A connecting strip or receiver has switch contacts formed between break contact flaps which are arranged at a distance or spacing from each other, two interconnecting housing parts define a plug-in channel for a switch or a test plug which makes an electrical connection.

The break contact flaps are positioned at a defined distance between them by housing inner walls which also define a plug-in conneciton channel.

Patent
   4871330
Priority
May 08 1987
Filed
May 09 1988
Issued
Oct 03 1989
Expiry
May 09 2008
Assg.orig
Entity
Large
30
3
all paid
1. A connecting strip comprising:
a housing defining spaced-apart electrical cutting/clamping element receiving channels and including wall portions intermediate said cutting/clamping receiving channels defining an electrical connecting plug-in channel;
a plurality of cutting/clamping elements, each of said plurality of cutting/clamping elements being positioned in one of said cutting/clamping element receiving channels;
a plurality of break contact flaps, each of said plurality of break contact flaps including a lower portion connected to one of said plurality of cutting/clamping contacts, an angled bend portion and an extension, each of said angle bend portion extending in a direction toward an associated opposite angle bend portion of an associated opposite break contact flap, each extension resting on a cooperating one of said wall portions to provide a gap between opposite break contact flaps to delimit said electrical connecting plug-in channel.
4. A connecting strip comprising: a housing defining spaced-apart electrical cutting/clamping element receiving channels with contact openings provided in an upper portion of said housing, said housing including wall portions provided intermediate said contact openings forming an intermediate opening defining an electrical connecting plug-in channel, a plurality of cutting/clamping elements, each of said plurality of cutting/clamping elements being positioned in one of said cutting/clamping element receiving channels with cutting/clamping legs extending through an associated one of said contact openings; a plurality of break contact flaps, each of said plurality of break contact flaps including a lower portion connected to one of said plurality of cutting/clamping contacts, an angle bend portion connected to said lower portion and an extension extending from said angle bend portion, each said angle bend portion extending in a direction toward an associated opposite angle bend portion of an associated opposite break contact flap, said extensions resting on a cooperating one of said wall portions to provide a gap between opposite angle bend portions, said gap being smaller than a width of said intermediate opening.
2. An electrical connector according to claim 1, wherein said housing includes an upper and lower portion which are provided with interengageable hook and recess portions which hold said portions together, said upper housing portion including said wall portions against which said break contact flaps are positioned, said cutting/clamping elements extending through openings of said upper portion of said housing, said openings bounding a surface against which said break contact flaps are positionable.
3. An electrical connector according to claim 2, wherein said cutting/clamping elements each include an axially extending slot for a contact wire having insulation thereon, the slot being defined to engage the contact wire within the insulation to pierce the insulation as the contact wire is moved down in the slot.
PAC FIELD OF THE INVENTION

This invention relates in general to electrical connectors, and in particular to a new and useful method and apparatus for effecting an electrical clamping and connection of particularly communication wires in particular and to establishing a break contact flap facing such connectors.

A connecting strip similar to the invention is previously known from German Patent DE-OS No. 35 25 568. Here, the distance between break contact flaps of a connection element pair is formed by a separating rod of an insulating material, which rests on a lower transverse rib of the casing of the connecting strip. The use of a separating rod for generating the distance between the break contact flaps of the connecting element pair has, however, the disadvantage that the distance between the break contact flaps is a function of the factory size of the separating rod and the the distance between break contact flaps is a function of the factory size of the separating rod and the size break contact flaps, as well as of the size of the transverse rib serving as a contact surface for the separating rod. Since the separating rod rests on the transverse rib formed at the floor of the casing of the connecting strip, the distance between the break contact flaps depends also on their lengths.

Lastly, all connecting element pairs must be exactly alike and set into the connecting strip extremely precisely in order to obtain for all connecting element pairs the desired defined distance of the break contact flaps from each other.

Maintaining precisely the distance between the break contact flaps is required, according to VDE guide lines, since the insulation resistance specified hereby is not ensured if the distance is too small, and, since at too great a distance no reliable contact of a switch plug, in particular a test plug, plugged in between the break contact flaps is possible.

The invention, therefore, is based on the task of creating a connecting strip with switch contacts, in which the distance between the break contact flaps is set with maximum precision without additional structural elements, with as few as possible of the factory sizes affecting the distance between the break contact flaps of the switch contacts.

In accordance with the invention, the extensions of the break contact flaps rest resiliently on the inner walls of the casing of the connecting strip so as to find a precise distance between them. This defined distance can be obtained without additional structural elements and depends only on the factory sizes of the outer and inner surfaces of the inner walls. The inner walls which delimit the plug-in channel, so that all pairs of break contact flaps built into the connecting strip receive a defined distance from each other.

Accordingly, it is an object of the invention to provide an improved method of establishing a facing between two opposed biasing contact flaps off of an electrical connector which comprises defining fixed positions for tube operating wire connecting clamping and contact elements which are connectable to two respective insulated wire elements and providing a spacing for break contact flaps associated with each connecting and clamping elements which have inwardly extending biasing portions which are held at fixed space relationships to each other by surfaces which are defined in a housing of the device.

