing a build up of heat in this region.

While the invention has been described with respect to three preferred embodiments, it will be appreciated that many other variations, modifications and applications of the invention may be made.

Karny, Ziv, Arieli, Rami, Schwebel, Alan

Patent Priority Assignee Title
10092310, Mar 27 2014 Cilag GmbH International Electrosurgical devices
10092348, Dec 22 2014 Cilag GmbH International RF tissue sealer, shear grip, trigger lock mechanism and energy activation
10111699, Dec 22 2014 Cilag GmbH International RF tissue sealer, shear grip, trigger lock mechanism and energy activation
10117667, Feb 11 2010 Cilag GmbH International Control systems for ultrasonically powered surgical instruments
10117702, Apr 10 2015 Cilag GmbH International Surgical generator systems and related methods
10130410, Apr 17 2015 Cilag GmbH International Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
10154852, Jul 01 2015 Cilag GmbH International Ultrasonic surgical blade with improved cutting and coagulation features
10159524, Dec 22 2014 Cilag GmbH International High power battery powered RF amplifier topology
10166060, Aug 30 2011 Cilag GmbH International Surgical instruments comprising a trigger assembly
10172669, Oct 09 2009 Cilag GmbH International Surgical instrument comprising an energy trigger lockout
10179022, Dec 30 2015 Cilag GmbH International Jaw position impedance limiter for electrosurgical instrument
10194972, Aug 26 2014 Cilag GmbH International Managing tissue treatment
10194973, Sep 30 2015 Cilag GmbH International Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
10194976, Aug 25 2014 Cilag GmbH International Lockout disabling mechanism
10201382, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
10226273, Mar 14 2013 Cilag GmbH International Mechanical fasteners for use with surgical energy devices
10245064, Jul 12 2016 Cilag GmbH International Ultrasonic surgical instrument with piezoelectric central lumen transducer
10245065, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10251664, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
10265094, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10265117, Oct 09 2009 Cilag GmbH International Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices
10278721, Jul 22 2010 Cilag GmbH International Electrosurgical instrument with separate closure and cutting members
10285723, Aug 09 2016 Cilag GmbH International Ultrasonic surgical blade with improved heel portion
10285724, Jul 31 2014 Cilag GmbH International Actuation mechanisms and load adjustment assemblies for surgical instruments
10299810, Feb 11 2010 Cilag GmbH International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
10299821, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with motor control limit profile
10314638, Apr 07 2015 Cilag GmbH International Articulating radio frequency (RF) tissue seal with articulating state sensing
10321950, Mar 17 2015 Cilag GmbH International Managing tissue treatment
10335182, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
10335183, Jun 29 2012 Cilag GmbH International Feedback devices for surgical control systems
10335614, Aug 06 2008 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
10342602, Mar 17 2015 Cilag GmbH International Managing tissue treatment
10349999, Mar 31 2014 Cilag GmbH International Controlling impedance rise in electrosurgical medical devices
10357303, Jun 30 2015 Cilag GmbH International Translatable outer tube for sealing using shielded lap chole dissector
10376305, Aug 05 2016 Cilag GmbH International Methods and systems for advanced harmonic energy
10398466, Jul 27 2007 Cilag GmbH International Ultrasonic end effectors with increased active length
10420579, Jul 31 2007 Cilag GmbH International Surgical instruments
10420580, Aug 25 2016 Cilag GmbH International Ultrasonic transducer for surgical instrument
10426507, Jul 31 2007 Cilag GmbH International Ultrasonic surgical instruments
10433865, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10433866, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10433900, Jul 22 2011 Cilag GmbH International Surgical instruments for tensioning tissue
10441308, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
10441310, Jun 29 2012 Cilag GmbH International Surgical instruments with curved section
10441345, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
10456193, May 03 2016 Cilag GmbH International Medical device with a bilateral jaw configuration for nerve stimulation
