The present invention provides an intrusion barrier for protecting against mechanical or chemical intrusion into an electronic assembly, especially one containing volatile memory. It includes a screen material surrounding the electronic assembly which screen material has formed thereon fine conductive lines in close proximity to each other. The lines are formed of conductive particles of material dispersed in a solidified matrix of a material which looses its mechanical integrity when removed from the screen. An electrical supply and signal detection circuit is provided which generates an output signal responsive to a given change in resistance of the conductive lines, such that if the resistance changes are a result of a mechanical or chemical attack, a signal is generated which can cause the erasure of the volatile memory. Also, preferably radiation detection and temperature sensing circuits are provided to cause erasure of the volatile memory responsive to detection of a given intensity of radiation or a temperature below a given value.
|
1. An electronic circuit comprising;
a circuit card; a plurality of electronic circuit components disposed on said circuit card; said components including an electronic assembly; a barrier for protecting against intrusions into said electronic assembly including; screen means surrounding said electronic assembly, said screen means including a unitary flexible membrane wrapped around said electronic assembly and line means formed on said membrane in a pattern that resists access without disturbing said line means, said line means being formed of discrete conductive particles of material disposed in a solidified matrix of material, the resistance of said line means changing when said line means are disturbed, encapsulating material encapsulating said line means and bonded to said line means said bond strength of line means to the membrane having a first predetermined strength and said bond strength of the encapsulating material to the line means having a second predetermined strength said second predetermined strength being greater than said first predetermined strength; and, electrical supply and signal detection means adapted to supply an input signal to said line means and generate an output signal responsive to a given change in said resistance of said line means; whereby said resistance of said line means changes, a signal will be generated.
2. The invention as defined in
3. The invention as defined in
4. The invention as defined in
5. The inventions defined in
6. The invention as defined in
7. The invention as defined in
8. The invention as defined in
9. The invention as defined in
10. The invention as defined in
12. The invention as defined in
13. The invention as defined in
14. The invention as defined in
15. The invention as defined in
16. The invention as defined in
17. The invention as defined in
18. The invention as defined in
19. The invention as defined in
20. The invention as defined in
21. The invention as defined in
|
1. Field of the Invention
This invention relates generally to detection of intrusion into electronic assemblies, and more particularly, to the detection of intrusion by mechanical or chemical means for the purpose of reading the data stored in a memory.
In many computer applications, it is desirable to protect the contents of the computer memory from being unlawfully or unauthorizedly extracted and read. It is conventional practice to prevent reading of information electronically by providing certain encryption schemes wherein data is transmitted and received in an encrypted form and only authorized people who have the decryption key are able to read the data. There are many different types of encryption schemes which are useful in protecting the sensitive data against being read by unauthorized persons. Encryption keys and other sensitive data are often stored in I/C (integrated circuit) memory components within the computer. By use of software, the stored information is generally adequately protected from unauthorized persons using keyboard entries to attempt memory interrogation. However, an unauthorized person with the necessary skills and knowledge, and sufficiently motivated can by-pass software controls and attack the computer hardware directly. There are many attacks some straight forward and well known, others more sophisticated, that allow direct interrogation of memory components and devices. One scheme of protection against such attacks is to provide some type of detecting means which detect any attempted mechanical intrusion into the sensitive area of the computer and, when such intrusion is detected an alarm is given and/or a signal is sent to circuitry, which circuit erases the data, thereby preventing the compromise of the information which was stored in the computer memory components. Various schemes have been proposed which provide for some type of electronic or electrical grid surrounding the computer circuitry and, when this electrical grid is broken or breached, the requisite signal is generated. Schemes for such electronic detection are shown in U.S. Pat. No. 4,446,475 and 3,594,770. These types of systems, however, have several drawbacks. One such drawback is that many grids are susceptible to very careful mechanical manipulation to allow the memory device to be accessed without breaking or otherwise compromising the circuit. Also, certain of these systems are susceptible to a type of attack wherein the materials which support the electrical grid are chemically attacked leaving access areas exposed to circumvent the electrical grid thus allowing physical intrusion into the memory components.
Still other more sophisticated attacks, through temperature modification or though ionizing radiation (e.g. x-rays) affect volatile memory devices such that an erasure command is not effective, thereby allowing the electrical wrapping to be circumvented.
