A mechanical and electrical interconnection of an active integrated circuit to a passive substrate. The interconnection includes a contact retainer having resilient elements disposed in apertures which extend through the retainer so that the elements are radially compressed. The retainer is disposed between the active integrated circuit and the passive substrate. The retainer may be secured either mechanically or through bonding agents to the active integrating circuit and the passive substrate. Axial compression of the resilient elements upon disposing the retainer between the active integrated circuit and the passive substrate provides for wiping action of the resilient elements on the contacts of the active integrated circuit and the passive substrate. The contact retainer may include thermal paths for heat dissipation of the integrated circuits to accommodate a higher density of integrated circuits.

Patent
   4922376
Priority
Apr 10 1989
Filed
Apr 10 1989
Issued
May 01 1990
Expiry
Apr 10 2009
Assg.orig
Entity
Small
118
8
EXPIRED

REINSTATED
6. A method for providing electrical contact between an active circuit element of a module and a passive substrate, comprising:
retaining a conductive resilient element within a retainer having an aperture sized to receive said resilient element, said resilient element retained by radially compressing said resilient element within the elastic limits of deformation of said resilient element, wherein said resilient element axially aligns with an electrical contact of said active element and an electrical contact of said passive substrate when said retainer is operatively aligned with said active element and said passive substrate;
providing a lid sized to engage said module and enclose said active circuit element; and
securing by means of a fastener to cooperatively align said retainer relative to said active circuit element, said passive substrate, and said lid to elastically axially deform said resilient element within the limits of elastic deformation of said resilient element.
1. A mechanical pressure contact providing electrical communication between an active circuit element and a passive substrate, comprising:
a module including at least one active element;
a contact retainer adapted to cooperatively align with said active element, said retainer including an aperture, said aperture exposed to an electrical contact on said active element upon cooperative alignment of said active element and said retainer;
a passive substrate having a surface terminal exposed to said aperture upon cooperative alignment of said retainer between said active element and said passive substrate;
a conductive resilient element disposed within said aperture, said element providing an electrical path through said retainer;
a lid sized to engage said module and enclose said active elements; and
a fastener cooperatively aligning said retainer relative to said active element, said passive substrate, and said lid to deform said resilient element within its elastic limit and to secure said lid and said passive substrate.
2. The mechanical pressure contact as defined in claim 1, wherein said lid includes an aperture sized to receive said fastener so that said fastener cooperatively engages said lid and said passive substrate.
3. The mechanical pressure contact as defined in claim 1, wherein said lid includes a protrusion extending from said lid, said protrusion sized to contact said active element, wherein said protrusion provides a thermal path between said lid and said active element.
4. The mechanical pressure contact as defined in claim 1, wherein said lid includes a plurality of fins extending from said lid, said fins adapted to dissipate heat from said lid.
5. The mechanical pressure contact as defined in claim 1, wherein said active element includes a thermal pathway, and said retainer includes a thermal path member which extends through said retainer, wherein said path member contacts said thermal pathway when said active element is cooperatively aligned with said retainer; and said passive substrate including a thermal contact, said thermal contact contacting said path member when said passive substrate is cooperatively aligned with said retainer.
7. The method of claim 6, wherein said resilient element comprises:
a substantially cylindrical wire mesh element having a length approximately 25 percent greater than the length of said aperture.
8. The method of claim 6, wherein said resilient element comprises:
a cylindrical coiled spring sized to be elastically compressed when disposed within said aperture.
9. The method of claim 6, wherein said resilient element comprises:
a conical coiled spring sized to be elastically compressed when disposed within said aperture.

This invention relates to high density electronic interconnections, particularly to the mechanical and electrical interconnection of active electrical elements to a passive substrate.

Integrated circuits employ active and passive elements to perform any calculating function. Active elements, such as transistors and varactor diodes, are capable of exhibiting a voltage, current or power gain in response to an external signal. The passive elements, such as resistors and capacitors, do not exhibit a voltage, current or power gain in response to external signals.

The application of active and passive elements within integrated circuits permits the integrated circuits to perform complex calculating tasks.

Because multiple integrated circuits are necessary to perform complicated tasks, the integrated circuits must act in conjunction with each other. The individual integrated circuits are affixed to a passive carrier which includes the passive circuitry to link the multiple integrated circuits. As the capability of the affixed integrated circuits increased, it became necessary to link multiple passive carriers. The linking of multiple passive carriers has been accomplished by employing wire mesh resilient contact elements or buttons. The buttons are pressed into holes in an insulating board which is then sandwiched between passive carriers to provide the electrical linking of the passive carriers.