A further object of the invention is to provide an improved electrical connector which includes a housing which forms recesses for holding spaced apart cutting and clamping contacts each of which has a break contact flap which extends in an intermediate portion toward the other which includes a wall surface which holds the clamps so that they are at a predetermined spacing from one another in an area which defines a plug in channel.

A further object of the invention is to provide an electrical connector which is simple in design, rugged in construction and economical to manufacture.

The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which a preferred embodiment of the invention is illustrated.

In the drawings:

The only FIGURE of the drawings is a transfer sectional view of an electrical connector constructed in accordance with the invention.

Referring to the drawings in particular the invention embodied therein comprises an electrical connector having a connector housing or insulated mounting generally designated 1 made up of inter-engaged upper part 2 and lower part 3 which together define receiving recesses for connecting elements or combined cutting and clamping elements 6 and 7 in a spaced relationship with a plug-in channel 26 being defined therebetween. In accordance with the invention, the break contact flap 10 and 11 for each respective connecting element 6 and 7 includes intermediate portions or angle bends 27 and 28 which extend toward the other and are held in a defined spaced relationship by inner walls or surfaces 21 and 22 of the housing so as to define precise spaced locations for these elements at a location of a plug-in channel 26 which receives a switch contact or testing plug at the location 25.

A plastic casing of a connecting strip or receiver 1 comprises an upper part 2 and a lower part 3, which are connected through catch hooks 4 of the lower part 3, which lock into openings 5 of the upper part 2. Into the lower part 3, U-shaped connecting elements 6 and 7 of electrically conducting elastic metal material are set. One leg of each U-shaped connecting element 6 and 7 has a cutting-clamping contact 8 and 9 and, on each other leg, a break contact flap 10 and 11 is formed. The underside 12 of each connecting element 10 and 11 rests on the inner floor surface 13 of the lower part 3 on both sides of a transverse rib 29 extending upwardly from the floor surface. Each cutting/clamping contact 8 and 9 has two legs 14 and 15, between which a clamping slit 16 is formed. When an insulated cable core 17 and 18 is pressed into the clamping slit 16, the insulation of the cable core 17 and 18 is cut by the sharp edges of the clamping slit 16 and an electrical contact between a conductor in the cable cores 17 and 18 and the connecting element 6 and 7 is formed.

In accordance with the invention resilient break contact flaps 10 and 11 have angle bends 27 and 28 forming a switch or plug contact 25, and extensions 19 and 20 thereof extend in the upward direction toward the free end and rest resiliently on the outer surfaces of respective upper inner walls 21 and 22 of the upper part 2 of the connecting strip 1. The inner walls 21 and 22 thus define a plug-in channel 25 extending toward the bottom and formed in the longitudinal axis of the connecting strip 1 for a (not shown) switch plug, and particularly for a test plug. In each plane of a pair of connecting elements 6 and 7 two break contact flaps 10 and 11 oppose each other. The angle bends of 27 and 28 of the contact flaps lo and 11 are directed against each other. Between them a defined minimum distance or spring distance 23 exists, which is determined by the distance or spacing 24 of the outer surfaces of the two inner walls 21 and 22. Into the plug-in channel 26 a switch and/or a test plug can be plugged into the connecting strip 1 between the break contact flaps 10 and 11. In the process, the break contact flaps 10 and 11 rest on the outer surfaces of the inner walls 21 and 22 under spring prestress. When a test plug is placed into the channel between the two break contact flaps 10 and 11 they cause the flaps to spring toward the outside corresponding to the width of the test plug which enlarges the spacing 23 between the break contact flaps 1 and 11. The electrical contact between test plug and the break contact flaps 10 and 11 in contact on both sides takes place by the biasing of the stamped angle bends 27 and 28 formed on the break contact flaps 10 and 11. Upon the test plug being pulled out, the two break contact flaps 10 and 11 spring toward each other and, consequently, decrease the distance between the angle bends or indentations 27 and 28. The extensions 19 and 20 rest under spring prestress on the outer surfaces of the respective inner walls 21 and 22 with the minimum distance 23 having been reached again. This permits maintaining the insulation resistance specified by the VDE guide lines in each case.

In a second model (not shown) the extensions of the break contact flaps can also lie against the inner surfaces of the inner walls with the break contact flaps, the break contact flaps, however, need to be under spring prestress directed toward the outside. Upon inserting the test plug, no flying back of the break contact flaps can take place so that greater contact pressure can be exerted. In this model, the break contact flaps, even after the plug has been pulled out, remain in an essentially unchanged position.

The connecting strip according to the invention serves to connect cable cores in telecommunications technology.

While a specific embodiment of the invention has been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.