The present invention overcomes these defects by providing an outer intrusion detection layer that is highly resistant to chemical and mechanical attacks. Further, internal circuitry is provided to detect temperature and ionizing radiation attacks.
Use of detection for low temperatures to prevent tampering is shown in U.S. Pat. No. 4,593,384. Also, temperature responsive devices for safeguarding information are shown in U.S. Pat. No. 3,851,602. The use of means to limit effects of ionizing radiation are shown in U.S. Pat. Nos. 4, 413,327 and 4,639,826. However, neither of these patents suggest any means of security protection and/or erasing of information responsive to very high levels of radiation applied for purpose of attacking a volatile memory device to obtain sensitive information.
According to one aspect of the present invention, an intrusion barrier for protecting against mechanical or chemical intrusion into an electronic assembly is provided. The barrier includes a screen material surrounding the electronic assembly. The screen material has formed thereon fine conductive lines in close proximity to each other in a pattern that limits the mechanical access which can be achieved without disturbing the resistive characteristics of at least one line or line segment. The lines are formed of conductive particles of material dispersed in a solidified matrix of material which loses its mechanical integrity when removed from the screen substrate. Electrical supply and signal detection means are provided which are adapted to supply a signal to the conductive lines and generate an output signal responsive to a given change in the resistance of the conductive lines whereby, when the resistance of the conductive lines changes, either as result of chemical attack or mechanical attack, a signal is generated. This signal can be made to cause the erasure of information in the memory component. In other aspects of the present invention, radiation detection means are provided which generate a signal when radiation is detected above a given intensity and which signal is utilized to cause the erasure of information contained in the memory component before the radiation has reached a level adequate over a reasonable period of time to prevent erasure. In still further aspects, the invention includes temperature sensing means which generates an electrical signal responsive to a temperature which is lower than a predetermined value and which signal is used to cause the erasure of information contained in the memory component, before the temperature of the memory component has reached a temperature low enough to cause a significant number of its storage locations to retain their information even after erasure is attempted.
FIG. 1 is a schematic view of a message encryption/decryption system;
FIG. 2 is a schematic view of the operation of the encryption/decryption system and means to detect and prevent unauthorized interrogation of the system;
FIG. 3 is an exploded perspective view of a circuit card with various devices and components mounted thereon which constitute the system to be protected, and, showing plastic preforms which mate with the card to provide the form-factor for wrapping the flexible screen membrane;
FIG. 4 is a perspective view, somewhat diagrammatic showing a flexible screen member used in this invention;
FIG. 5 is the system of FIG. 3 showing the flexible screen member partially wrapped thereon with screen leads attached to the circuit card;
FIG. 6 is a sectional view taken substantially along the plane of line 6--6 of FIG. 5;
FIG. 7 is a view similar to FIG. 5 in which the screen is wrapped onto the circuit card with parts broken away for clarity;
FIG. 8 is a view similar to FIG. 6 showing the assembly encapsulated in epoxy and contained in a steel container;
FIG. 9 is a sectional view taken substantially along the plane of line 9--9 of FIG. 8;
FIG. 10 is a circuit diagram of a circuit used for detecting mechanical or chemical intrusion through the screen member;
FIG. 11 is a circuit diagram of the circuit used for detecting and obtaining of data by use of high intensity radiation; and
FIG. 12 is a circuit diagram of the circuit used for detecting and preventing obtaining of information by low temperature excursions.
Referring now to the drawings and for the present to FIG. 1, a conceptual schematic drawing of a message encryption/decryption facility is shown in broken outline 10. The clear message which is to be encrypted is delivered to encryption means 12 which in turn encrypts the clear message via key store 14 to provide an encrypted message. The encryption keys in key store 14 as well as the encryption 12 must be protected from interrogation because if an unauthorized person were to have access to these keys and the encryption process, the clear messages could be derived from encrypted data and misused indiscriminately.