Traditionally, solder joints have been used to provide the mechanical and electrical interconnection of active components to passive carriers. While soldering is a well-known and widely accepted means of providing electrical interconnections, soldering suffers from substantial disadvantages. Large temperature fluctuations can cause the structure of the solder joint to fail. The structural failure of a solder joint results in a failure of the electrical connection. Solder joints are also vulnerable to failure from repeated mechanical flexing which results from the use of the connections outside of a laboratory environment.

Recent developments in the electronics industry have encountered further limitations of solder joints. The miniaturization of active integrated circuits has resulted in an increased density of interconnections per unit area within the electronic devices. The physical size of a solder joint and the accessibility of the site of the joint have become limiting factors in the suitability of soldered interconnections. The size limitations of the solder connections requires that the interconnections extend beyond the periphery of the integrated circuits, thereby wasting valuable space within the device.

In addition, the creation of the hundreds of solder joints necessary to join multiple active components to a passive substrate is extremely labor intensive. There is a substantial introduction of error into an electrical system through the requirement of such labor. Further, upon failure of a single soldered interconnection, the entire component must be unsoldered so that the interconnection can be replaced or repaired. Therefore, the cost of repairing a failed interconnection may exceed the cost of the active component. This results in the disposal of valuable, working components due to the inability of the interconnections to be easily repaired.

As the size of the integrated circuits has been reduced, the density of elements has increased. This increased density has resulted in an increased density of active integrated circuits per unit area.

The pin grid array was developed to accommodate the increased density of inputs and outputs to the active integrated circuit. However, the pin grid arrays are subject to limitations arising from the ability to operably connect hundreds of pins within a small area. In addition, upon the failure of a single pin, each interconnection of the array must be broken. Therefore, repair of a failed interconnection is expensive.

In place of the pin grid array, pad grid arrays have been employed to connect the active components to a passive carrier. Pad grid arrays provide surface contacts which are blind soldered to connect the active component to the passive carrier. However, the contacts of pad grid arrays require close dimensioned tolerances so that the blind solder joint effectively connects the elements. If an interior joint does not exhibit sufficient integrity, each pad of the entire grid must be unsoldered so that the connection can be repaired.

The connection of active elements to passive carriers has developed from traditional soldered connections, to pin grid arrays and finally to pad grid arrays. Paralleling this development, the interconnection of passive carriers has evolved to include the use of resilient contact elements secured within a retainer.

Therefore, a need exists for providing a mechanical and electrical interconnection system capable of withstanding large temperature fluctuations and mechanical stresses between an active integrated circuit and a passive substrate. In addition, the need exists for a mechanical and electrical interconnection system which is neither labor intensive nor requires an interconnection area larger than the active integrated circuit.

A mechanical and electrical interconnection between an active component and a passive substrate is disclosed in which the interconnection accommodates thermal and mechanical stresses while utilizing an area within the periphery of the active component.

The present invention includes a contact retainer secured between an active component and a passive substrate. Preferably, the contact retainer comprises a composite of an insulating fiber, such as fiberglass or other suitable material. The contact retainer includes a plurality of apertures which extend through the retainer, and are sized to receive a conductive resilient element so that the element is subject to radial compression as it is disposed within the aperture. The resilient elements provide an electrical conduit through the contact retainer as it is positioned between the active component and the passive substrate.

In a preferred embodiment, the active integrated circuits are incorporated into a multichip module which cooperates with a lid to cover the circuitry and environmentally or hermetically seal the circuits. The lid is then secured by simple fasteners such as screws or bolts to the passive substrate so that the multichip module and the contact retainer are disposed between the lid and the passive substrate. Alternatively, the contact retainer may be affixed to the multichip module and this unit may then be secured to the passive substrate by means of the fasteners.

Upon the failure of an integrated circuit of the multichip module, the screws are removed and the multichip module is immediately separable from the passive substrate. Rather than unsoldering hundreds of individual interconnections of a pad grid array, the present invention provides for the separability of the multichip module from the passive substrate through the removal of screws.

The ability to immediately remove the contact retainer from between the multichip module and the passive substrate also allows for testing of the multichip module and the resilient contact elements during assembly procedures. This allows for an improved functioning percentage of manufactured units.

In addition, the resilient contact elements which provide the electrical conduit through the contact retainer are readily removable from the contact retainer. The retention of the elements by radial compression permits the extraction of an individual element without displacing other elements. Therefore, in the unlikely event that an element should fail to provide an electrical conduit through the contact retainer, the faulty element may be readily removed and replaced.