10463421, Mar 27 2014 Cilag GmbH International Two stage trigger, clamp and cut bipolar vessel sealer
10463887, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10485607, Apr 29 2016 Cilag GmbH International Jaw structure with distal closure for electrosurgical instruments
10517627, Apr 09 2012 Cilag GmbH International Switch arrangements for ultrasonic surgical instruments
10524852, Mar 28 2014 Cilag GmbH International Distal sealing end effector with spacers
10524854, Jul 23 2010 Cilag GmbH International Surgical instrument
10524872, Jun 29 2012 Cilag GmbH International Closed feedback control for electrosurgical device
10531910, Jul 27 2007 Cilag GmbH International Surgical instruments
10537351, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with variable motor control limits
10537352, Oct 08 2004 Cilag GmbH International Tissue pads for use with surgical instruments
10543008, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with distally positioned jaw assemblies
10555769, Feb 22 2016 Cilag GmbH International Flexible circuits for electrosurgical instrument
10575892, Dec 31 2015 Cilag GmbH International Adapter for electrical surgical instruments
10595929, Mar 24 2015 Cilag GmbH International Surgical instruments with firing system overload protection mechanisms
10595930, Oct 16 2015 Cilag GmbH International Electrode wiping surgical device
10603064, Nov 28 2016 Cilag GmbH International Ultrasonic transducer
10603117, Jun 28 2017 Cilag GmbH International Articulation state detection mechanisms
10610286, Sep 30 2015 Cilag GmbH International Techniques for circuit topologies for combined generator
10624691, Sep 30 2015 Cilag GmbH International Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
10639092, Dec 08 2014 Cilag GmbH International Electrode configurations for surgical instruments
10646269, Apr 29 2016 Cilag GmbH International Non-linear jaw gap for electrosurgical instruments
10687884, Sep 30 2015 Cilag GmbH International Circuits for supplying isolated direct current (DC) voltage to surgical instruments
10688321, Jul 15 2009 Cilag GmbH International Ultrasonic surgical instruments
10702329, Apr 29 2016 Cilag GmbH International Jaw structure with distal post for electrosurgical instruments
10709469, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with energy conservation techniques
10709906, May 20 2009 Cilag GmbH International Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
10716615, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
10722261, Mar 22 2007 Cilag GmbH International Surgical instruments
10729494, Feb 10 2012 Cilag GmbH International Robotically controlled surgical instrument
10736685, Sep 30 2015 Cilag GmbH International Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
10751108, Sep 30 2015 Cilag GmbH International Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
10751109, Dec 22 2014 Cilag GmbH International High power battery powered RF amplifier topology
10751117, Sep 23 2016 Cilag GmbH International Electrosurgical instrument with fluid diverter
10765470, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
10779845, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with distally positioned transducers
10779847, Aug 25 2016 Cilag GmbH International Ultrasonic transducer to waveguide joining
10779848, Jan 20 2006 Cilag GmbH International Ultrasound medical instrument having a medical ultrasonic blade
10779849, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
10779876, Oct 24 2011 Cilag GmbH International Battery powered surgical instrument
10779879, Mar 18 2014 Cilag GmbH International Detecting short circuits in electrosurgical medical devices
10799284, Mar 15 2017 Cilag GmbH International Electrosurgical instrument with textured jaws
10820920, Jul 05 2017 Cilag GmbH International Reusable ultrasonic medical devices and methods of their use
10828057, Mar 22 2007 Cilag GmbH International Ultrasonic surgical instruments
10828058, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
10828059, Oct 05 2007 Cilag GmbH International Ergonomic surgical instruments
10835307, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
10835768, Feb 11 2010 Cilag GmbH International Dual purpose surgical instrument for cutting and coagulating tissue
10842522, Jul 15 2016 Cilag GmbH International Ultrasonic surgical instruments having offset blades
10842523, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument and methods therefor
10842580, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with control mechanisms