The conceptual block diagram in FIG. 2 shows the scheme of the present invention for detecting and preventing unauthorized interrogation of the stored encryption keys in key store 14. For the purpose of this invention, the encryption keys are retained in a volatile memory 16. The volatile memory 16 is powered by either a battery or system power determined by power switch 18. Power to the memory is controlled by power gate 20 and shorting transistor 21 via detection logic NAND gate 22 which in turn is actuated by sensor circuits designated S, T and X. (Of course, more sensor inputs could be used if desired.) Sensor circuit S, which will be described presently in detail, detects mechanical or chemical intrusion; sensor circuit T, which will be described presently in detail, detects temperature excursions; and sensor circuit X, which will be described presently in detail, detects exposure to radiation. As is well known in the art, the logic NAND gate 22 will normally be in the "low" or "off" condition if all inputs are "on" or "high"; however, if any input goes "low", then the NAND gate output 22 goes "high" providing a signal to other components attached to it. Such a signal from the NAND gate output will cause the power gate 20 to disconnect the memory 16 from power and cause shorting transistor 21 to short the power pin of the memory to ground thus erasing the memory quickly. Thus, if any one of the sensor inputs changes from "high" to "low", as a result of certain predetermined conditions indicating an attack the NAND gate 22 will turn "on" and the data from memory 16 will be quickly erased. Each of these particular detecting circuits will be described presently.
As shown in FIG. 3, a circuit card 24 is provided which contains thereon the various components for encryption, key storage in volatile memory 16, the battery and the protection circuitry for the volatile memory for the encryption/decryption facility 10. The components other than the volatile memory 16 are designated generally as 26, all being shown conceptually. These components also include a battery. The specific location, number and function are not critical to this invention.
Disposed over each side of the circuit card 24 are a pair of plastic preforms 27 and 28 which fit over the components and provide the proper control surface or form-factor for the wrapping of the screen member which will be described presently. If the circuit card 24 employs pins, then holes (unnumbered) or slots to receive such pins are provided in preform 28. Patterned Lead foil sheets 29 are placed on the plastic preforms 27 and 28 so as to provide a radiation shield on both side of the volatile memory storage components 16. The foil sheets 29 have cut out portions 30 to accommodate the positioning of a radiation sensor as will be described presently. The circuit card 24, the preforms 27 and 28 and the Lead sheets 29 are all stacked in superimposed relationship so as to receive a screen member 31 (FIGS. 3 through 6) wrapped therearound which will form the barrier against any unauthorized attempts at mechanical or chemical intrusion to the circuit card 24.
As seen in FIGS. 4 through 6, the screen member 31 is comprised of a tough flexible substrate such as film 32 of Mylar (a trade mark of E. I. DuPont Co. for polyethylene terepthalate) having a serpentine pattern of screened conductive lines 33 thereon. The lines 33 are comprised of conductive particles 34 such as particles of silver and carbon which are dispersed in an organic matrix material such as polyvinyl chloride. These lines 33 are screened onto the Mylar film by conventional screening processes and are sufficiently close together and of a size to provide a deterrent to mechanical probing of the circuit card. A preferred geometry comprises lines 0.25 mm wide and 0.013 mm thick and spaced on about 0.5 mm centers. A thin acrylic film 35 (FIG. 6 over the lines 33 provides environmental protection to the lines, from such things as moisture and atmospheric contaminants. Referring to FIG. 4, the lines 33 are screened onto the substrate 32 by conventional silk screening techniques in a serpentine pattern such that they form two legs or segments 36 and 37 of substantially equal resistance, one leg 36 terminating in an electrical contact 38 and the other leg 37 terminating in an electrical contact 39, both legs 36 and 37 having a common center electrical contact 40. Two legs 36 and 37 will act as two resistance legs in a bridge circuit, which will be described presently.
The screen is formed with a pair of side flaps 41 which serve to protect the edges of the circuit card as will be described presently.