In addition, the contact elements are preferably subject to an axial bias when the contact retainer is operably secured between the multichip module and the passive substrate. The reaction of the contact elements to axial compression allows the present invention to clean interfacing electrical surfaces of oxides while withstanding the structural flexure of the multichip module or the passive substrate without jeopardizing the integrity of the electrical or mechanical interconnection.

Further, because the contact elements may be manufactured to a reduced size, hundreds of contact elements may be disposed within the area of a multichip module. Therefore, the present invention permits the interconnection of the multichip module and the passive substrate within the area of the multichip module.

The preferred embodiment also provides for dissipation of heat generated by the integrated circuits of the multichip module. Preferably, the contact retainer includes a thermal path between the multichip module and the passive substrate. Alternately, the lid of the preferred embodiment may include a protrusion which contacts the top of integrated circuits to provide a thermal path between the integrated circuit and the lid.

FIG. 1 is an exploded perspective of the interconnection showing the relative position of the components.

FIG. 2 is a perspective view of an assembled interconnection.

FIG. 3 is a cross-sectional view of FIG. 2 taken along lines 3--3.

FIG. 4 is a partial cross-sectional view of a contact retainer showing a coiled element.

FIG. 5 is a partial cross-sectional view of a contact retainer showing a wire mesh element.

FIG. 6 is a partial cross-sectional view of a contact retainer showing a conical element.

FIG. 7 is a cross-sectional view of an interconnection system showing thermal paths through the interconnection.

FIG. 8 is a cross-sectional view of the interconnection system showing thermal paths through the lid.

Referring to FIG. 1, a mechanical and electrical interconnection between a multichip module and a passive substrate, comprising a multichip module 20, a contact retainer 30, a passive substrate 40 and a lid 50 is disclosed. As shown in FIG. 1, the contact retainer 30 is disposed between a multichip module 20 and the passive substrate 40.

The multichip module 20 is a modular assembly including a plurality of active integrated circuits 24 which are physically and electrically interconnected through an organic resin substrate 21 which provides the circuitry for interconnecting the active circuits 24. The modularity of the multichip module 20 permits the combination of inputs and outputs of each integrated circuit 24 into an efficient configuration through the resin substrate 21, thereby permitting further size reduction of the overall device. As shown in FIG. 3, the substrate 21 includes vias 23 which provide electrical pathways to the integrated circuits 24. The substrate 21 is disposed on a core 22 which provides structural rigidity for the substrate 21. The core 22 includes pads 26 which extend through the core 22 to provide an electrical conduit through the core 22. The core 22 may comprise a metal plate having a plurality of insulated holes through which the pads 26 extend. Alternatively, the core 22 may comprise a composite insulating fiber which is fabricated to include the pads 26. Also, the core 22 may comprise a ceramic material which provides the necessary structural rigidity for the substrate 21. The ceramic core includes the conductive pads 26 which provide electrical conduits to the multichip module 20.

The passive substrate 40 is sized to engage a plurality of active multichip modules 20. The passive substrate 40 is an electrically passive element which provides the structural and electrical interconnection of the individual active multichip modules 20 so as to coordinate the functions performed by each multichip module 20 so that a larger, more complex task may be performed. Preferably, the passive substrate 40 is comprised of nonconducting composite fiberglass material having passive circuitry etched into the fiberglass composite. The passive substrate 40 may be sized to a standard configuration so that the passive substrate 40 may provide for a molecular assembly of larger electronic devices. Referring to FIG. 7, the passive circuitry of passive substrate 40 includes terminals 42 which provide the electrical interface to the contact retainer 30. Securing holes 45 are located in the passive substrate 40 to engage the fasteners 60 to secure the multichip module 20 and contact retainer 30 relative to the passive substrate 40.

As shown in FIG. 1, the contact retainer 30 is a planar sheet of insulating material having a sufficient thickness to retain a contact element 36. The retainer 30 may initially be fabricated as a solid sheet of a nonconductive composite fiber. The solid sheet may then be drilled or etched to produce the apertures 32 having the appropriate size, as discussed infra, and fastener holes 35. The apertures 32 are located so as to align with pads 26 of the core 22 and terminals 42 of the passive substrate 40 when the retainer 30 is operably aligned between the multichip module 20 and the passive substrate 40.

A contact element 36 is disposed within each aperture 32. As shown in FIGS. 4, 5 and 6, the contact retainer 36 may be configured as a cylindrical coiled spring 37, a cylindrical mesh member 38 or a conical coiled spring 39. Referring to FIG. 5, the cylindrical mesh member 38 (i.e., a FUZZ BUTTON®, manufactured by Tecknit® Interconnection Products of New Jersey) is shown. When a mesh member 38 is employed, the diameter of the member 38 should be approximately 0.002 inches less than the diameter of the aperture 32. This configuration allows for easy insertion of the mesh member 38 within the aperture 32 while providing for sufficient radial compression of the member 38 upon operable engagement of the retainer 30 between the multichip module 20 and the passive substrate 40.