10856896, Oct 14 2005 Cilag GmbH International Ultrasonic device for cutting and coagulating
10856929, Jan 07 2014 Cilag GmbH International Harvesting energy from a surgical generator
10856934, Apr 29 2016 Cilag GmbH International Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
10874418, Feb 27 2004 Cilag GmbH International Ultrasonic surgical shears and method for sealing a blood vessel using same
10881449, Sep 28 2012 Cilag GmbH International Multi-function bi-polar forceps
10888347, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10893883, Jul 13 2016 Cilag GmbH International Ultrasonic assembly for use with ultrasonic surgical instruments
10898256, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques based on tissue impedance
10912580, Dec 16 2013 Cilag GmbH International Medical device
10912603, Nov 08 2013 Cilag GmbH International Electrosurgical devices
10925659, Sep 13 2013 Cilag GmbH International Electrosurgical (RF) medical instruments for cutting and coagulating tissue
10932847, Mar 18 2014 Cilag GmbH International Detecting short circuits in electrosurgical medical devices
10952759, Aug 25 2016 Cilag GmbH International Tissue loading of a surgical instrument
10952788, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable algorithms
10959771, Oct 16 2015 Cilag GmbH International Suction and irrigation sealing grasper
10959806, Dec 30 2015 Cilag GmbH International Energized medical device with reusable handle
10966744, Jul 12 2016 Cilag GmbH International Ultrasonic surgical instrument with piezoelectric central lumen transducer
10966747, Jun 29 2012 Cilag GmbH International Haptic feedback devices for surgical robot
10987123, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
10987156, Apr 29 2016 Cilag GmbH International Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
10993763, Jun 29 2012 Cilag GmbH International Lockout mechanism for use with robotic electrosurgical device
11006971, Oct 08 2004 Cilag GmbH International Actuation mechanism for use with an ultrasonic surgical instrument
11020140, Jun 17 2015 Cilag GmbH International Ultrasonic surgical blade for use with ultrasonic surgical instruments
11033292, Dec 16 2013 Cilag GmbH International Medical device
11033322, Sep 30 2015 Cilag GmbH International Circuit topologies for combined generator
11033323, Sep 29 2017 Cilag GmbH International Systems and methods for managing fluid and suction in electrosurgical systems
11033325, Feb 16 2017 Cilag GmbH International Electrosurgical instrument with telescoping suction port and debris cleaner
11051840, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
11051873, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
11058447, Jul 31 2007 Cilag GmbH International Temperature controlled ultrasonic surgical instruments
11058448, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with multistage generator circuits
11058475, Sep 30 2015 Cilag GmbH International Method and apparatus for selecting operations of a surgical instrument based on user intention
11090103, May 21 2010 Cilag GmbH International Medical device
11090104, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
11090110, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
11096752, Jun 29 2012 Cilag GmbH International Closed feedback control for electrosurgical device
11129669, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques based on tissue type
11129670, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
11134978, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
11141213, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable techniques
11179173, Oct 22 2012 Cilag GmbH International Surgical instrument
11202670, Feb 22 2016 Cilag GmbH International Method of manufacturing a flexible circuit electrode for electrosurgical instrument
11229450, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with motor drive
11229471, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
11229472, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
11253288, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
11266430, Nov 29 2016 Cilag GmbH International End effector control and calibration
11266433, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
11272952, Mar 14 2013 Cilag GmbH International Mechanical fasteners for use with surgical energy devices
11311326, Feb 06 2015 Cilag GmbH International Electrosurgical instrument with rotation and articulation mechanisms
11324527, Nov 15 2012 Cilag GmbH International Ultrasonic and electrosurgical devices