The substrate 31 is also preferably provided with an adhesive backing 42, and as shown in FIG. 5, the screen member 31 is partially wrapped around the superimposed circuit card, plastic preforms and lead strips. The electrical contacts 38, 39 and 40 are connected to their respective terminals 43 on the circuit card 24 through openings 44 in the preform 27. These terminals 43 are mainly schematic or conceptual representations of the contact points on the card 24 to connect to the circuit shown in FIG. 10. The remaining portion of the screen membrane is then wrapped around completely to cover the screen contacts and the side flaps 41 are folded over the preform sides as shown in FIG. 7. This configuration provides a card with components thereon which is essentially completely enclosed with a screen that has conductive line formed thereon with the adhesive 42 providing a bond to the preforms 27 and 28. The assembly shown in FIG. 7 is then placed in a steel container 45 and completely encapsulated with a thin layer of epoxy 46 which becomes very hard and brittle upon curing as shown in FIGS. 8 and 9. The container 45 provides a degree of EMI shielding for the circuit card 24 components. The epoxy 46 is chosen such that it is harder and more brittle, and more rugged and durable than the materials making up the screen number. Attempts to mechanically remove the epoxy 46 will result in a variety of fracture modes which will in turn cause lines 33 to break or rupture when the epoxy fractures. The bonding of the epoxy 46 to the screen is of a type such that it is extremely difficult to separate the epoxy mechanically from the screen without disrupting the underlying lines 33. Further, the strength of the bond of the epoxy 46 to the lines 33 is stronger than the strength of the bond of the lines 33 to the substrate 32 and thus will thwart any attempted mechanical intrusion through the epoxy 46 and screen 31 to get to the volatile memory components 25. The epoxy material 46 is chosen such that the epoxy and the materials making up the screen number 31 are both subject to attack by similar solvents or reagents, and thus attempts to dissolve the epoxy 46 are highly likely to result in chemical attack of the lines 33 by the solvent which will cause changes in resistance which may even become either shorts, or opens in the lines 33.
The contacts 38, 39 and 40 are attached to a circuit for the Sensor S through terminals 44 on the card 24 as shown in the circuit diagram of FIG. 10. The circuit includes resistor 54, 55 and 56 connected in series, and a pair of operational amplifiers 57 and 58. The negative input of operational amplifier 57 and positive input of operational amplifier 58 are connected to the center contact 40 of the lines 33. Contact 38 of line 33 is connected to system power or battery via power switch 18 and contact 39 of line 33 is connected to ground. The resistors 54, 55, and 56 are connected in series between system power or battery and ground. Resistors 54 and 56 are chosen to be of equal value. The value chosen for resistor 55 in relationship to the value of resistors 54 and 56 provides upper and lower bounds on the resistance differences between the legs 36 and 37 of the screen. The positive input of operational amplifier 57 is connected between resistors 54 and 55 and the negative input of amplifier 58 is connected between resistors 55 and 56. In this configuration, when the resistance of legs 36 and 37 of lines 32 are equal, both amplifiers 57 and 58 will be turned on. However, if the resistance of either leg 36 or 37 is substantially increased or decreased beyond the bounds set by resistor 55, the bias of the operation amplifiers 57 and 58 will change such that one or the other will turn "off" thus changing the input to NAND gate 22 from "high" to "low". As explained previously, this will cause the output of NAND gate 22 to go from "low" to "high", supplying the necessary signal to turn "off" power gate 20 and turn "on" shorting transistor 21 which will quickly erase the information stored in volatile memory 16. The change in resistance of legs 36 or 37 can be due either to breaks or shorts in either of the legs caused by an attempted intrusion, or by a slow change in resistance of the legs 36 or 37 caused by a chemical attack or by other means. Thus, the circuit shown in FIG. 10 will respond to attempted mechanical or chemical intrusions by sending a signal to the NAND gate 22 which in turn will send a signal to cause the erasure of information before the intrusion is complete and the volatile memory can be read.
As indicated previously, there are various special attacks whereby screen barriers can be thwarted, compromised, or by-passed without losing data or memory, if extra precautions are not taken. Two such attacks involve controlled exposure to ionizing radiation and, exposure to low temperatures. The circuitry shown in FIG. 11, detects both visible and ionizing radiation and causes the memory 16 to be erased before ionizing radiation is able to permanently affect the volatile memory. The circuit in FIG. 12 detects temperature excursions below a predetermined value and causes the memory to be erased before a critical low temperature affects the volatile memory.