Referring to FIG. 5, the unstressed length of the mesh member 38 is approximately 25% greater than the length L of the aperture 32. Preferably, approximately 10% of the unstressed length of the element 36 extends beyond each end of the aperture 32. Upon operable engagement with the contact retainer 30, the compression of the element 38 is within the limits of elastic deformation of the element 38 so that the compressed element exerts an axial force against the multichip module 20. Because this percentage of deformation is within the elastic limits of the member 38, the member substantially returns to its unstressed length when removed from between the multichip module 20 and the passive substrate 40 . Under current fabrication techniques, the mesh members 38 are manufactured so that a 0.025 inch distance separates the centers of the nearest aperture 32. However, as will be apparent to one skilled in the art, as mesh members 38 are reduced in size, the density of interconnections of the contact retainer 32 may be increased thereby providing distances less than 0.025 inches between the centerlines of the apertures 32.

As shown in FIGS. 4 and 6, the contact element 36 may alternatively comprise a cylindrical coiled spring 37 or a conical coiled spring 39. The density of apertures 32 which employ a cylindrical or conical spring 37, 39 is determined by the size of the spring 37, 39. As manufacturing techniques provide for a reduced size of the springs 37, 39, the density of apertures 32 may increase. The cylindrical and conical springs 37, 39 are also retained within the aperture 32 by radial compression and extend beyond the planar surface of the contact retainer 30. The spring 37, 39 is inserted into an aperture 32 so that approximately 10% of the length of the unstressed element extends beyond each end of the aperture 32. As with the mesh member 38, an axial compression of approximately 25% is within the limits of elastic deformation of the cylindrical and conical springs 37, 39.

The environment in which the multichip module 20 is employed determines the appropriate configuration of the lid 50. Preferably, the lid 50 is comprised of aluminum which provides sufficient structural rigidity and is a good thermal conductor. The lid 50 includes a pair of fastener holes 55 which are employed to secure the lid 50 relative to the passive substrate 40. As shown in FIG. 3, the lid 50 includes a depending flange 51 which terminates a distance from the planar surface of the lid 50. The flange 51 is sized so that upon mounting of the lid 50 to the multichip module 20, the planar portion of the lid 50 is above the active integrated circuits 24. In addition to protecting the integrated circuits 24, the lid 50 may provide the necessary structural rigidity of the multichip module 20. If the core 22 is comprised of a material or has a thickness which does not provide sufficient structural rigidity, the lid 50 is constructed of a sufficient thickness to provide structural rigidity upon securing the multichip module 20 to the lid 50. The lid 50 is secured to the multichip module 20 through bonding agents or mechanical fasteners to provide the necessary structural rigidity of the multichip module 20.

The active integrated circuits 24 may be individually hermetically sealed relative to the resin substrate 21. The lid 50 may be secured over a hermetically sealed multichip module 20 to protect the seal. Alternatively, the integrated circuits 24 of the multichip module 20 may be hermetically sealed by sealing the lid 50 to the substrate 21 of the multichip module 20. A glass bead (not shown) seals the joint of the flange 51 of the lid 50 to the substrate 21, thereby hermetically sealing the lid 50 to the multichip module 20.

However, many commercial uses of the multichip module 20 do not require hermetic sealing. Therefore, the multichip module 20 may be environmentally sealed by potting the integrated circuits 24 and the resin substrate 21 in an insulating elastomeric material. Alternatively or additionally, the integrated circuits 24 may be disposed under a lid 50 which serves as a dust cover to protect the integrated circuits 24 from ambient particulate matter.

The contact retainer 30, having the contact elements 36 disposed within the apertures 32 is positioned between the active multichip module 20 and the passive substrate 40. As discussed supra, upon operable alignment of the contact retainer 30 and the multichip module 20, the apertures 32 are aligned with the pads 26 of the multichip module 20 and the terminals 42 of the passive substrate 40. The contact retainer 30 may be laminated or bonded to the core 22 by bonding agents well-known in the art capable of withstanding mechanical stress and temperature fluctuations. Alternatively, the contact retainer 30 may be mechanically secured to the multichip module 20 by retaining clips (not shown). The retaining clips are generally C-shaped members comprising a resilient material. The retaining clips engage the contact retainer 30 and the multichip module 20 to bias the contact retainer 30 against the multichip module 20. The securing of the contact retainer 30 to the multichip module 20 by the retaining clips axially compresses the elements 36 approximately 10% of the unstressed length of the element 36. Approximately 10% of the unstressed length of the element 36 extends beyond the planar surface of the contact retainer 30 exposed to the terminals 42 of the passive substrate 40.