11337747, Apr 15 2014 Cilag GmbH International Software algorithms for electrosurgical instruments
11344362, Aug 05 2016 Cilag GmbH International Methods and systems for advanced harmonic energy
11350959, Aug 25 2016 Cilag GmbH International Ultrasonic transducer techniques for ultrasonic surgical instrument
11369402, Feb 11 2010 Cilag GmbH International Control systems for ultrasonically powered surgical instruments
11382642, Feb 11 2010 Cilag GmbH International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
11399855, Mar 27 2014 Cilag GmbH International Electrosurgical devices
11413060, Jul 31 2014 Cilag GmbH International Actuation mechanisms and load adjustment assemblies for surgical instruments
11413102, Jun 27 2019 Cilag GmbH International Multi-access port for surgical robotic systems
11419626, Apr 09 2012 Cilag GmbH International Switch arrangements for ultrasonic surgical instruments
11426191, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with distally positioned jaw assemblies
11439426, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
11452525, Dec 30 2019 Cilag GmbH International Surgical instrument comprising an adjustment system
11471209, Mar 31 2014 Cilag GmbH International Controlling impedance rise in electrosurgical medical devices
11484358, Sep 29 2017 Cilag GmbH International Flexible electrosurgical instrument
11490951, Sep 29 2017 Cilag GmbH International Saline contact with electrodes
11497546, Mar 31 2017 Cilag GmbH International Area ratios of patterned coatings on RF electrodes to reduce sticking
11523859, Jun 28 2012 Cilag GmbH International Surgical instrument assembly including a removably attachable end effector
11547465, Jun 28 2012 Cilag GmbH International Surgical end effector jaw and electrode configurations
11547468, Jun 27 2019 Cilag GmbH International Robotic surgical system with safety and cooperative sensing control
11553954, Jun 30 2015 Cilag GmbH International Translatable outer tube for sealing using shielded lap chole dissector
11559347, Sep 30 2015 Cilag GmbH International Techniques for circuit topologies for combined generator
11583306, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
11589916, Dec 30 2019 Cilag GmbH International Electrosurgical instruments with electrodes having variable energy densities
11602371, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with control mechanisms
11607268, Jul 27 2007 Cilag GmbH International Surgical instruments
11607278, Jun 27 2019 Cilag GmbH International Cooperative robotic surgical systems
11612445, Jun 27 2019 Cilag GmbH International Cooperative operation of robotic arms
11660089, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a sensing system
11666375, Oct 16 2015 Cilag GmbH International Electrode wiping surgical device
11666784, Jul 31 2007 Cilag GmbH International Surgical instruments
11684402, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
11684412, Dec 30 2019 Cilag GmbH International Surgical instrument with rotatable and articulatable surgical end effector
11690641, Jul 27 2007 Cilag GmbH International Ultrasonic end effectors with increased active length
11690643, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
11696776, Dec 30 2019 Cilag GmbH International Articulatable surgical instrument
11707318, Dec 30 2019 Cilag GmbH International Surgical instrument with jaw alignment features
11717311, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
11717706, Jul 15 2009 Cilag GmbH International Ultrasonic surgical instruments
11723716, Dec 30 2019 Cilag GmbH International Electrosurgical instrument with variable control mechanisms
11723729, Jun 27 2019 Cilag GmbH International Robotic surgical assembly coupling safety mechanisms
11730507, Feb 27 2004 Cilag GmbH International Ultrasonic surgical shears and method for sealing a blood vessel using same
11744636, Dec 30 2019 Cilag GmbH International Electrosurgical systems with integrated and external power sources
11751929, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
11759251, Dec 30 2019 Cilag GmbH International Control program adaptation based on device status and user input
11766276, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
11766287, Sep 30 2015 Cilag GmbH International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
11779329, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a flex circuit including a sensor system
11779387, Dec 30 2019 Cilag GmbH International Clamp arm jaw to minimize tissue sticking and improve tissue control