The circuit for Sensor X, which is responsive to both visible and ionizing radiation is shown in FIG. 11. This circuit includes an operational amplifier 62 having one side connected to diode 63 in series with a resistor 64, the combination of which provides a reference voltage to the positive input of the operational amplifier 62. The negative input of the operational amplifier 62 is connected between a photosensitive device 65, such as a Photo-Darlington pair or a phototransistor, and resistor 66 to system power or battery via power switch 18 and through resistors 67 to ground. Capacitors 68 and 69 and resistors 66 and 70 have been provided for noise filtering. The photosensitive device is located on the card 24 so that it is not blocked by the lead foil sheets 29, preferably adjacent to the volatile memory chip 16 under the notch 30 of the lead foil sheet such that attempted radiation of this component 16 will also expose the photosensitive device 65 to radiation. In normal operation, the photosensitive device 65 is nonconducting in the absence of radiation and the operational amplifier 62 is biased "on". However, when the photosensitive device senses radiation (either ionizing or in the visible spectrum) of sufficient intensity, it will conduct current which will change the bias on the operational amplifier 62 turning it "off". This will cause the NAND gate 22 to turn "on" and provide a signal to power gate 20 and shorting transistor 21 to cause information stored in volatile memory 16 to be erased as previously described.
The circuitry of Sensor T is shown in FIG. 12. In this circuit three resistors 72, 74 and 76, together with resistor 70, provide the four legs of a bridge circuit, which circuit is connected to operational amplifier 78. Resistor 70 is a thermistor having a negative temperature coefficient of resistance, i.e. its resistance increases with decreasing temperature. The value of the three resistors 72, 74 and 76 are chosen to bias operational amplifier 78 normally "on" within the operating temperature range, and to bias the amplifier "off" at a chosen temperature. The value of resistor 76 is chosen based on the temperature characteristics of thermistor 70. Thus in normal operation the operational amplifier 78 is normally biased "on", but when the temperature falls below a selected low value, e.g. 0°C or -20°C or some other value related to the temperature dependent retention characteristics of volatile memory 16, the operational amplifier 78 will turn "off" which as described above, will cause the NAND gate to give a signal which will cause erasure quickly of the information stored in volatile memory 18.
While one embodiment of this invention has been shown and described various adaptations and modifications may be made without departing from the scope of the invention as defined in the appended claims. For example, the NAND gate can be replaced with other logic circuits performing a logical "or" function to cause erasure of the memory if any one of a number of events are sensed indicating that an intrusion is being attempted. Additional sensors could be used to detect other evidence of intrusion.
Double, Glen P., Weingart, Steve H.
Patent | Priority | Assignee | Title |
10007811, | Feb 25 2015 | PRIVATE MACHINES INC | Anti-tamper system |
10098235, | Sep 25 2015 | International Business Machines Corporation | Tamper-respondent assemblies with region(s) of increased susceptibility to damage |
10115275, | Feb 25 2016 | International Business Machines Corporation | Multi-layer stack with embedded tamper-detect protection |
10136519, | Oct 19 2015 | International Business Machines Corporation | Circuit layouts of tamper-respondent sensors |
10143090, | Oct 19 2015 | International Business Machines Corporation | Circuit layouts of tamper-respondent sensors |
10168185, | Sep 25 2015 | International Business Machines Corporation | Circuit boards and electronic packages with embedded tamper-respondent sensor |
10169624, | Apr 27 2016 | International Business Machines Corporation | Tamper-proof electronic packages with two-phase dielectric fluid |
10169967, | Feb 25 2016 | International Business Machines Corporation | Multi-layer stack with embedded tamper-detect protection |
10169968, | Feb 25 2016 | International Business Machines Corporation | Multi-layer stack with embedded tamper-detect protection |
10172232, | Dec 18 2015 | International Business Machines Corporation | Tamper-respondent assemblies with enclosure-to-board protection |
10172239, | Sep 25 2015 | DOORDASH, INC | Tamper-respondent sensors with formed flexible layer(s) |