Alternatively, the contact retainer 30 may remain separate from the multichip module 20 and be secured between the passive substrate 40 and the multichip module 20 by screws 60.

As shown in FIG. 1, screws 60 may pass through the holes 55 in the lid 50, holes 25 in the multichip module 20, the holes 35 in the contact retainer 30 and holes 45 in the passive substrate 40. The screws 60 may engage a threaded insert (not shown) within the hole 45 or engage a nut (not shown) on the passive substrate 40. The head of the screw 60 contacts the lid 50 so that the lid 50 may be drawn towards the passive substrate 40 as the screw 60 is tightened. Referring to FIG. 2, the screws 60 are tightened until the contact retainer 30 and the multichip module 20 are securely disposed between the lid 50 and the passive substrate 40. Upon this securing, the elements 36 are axially compressed approximately 25% of the unstressed length of the element 36.

Therefore, in the assembled configuration, the elements 36 exert a force against the pads 26 of the multichip module 20 and the terminals 42 of the passive substrate 40. The electrical interconnection through the contact retainer is not a rigid, fixed unit, but rather a pressure loaded contact. Upon flexure of the multichip module 20, the contact retainer 30, or the passive substrate 40, the axial force exerted by an element 36 causes a relative movement or wiping motion between the element 36 and the pad 26 and the terminal 42. This wiping action abrades oxide deposits which may accumulate on the pads 26 or the terminals 42 while maintaining the integrity of the electrical connection therebetween. Also, the ability of elements 36 to move relative to the pad 26 and the terminals 42 allows for mechanical flexure of the multichip module 20 relative to the passive substrate 40 without sacrificing the integrity of the electrical interconnection.

Referring to FIG. 7, the interconnection system also provides for thermal management of the active integrated circuits 24. The substrate 21 and core 22 includes a solid metallic pathway 27 from the integrated circuit 24 through the core 22. The pathway 27 is preferably formed integral with the core 22 and substrate 21 during fabrication. The contact retainer 30 includes copper columns 34 which extend through the retainer 30 to provide a thermal path from the pathways 27 to the passive substrate 40. The copper columns 34 are affixed within openings 33 by bonding agents or an interference friction fit. The size of the column 34 is determined by the size of the integrated circuit 24 and the heat produced by the integrated circuit 24. The greater heat to be removed from the integrated circuit 24, the larger cross-sectional area of the column 34. The passive substrate 40 also includes a thermal contact 44 which provide for the transfer of heat away from the integrated circuits 24. The thermal contact 44 is preferably of a high efficiency thermal conductor such as copper and may extend directly through the passive substrate 40. However, the thermal pathway in the passive substrate may be determined by design considerations of an electronic device.

Alternatively or additionally, the lid 50 may include protrusions 52 which extend downward to contact the top of the integrated circuits 24, as shown in FIG. 8. The protrusions 52 thereby provide a thermal conduit from the active integrated circuit 24 to the lid 50. The protrusions 52 are integrally formed with the lid 50. The cross-sectional area of the protrusion 52 is a function of the heat to be transferred from the integrated circuit 24. The greater the heat to be transferred, the greater the area of contact between the protrusion 52 and the integrated circuit 24. In addition, the lid 50 may include a plurality fins 54 for increased thermal dissipation from the lid 50. Preferably, the fins 54 are integrally formed with the lid 50.

Although the present invention has been described in terms of particular embodiments, it is not limited to these embodiments. Alternative embodiments and modifications which would be encompassed by the invention may be made by those skilled in the art, particularly in light of the foregoing teachings. Alternative embodiments, modifications, or equivalents may be included within the spirit and scope of the invention as defined by the claims.