Muller, Manfred, Biederstedt, Lutz

Patent Priority Assignee Title
4986768, Dec 02 1988 Krone GmbH Plug connector for telecommunication and data systems
5000703, Jan 26 1989 Krone Aktiengesellschaft Connector bank
5033974, Jan 12 1989 Krone Aktiengesellschaft Plug connector device for telecommunication and data systems
5494461, Jul 27 1993 ADC GmbH Terminal block for high transmission rates in the telecommunication and data technique
5622516, May 17 1995 COMMSCOPE, INC OF NORTH CAROLINA Insulation displacement terminal with two-wire insertion capability
5722850, Nov 27 1995 Molex Incorporated Telecommunications connectors
7155004, Nov 22 2002 CommScope EMEA Limited; CommScope Technologies LLC System and method of delivering DSL services
7409053, Nov 22 2002 CommScope EMEA Limited; CommScope Technologies LLC System and method of providing DSL services on a telephone network
7412052, Nov 22 2002 CommScope EMEA Limited; CommScope Technologies LLC System and method of delivering DSL services
7522721, Aug 26 2005 CommScope EMEA Limited; CommScope Technologies LLC System for broadband service delivery
7643631, Aug 26 2005 CommScope EMEA Limited; CommScope Technologies LLC Enclosure for broadband service delivery system
7684557, Nov 22 2002 CommScope EMEA Limited; CommScope Technologies LLC System and method of delivering DSL services
7722403, Jun 05 2007 CommScope Technologies LLC Grounding comb, in particular for a plug-type connector for printed circuit boards
7742397, Nov 22 2002 CommScope EMEA Limited; CommScope Technologies LLC System and method of providing DSL services on a telephone networks
7762833, Jun 05 2007 CommScope Technologies LLC Contact element for a plug-type connector for printed circuit boards
7828584, Jun 05 2007 CommScope Technologies LLC Plug-type connector for printed circuit boards
7862388, Jul 25 2006 CommScope Technologies LLC Connector block with cable manager
7901254, Jul 25 2006 CommScope Technologies LLC Connector block
7946863, Apr 25 2008 CommScope EMEA Limited; CommScope Technologies LLC Circuit protection block
7985094, Sep 15 2008 CommScope EMEA Limited; CommScope Technologies LLC Connector block
8016617, Jun 05 2007 CommScope Technologies LLC Wire connection module
8025523, Jun 05 2007 CommScope Technologies LLC Plug-in connector for a printed circuit board
8064182, Feb 28 2007 CommScope EMEA Limited; CommScope Technologies LLC Overvoltage protection plug
8162700, Apr 17 2009 CommScope EMEA Limited; CommScope Technologies LLC Connection block mounting frame
8210883, Jul 25 2006 CommScope Technologies LLC Connector block
8411404, May 27 2008 CommScope EMEA Limited; CommScope Technologies LLC Overvoltage protection plug
9865995, Feb 28 2007 CommScope EMEA Limited; CommScope Technologies LLC Overvoltage protection plug
D607822, Jul 25 2006 CommScope EMEA Limited; CommScope Technologies LLC Connector block
D620896, May 27 2008 CommScope EMEA Limited; CommScope Technologies LLC Overvoltage protection plug
RE41311, Feb 24 1992 COMMSCOPE, INC OF NORTH CAROLINA High frequency electrical connector
Patent Priority Assignee Title
4741711, Jun 03 1985 MONDRAGON TELECOMMUNICATIONS, S L Modular distribution frame including protector modules adapted for break access testing
4776803, Nov 26 1986 MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP OF DE Integrally molded card edge cable termination assembly, contact, machine and method
GB2078450,
///////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 09 1988Krone Aktiengesellschaft(assignment on the face of the patent)
Dec 07 1988MULLER, MANFREDKRONE AKTIENGESELLSCHAFT, BEESKOWDAMM 3-11, D-1000 BERLIN 37, W GERMANYASSIGNMENT OF ASSIGNORS INTEREST 0049930935 pdf
Dec 07 1988BIEDERSTEDT, LUTZKRONE AKTIENGESELLSCHAFT, BEESKOWDAMM 3-11, D-1000 BERLIN 37, W GERMANYASSIGNMENT OF ASSIGNORS INTEREST 0049930935 pdf
Dec 23 1999Krone AktiengesellschaftKrone GmbHASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0108040358 pdf
Aug 30 2004APTUS 50 GMBHKrone GmbHCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0190090682 pdf
Aug 30 2004Krone GmbHAPTUS 50 GMBHDIVESTMENT AGREEMENT0190090704 pdf
Apr 06 2005Krone GmbHADC GmbHCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0190150074 pdf
Date Maintenance Fee Events
May 03 1990ASPN: Payor Number Assigned.
Mar 11 1993M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 12 1997M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Mar 14 2001M185: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 03 19924 years fee payment window open
Apr 03 19936 months grace period start (w surcharge)
Oct 03 1993patent expiry (for year 4)
Oct 03 19952 years to revive unintentionally abandoned end. (for year 4)
Oct 03 19968 years fee payment window open
Apr 03 19976 months grace period start (w surcharge)
Oct 03 1997patent expiry (for year 8)
Oct 03 19992 years to revive unintentionally abandoned end. (for year 8)
Oct 03 200012 years fee payment window open
Apr 03 20016 months grace period start (w surcharge)
Oct 03 2001patent expiry (for year 12)
Oct 03 20032 years to revive unintentionally abandoned end. (for year 12)