11786291, Dec 30 2019 Cilag GmbH International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
11786294, Dec 30 2019 Cilag GmbH International Control program for modular combination energy device
11812957, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a signal interference resolution system
11839420, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a firing member push tube
11839422, Sep 23 2016 Cilag GmbH International Electrosurgical instrument with fluid diverter
11864820, May 03 2016 Cilag GmbH International Medical device with a bilateral jaw configuration for nerve stimulation
11871955, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
11871982, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
11877734, Jul 31 2007 Cilag GmbH International Ultrasonic surgical instruments
11883055, Jul 12 2016 Cilag GmbH International Ultrasonic surgical instrument with piezoelectric central lumen transducer
11890491, Aug 06 2008 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
11896280, Jan 15 2016 Cilag GmbH International Clamp arm comprising a circuit
11903634, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable techniques
11911063, Dec 30 2019 Cilag GmbH International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
11925378, Aug 25 2016 Cilag GmbH International Ultrasonic transducer for surgical instrument
11931026, Jun 30 2021 Cilag GmbH International Staple cartridge replacement
11937863, Dec 30 2019 Cilag GmbH International Deflectable electrode with variable compression bias along the length of the deflectable electrode
11937866, Dec 30 2019 Cilag GmbH International Method for an electrosurgical procedure
11944366, Dec 30 2019 Cilag GmbH International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
11950797, Dec 30 2019 Cilag GmbH International Deflectable electrode with higher distal bias relative to proximal bias
11957342, Nov 01 2021 Cilag GmbH International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation
11974772, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with variable motor control limits
11974801, Dec 30 2019 Cilag GmbH International Electrosurgical instrument with flexible wiring assemblies
11974829, Jun 30 2021 Cilag GmbH International Link-driven articulation device for a surgical device
11986201, Dec 30 2019 Cilag GmbH International Method for operating a surgical instrument
11986234, Dec 30 2019 Cilag GmbH International Surgical system communication pathways
11998229, Oct 14 2005 Cilag GmbH International Ultrasonic device for cutting and coagulating
11998230, Nov 29 2016 Cilag GmbH International End effector control and calibration
12053224, Dec 30 2019 Cilag GmbH International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
12059224, Jun 27 2019 Cilag GmbH International Robotic surgical system with safety and cooperative sensing control
12064109, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a feedback control circuit
12076006, Dec 30 2019 Cilag GmbH International Surgical instrument comprising an orientation detection system
12082808, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a control system responsive to software configurations
12114912, Dec 30 2019 Cilag GmbH International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
12114914, Aug 05 2016 Cilag GmbH International Methods and systems for advanced harmonic energy
12156674, Jun 17 2015 Cilag GmbH International Ultrasonic surgical blade for use with ultrasonic surgical instruments
12167866, Apr 09 2012 Cilag GmbH International Switch arrangements for ultrasonic surgical instruments
4929052, Feb 17 1988 Medical Laser Uit of Heriot-Watt University of Research Park Flexible guides for infra-red energy
4932749, Mar 17 1989 L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Optical waveguides formed from multiple layers
5497440, Jun 08 1993 Ramot University Authority for Applied Research & Industrial Development LTD Laser beam waveguide and laser beam delivery system including same
5734765, Jul 26 1994 CeramOptec Industries Inc. Damage resistant infrared fiber delivery device and system
6190376, Dec 10 1996 MEDART A S Apparatus for tissue treatment
6533776, Dec 10 1996 MEDART A S Apparatus for tissue treatment
7373062, Oct 07 2005 TRUMPF LASER GMBH + CO KG Hollow core optical fiber
8137004, Jul 22 2006 Air-cooled plug part for an optical waveguide
9192431, Jul 23 2010 Cilag GmbH International Electrosurgical cutting and sealing instrument
9265926, Nov 08 2013 Cilag GmbH International Electrosurgical devices