Pommer, Richard J., Chiechi, John

Patent Priority Assignee Title
10159154, Jun 03 2010 LCP MEDICAL TECHNOLOGIES, LLC Fusion bonded liquid crystal polymer circuit structure
10361149, Aug 10 2016 Qualcomm Incorporated Land grid array (LGA) packaging of passive-on-glass (POG) structure
10453789, Jul 10 2012 LCP MEDICAL TECHNOLOGIES, LLC Electrodeposited contact terminal for use as an electrical connector or semiconductor packaging substrate
10506722, Jul 11 2013 LCP MEDICAL TECHNOLOGIES, LLC Fusion bonded liquid crystal polymer electrical circuit structure
10609819, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Hybrid printed circuit assembly with low density main core and embedded high density circuit regions
10667410, Jul 11 2013 LCP MEDICAL TECHNOLOGIES, LLC Method of making a fusion bonded circuit structure
10804242, Aug 31 2015 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming multi-die package structures including redistribution layers
5061191, Dec 21 1990 AMP Incorporated Canted coil spring interposing connector
5123850, Apr 06 1990 Texas Instruments Incorporated Non-destructive burn-in test socket for integrated circuit die
5138528, Feb 06 1991 AMP Incorporated; AMP INCORPORATED, Electrical packaging system and components therefor
5140405, Aug 30 1990 Micron Technology, Inc. Semiconductor assembly utilizing elastomeric single axis conductive interconnect
5159534, Jan 22 1991 Johnson Service Company Electronic/electromechanical packaging arrangement for facility management system
5163837, Jun 26 1991 AMP Incorporated Ordered area array connector
5343366, Jun 24 1992 International Business Machines Corporation Packages for stacked integrated circuit chip cubes
5345107, Sep 25 1989 Hitachi, Ltd. Cooling apparatus for electronic device
5402077, Nov 20 1992 SV Probe Pte Ltd Bare die carrier
5424918, Mar 31 1994 Agilent Technologies Inc Universal hybrid mounting system
5426405, Aug 03 1993 Agilent Technologies Inc Family of different-sized demountable hybrid assemblies with microwave-bandwidth interconnects
5457609, Apr 04 1994 Motorola, Inc. Charging contact for use with a battery powered electronic device
5459639, Sep 17 1993 Fujitsu Limited Printed circuit board assembly having high heat radiation property
5569039, Jan 14 1994 CINCH CONNECTORS, INC Electrical connectors
5625944, Dec 30 1992 Interconnect Systems, Inc. Methods for interconnecting integrated circuits
5686842, Aug 31 1995 National Semiconductor Corporation Known good die test apparatus and method
5729435, Apr 28 1994 SOCIONEXT INC Semiconductor device and assembly board having through-holes filled with filling core
5734176, Feb 26 1996 Anritsu Company Impedance controlled test fixture for multi-lead surface mounted integrated circuits
5820014, Nov 16 1993 FormFactor, Inc Solder preforms
5821597, Sep 11 1992 Semiconductor Energy Laboratory Co., Ltd.; TDK Corporation Photoelectric conversion device
5834335, Sep 27 1996 Texas Instruments Incorporated Non-metallurgical connection between an integrated circuit and a circuit board or another integrated circuit
5850691, Jul 20 1995 Dell USA, L. P. Method for securing an electronic component to a pin grid array socket
5978222, Apr 28 1994 SOCIONEXT INC Semiconductor device and assembly board having through-holes filled with filling core
5994152, Nov 16 1993 FormFactor, Inc Fabricating interconnects and tips using sacrificial substrates
6020597, Mar 05 1997 HANGER SOLUTIONS, LLC Repairable multichip module
6031282, Aug 27 1998 Advantest Corporation High performance integrated circuit chip package
6049215, Nov 20 1992 SV Probe Pte Ltd Bare die carrier
6061235, Nov 18 1998 Hewlett Packard Enterprise Development LP Method and apparatus for a modular integrated apparatus for heat dissipation, processor integration, electrical interface, and electromagnetic interference management
6088233, Apr 28 1994 Fujitsu Semiconductor Limited Semiconductor device and assembly board having through-holes filled with filling core
6174172, Dec 28 1995 NHK Spring Co., Ltd. Electric contact unit
6184133, Apr 28 1994 SOCIONEXT INC Method of forming an assembly board with insulator filled through holes
6190181, May 10 1996 E-tec AG Connection base
6249440, May 26 1995 E-tec AG Contact arrangement for detachably attaching an electric component, especially an integrated circuit to a printed circuit board
6274823, Nov 16 1993 FormFactor, Inc. Interconnection substrates with resilient contact structures on both sides
6302702, Mar 18 1999 GLOBALFOUNDRIES Inc Connecting devices and method for interconnecting circuit components
6324072, Sep 30 1996 Siemens Aktiengesellschaft Microelectronic component of sandwich construction
6347037, Apr 28 1994 SOCIONEXT INC Semiconductor device and method of forming the same
6359281, May 06 1999 Siemens Medical Systems, Inc. High voltage distribution system for solid state scintillation detectors and gamma camera system incorporating the same
6390826, May 10 1996 E-tec AG Connection base
6397459, Oct 14 1997 Fujitsu, Limited Printed wiring board with mounted circuit elements using a terminal density conversion board
6426878, Jun 15 1998 NEC Corporation Bare chip carrier utilizing a pressing member
6439894, Jan 31 2001 High Connection Density, Inc Contact assembly for land grid array interposer or electrical connector
6452407, Jun 19 1998 Advantest Corporation Probe contactor and production method thereof
6584681, Sep 30 1996 Infineon Technologies AG Method for producing a microelectronic component of sandwich construction
6652290, Mar 18 1999 GLOBALFOUNDRIES Inc Connecting devices and method for interconnecting circuit components
6659778, Jan 31 2001 High Connection Density, Inc Contact assembly for land grid array interposer or electrical connector
6683795, Apr 10 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Shield cap and semiconductor package including shield cap
6720576, Sep 11 1992 Semiconductor Energy Laboratory Co., Ltd.; TDK Corporation Plasma processing method and photoelectric conversion device
6846184, Jan 24 2003 High Connection Density Inc. Low inductance electrical contacts and LGA connector system
6937044, Nov 20 1992 SV Probe Pte Ltd Bare die carrier
6965110, Nov 06 2001 Siemens Medical Solutions USA, Inc. High voltage distribution for a radiographic sensor device
7014479, Mar 24 2003 BeCe Pte Ltd Electrical contact and connector and method of manufacture
7029288, Mar 24 2003 BeCe Pte Ltd Electrical contact and connector and method of manufacture
7029289, Mar 24 2003 BeCe Pte Ltd Interconnection device and system
7040902, Mar 24 2003 BeCe Pte Ltd Electrical contact
7095090, Sep 11 1992 Semiconductor Energy Laboratory Co., Ltd.; TDK Corporation Photoelectric conversion device
7202677, May 26 1995 FormFactor, Inc. Socket for mating with electronic component, particularly semiconductor device with spring packaging, for fixturing, testing, burning-in or operating such a component
7293995, Nov 08 2005 BeCe Pte Ltd Electrical contact and connector system
7358603, Aug 10 2006 BeCe Pte Ltd High density electronic packages
7527502, Nov 01 2005 BeCe Pte Ltd Electrical contact assembly and connector system
7534654, May 26 1995 FormFactor, Inc. Socket for making with electronic component, particularly semiconductor device with spring packaging, for fixturing, testing, burning-in or operating such a component
7601039, Nov 16 1993 FormFactor, Inc. Microelectronic contact structure and method of making same
7778033, Oct 30 2008 Astec International Limited Thermally conductive covers for electric circuit assemblies
8033838, Feb 21 1996 FormFactor, Inc. Microelectronic contact structure
8373428, Nov 09 1995 FormFactor, Inc. Probe card assembly and kit, and methods of making same
8525346, Jun 02 2009 Hsio Technologies, LLC Compliant conductive nano-particle electrical interconnect
8610265, Jun 02 2009 Hsio Technologies, LLC Compliant core peripheral lead semiconductor test socket
8618649, Jun 02 2009 Hsio Technologies, LLC Compliant printed circuit semiconductor package
8704377, Jun 02 2009 Hsio Technologies, LLC Compliant conductive nano-particle electrical interconnect
8758067, Jun 03 2010 LCP MEDICAL TECHNOLOGIES, LLC Selective metalization of electrical connector or socket housing
8789272, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Method of making a compliant printed circuit peripheral lead semiconductor test socket
8803539, Jun 03 2009 LCP MEDICAL TECHNOLOGIES, LLC Compliant wafer level probe assembly
8829671, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Compliant core peripheral lead semiconductor socket
8912812, Jun 02 2009 Hsio Technologies, LLC Compliant printed circuit wafer probe diagnostic tool
8928344, Jun 02 2009 Hsio Technologies, LLC Compliant printed circuit socket diagnostic tool
8955215, May 28 2009 LCP MEDICAL TECHNOLOGIES, LLC High performance surface mount electrical interconnect
8955216, Jun 02 2009 Hsio Technologies, LLC Method of making a compliant printed circuit peripheral lead semiconductor package
8970031, Jun 16 2009 Hsio Technologies, LLC Semiconductor die terminal
8981568, Jun 16 2009 Hsio Technologies, LLC Simulated wirebond semiconductor package
8981809, Jun 29 2009 Hsio Technologies, LLC Compliant printed circuit semiconductor tester interface
8984748, Jun 29 2009 LCP MEDICAL TECHNOLOGIES, LLC Singulated semiconductor device separable electrical interconnect
8987886, Jun 02 2009 Hsio Technologies, LLC Copper pillar full metal via electrical circuit structure
8988093, Jun 02 2009 Hsio Technologies, LLC Bumped semiconductor wafer or die level electrical interconnect