9283027, Oct 24 2011 Cilag GmbH International Battery drain kill feature in a battery powered device
9295514, Aug 30 2013 Cilag GmbH International Surgical devices with close quarter articulation features
9314292, Oct 24 2011 Cilag GmbH International Trigger lockout mechanism
9333025, Oct 24 2011 Cilag GmbH International Battery initialization clip
9408660, Jan 17 2014 Cilag GmbH International Device trigger dampening mechanism
9414880, Oct 24 2011 Cilag GmbH International User interface in a battery powered device
9421060, Oct 24 2011 Cilag GmbH International Litz wire battery powered device
9456864, May 17 2010 Cilag GmbH International Surgical instruments and end effectors therefor
9492224, Sep 28 2012 Cilag GmbH International Multi-function bi-polar forceps
9526565, Nov 08 2013 Cilag GmbH International Electrosurgical devices
9554846, Oct 01 2010 Cilag GmbH International Surgical instrument with jaw member
9554854, Mar 18 2014 Cilag GmbH International Detecting short circuits in electrosurgical medical devices
9610091, Apr 12 2010 Cilag GmbH International Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion
9700333, Jun 30 2014 Cilag GmbH International Surgical instrument with variable tissue compression
9707030, Oct 01 2010 Cilag GmbH International Surgical instrument with jaw member
9737355, Mar 31 2014 Cilag GmbH International Controlling impedance rise in electrosurgical medical devices
9737358, Jun 10 2010 Cilag GmbH International Heat management configurations for controlling heat dissipation from electrosurgical instruments
9757186, Apr 17 2014 Cilag GmbH International Device status feedback for bipolar tissue spacer
9791367, Jun 04 2013 PIMS PASSIVE IMAGING MEDICAL SYSTEMS LTD Hybrid fiber optic probe device for attenuated total reflection spectroscopic applications in UV, visible and IR ranges
9795436, Jan 07 2014 Cilag GmbH International Harvesting energy from a surgical generator
9808308, Apr 12 2010 Cilag GmbH International Electrosurgical cutting and sealing instruments with cam-actuated jaws
9814514, Sep 13 2013 Cilag GmbH International Electrosurgical (RF) medical instruments for cutting and coagulating tissue
9848937, Dec 22 2014 Cilag GmbH International End effector with detectable configurations
9861428, Sep 16 2013 Cilag GmbH International Integrated systems for electrosurgical steam or smoke control
9872725, Apr 29 2015 Cilag GmbH International RF tissue sealer with mode selection
9877776, Aug 25 2014 Cilag GmbH International Simultaneous I-beam and spring driven cam jaw closure mechanism
9907616, Feb 02 2012 THE CHARLOTTE MECKLENBURG HOSPITAL AUTHORITY D B A CAROLINAS HEALTHCARE SYSTEM System for TFL lithotripsy, including endoscope with detachable and replaceable wave guide and method for use
9913680, Apr 15 2014 Cilag GmbH International Software algorithms for electrosurgical instruments
9949788, Nov 08 2013 Cilag GmbH International Electrosurgical devices
D847990, Aug 16 2016 Cilag GmbH International Surgical instrument
D924400, Aug 16 2016 Cilag GmbH International Surgical instrument
ER4998,
ER5091,
ER6729,
ER8191,
Patent Priority Assignee Title
4389091, Feb 16 1979 Method and device for connecting optical fibers
4607911, Oct 03 1983 Conax Buffalo Corporation Connector for an optical fiber having a stationary clamp engaged and operated by a rotatable member
4726647, Mar 18 1986 Sumitomo Electric Industries, Ltd. Optical connector
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 13 1987KARNY, ZIVLaser Industries LtdASSIGNMENT OF ASSIGNORS INTEREST 0048750796 pdf
Dec 13 1987ARIELI, RAMILaser Industries LtdASSIGNMENT OF ASSIGNORS INTEREST 0048750796 pdf
Dec 13 1987SCHWEBEL, ALANLaser Industries LtdASSIGNMENT OF ASSIGNORS INTEREST 0048750796 pdf
Dec 22 1987Laser Industries Ltd.(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 15 1992REM: Maintenance Fee Reminder Mailed.
May 16 1993EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
May 16 19924 years fee payment window open
Nov 16 19926 months grace period start (w surcharge)
May 16 1993patent expiry (for year 4)
May 16 19952 years to revive unintentionally abandoned end. (for year 4)
May 16 19968 years fee payment window open
Nov 16 19966 months grace period start (w surcharge)
May 16 1997patent expiry (for year 8)
May 16 19992 years to revive unintentionally abandoned end. (for year 8)
May 16 200012 years fee payment window open
Nov 16 20006 months grace period start (w surcharge)
May 16 2001patent expiry (for year 12)
May 16 20032 years to revive unintentionally abandoned end. (for year 12)