9054097, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Compliant printed circuit area array semiconductor device package
9076884, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Compliant printed circuit semiconductor package
9093767, Jun 02 2009 Hsio Technologies, LLC High performance surface mount electrical interconnect
9136196, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Compliant printed circuit wafer level semiconductor package
9184145, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Semiconductor device package adapter
9184527, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Electrical connector insulator housing
9196980, Jun 02 2009 RATHBURN, JAMES High performance surface mount electrical interconnect with external biased normal force loading
9231328, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Resilient conductive electrical interconnect
9232654, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC High performance electrical circuit structure
9276336, May 28 2009 LCP MEDICAL TECHNOLOGIES, LLC Metalized pad to electrical contact interface
9276339, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Electrical interconnect IC device socket
9277654, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Composite polymer-metal electrical contacts
9318862, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Method of making an electronic interconnect
9320133, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Electrical interconnect IC device socket
9320144, Jun 17 2009 LCP MEDICAL TECHNOLOGIES, LLC Method of forming a semiconductor socket
9350093, Jun 03 2010 RATHBURN, JAMES Selective metalization of electrical connector or socket housing
9350124, Dec 01 2010 LCP MEDICAL TECHNOLOGIES, LLC High speed circuit assembly with integral terminal and mating bias loading electrical connector assembly
9414500, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Compliant printed flexible circuit
9536815, May 28 2009 LCP MEDICAL TECHNOLOGIES, LLC Semiconductor socket with direct selective metalization
9559447, Mar 18 2015 LCP MEDICAL TECHNOLOGIES, LLC Mechanical contact retention within an electrical connector
9603249, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Direct metalization of electrical circuit structures
9613841, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Area array semiconductor device package interconnect structure with optional package-to-package or flexible circuit to package connection
9660368, May 28 2009 LCP MEDICAL TECHNOLOGIES, LLC High performance surface mount electrical interconnect
9689897, Jun 03 2010 LCP MEDICAL TECHNOLOGIES, LLC Performance enhanced semiconductor socket
9699906, Jun 02 2009 LCP MEDICAL TECHNOLOGIES, LLC Hybrid printed circuit assembly with low density main core and embedded high density circuit regions
9755335, Mar 18 2015 LCP MEDICAL TECHNOLOGIES, LLC Low profile electrical interconnect with fusion bonded contact retention and solder wick reduction
9761520, Jul 10 2012 LCP MEDICAL TECHNOLOGIES, LLC Method of making an electrical connector having electrodeposited terminals
9930775, Jun 02 2009 Hsio Technologies, LLC Copper pillar full metal via electrical circuit structure
Patent Priority Assignee Title
2902628,
3379938,
3541222,
3616532,
3680037,
4050756, Dec 22 1975 ITT Corporation Conductive elastomer connector and method of making same
4220383, Nov 14 1977 AMP Incorporated Surface to surface connector
4278311, Nov 14 1977 AMP Incorporated Surface to surface connector
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 10 1989UniStructure, Inc.(assignment on the face of the patent)
Apr 10 1989POMMER, RICHARD J UNISTRUCTURE, INC , A CA CORP ASSIGNMENT OF ASSIGNORS INTEREST 0050740295 pdf
Apr 10 1989CHIECHI, JOHNUNISTRUCTURE, INC , A CA CORP ASSIGNMENT OF ASSIGNORS INTEREST 0050740295 pdf
Date Maintenance Fee Events
May 01 1994EXP: Patent Expired for Failure to Pay Maintenance Fees.
Dec 02 1996M187: Surcharge, Petition to Accept Pymt After Exp, Unavoidable.
Dec 02 1996PMFP: Petition Related to Maintenance Fees Filed.
Feb 12 1997PMFD: Petition Related to Maintenance Fees Denied/Dismissed.
Jun 13 2018EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
May 01 19934 years fee payment window open
Nov 01 19936 months grace period start (w surcharge)
May 01 1994patent expiry (for year 4)
May 01 19962 years to revive unintentionally abandoned end. (for year 4)
May 01 19978 years fee payment window open
Nov 01 19976 months grace period start (w surcharge)
May 01 1998patent expiry (for year 8)
May 01 20002 years to revive unintentionally abandoned end. (for year 8)
May 01 200112 years fee payment window open
Nov 01 20016 months grace period start (w surcharge)
May 01 2002patent expiry (for year 12)
May 01 20042 years to revive unintentionally abandoned end. (for year 12)