10175064, | Sep 25 2015 | International Business Machines Corporation | Circuit boards and electronic packages with embedded tamper-respondent sensor |
10177102, | May 13 2016 | International Business Machines Corporation | Tamper-proof electronic packages with stressed glass component substrate(s) |
10178818, | Sep 25 2015 | International Business Machines Corporation | Enclosure with inner tamper-respondent sensor(s) and physical security element(s) |
10217336, | Feb 25 2016 | International Business Machines Corporation | Multi-layer stack with embedded tamper-detect protection |
10237964, | Mar 04 2015 | ELPIS TECHNOLOGIES INC | Manufacturing electronic package with heat transfer element(s) |
10242543, | Jun 28 2016 | International Business Machines Corporation | Tamper-respondent assembly with nonlinearity monitoring |
10251288, | Dec 01 2015 | International Business Machines Corporation | Tamper-respondent assembly with vent structure |
10257924, | May 13 2016 | International Business Machines Corporation | Tamper-proof electronic packages formed with stressed glass |
10257939, | Sep 25 2015 | DOORDASH, INC | Method of fabricating tamper-respondent sensor |
10264665, | Sep 25 2015 | International Business Machines Corporation | Tamper-respondent assemblies with bond protection |
10271424, | Sep 26 2016 | International Business Machines Corporation | Tamper-respondent assemblies with in situ vent structure(s) |
10271434, | Sep 25 2015 | International Business Machines Corporation | Method of fabricating a tamper-respondent assembly with region(s) of increased susceptibility to damage |
10299372, | Sep 26 2016 | International Business Machines Corporation | Vented tamper-respondent assemblies |
10306753, | Feb 22 2018 | International Business Machines Corporation | Enclosure-to-board interface with tamper-detect circuit(s) |
10321589, | Sep 19 2016 | International Business Machines Corporation | Tamper-respondent assembly with sensor connection adapter |
10327329, | Feb 13 2017 | International Business Machines Corporation | Tamper-respondent assembly with flexible tamper-detect sensor(s) overlying in-situ-formed tamper-detect sensor |
10327343, | Dec 09 2015 | International Business Machines Corporation | Applying pressure to adhesive using CTE mismatch between components |
10331915, | Sep 25 2015 | DOORDASH, INC | Overlapping, discrete tamper-respondent sensors |
10334722, | Sep 25 2015 | International Business Machines Corporation | Tamper-respondent assemblies |
10378924, | Sep 25 2015 | International Business Machines Corporation | Circuit boards and electronic packages with embedded tamper-respondent sensor |
10378925, | Sep 25 2015 | International Business Machines Corporation | Circuit boards and electronic packages with embedded tamper-respondent sensor |
10395067, | Sep 25 2015 | DOORDASH, INC | Method of fabricating a tamper-respondent sensor assembly |
10426037, | Jul 15 2015 | International Business Machines Corporation | Circuitized structure with 3-dimensional configuration |
10524362, | Jul 15 2015 | International Business Machines Corporation | Circuitized structure with 3-dimensional configuration |
10531561, | Feb 22 2018 | International Business Machines Corporation | Enclosure-to-board interface with tamper-detect circuit(s) |
10535618, | May 13 2016 | International Business Machines Corporation | Tamper-proof electronic packages with stressed glass component substrate(s) |
10535619, | May 13 2016 | International Business Machines Corporation | Tamper-proof electronic packages with stressed glass component substrate(s) |
10572696, | Feb 25 2015 | Private Machines Inc. | Anti-tamper system |
10624202, | Sep 25 2015 | International Business Machines Corporation | Tamper-respondent assemblies with bond protection |
10667389, | Sep 26 2016 | International Business Machines Corporation | Vented tamper-respondent assemblies |
10678958, | Dec 28 2015 | Intelligent Technologies International, Inc.; Intelligent Technologies International, Inc | Intrusion-protected memory component |
10685146, | Sep 25 2015 | DOORDASH, INC | Overlapping, discrete tamper-respondent sensors |
11083082, | Feb 22 2018 | International Business Machines Corporation | Enclosure-to-board interface with tamper-detect circuit(s) |
11122682, | Apr 04 2018 | International Business Machines Corporation | Tamper-respondent sensors with liquid crystal polymer layers |
11709972, | Feb 21 2020 | TE Connectivity Solutions GmbH | Substrate for a tamper sensor |
5159629, | Sep 12 1989 | INTERNATIONAL BUSINESS MACHINES CORPORAION A CORPORATION OF NY | Data protection by detection of intrusion into electronic assemblies |
5301231, | Feb 12 1992 | International Business Machines Corporation | User defined function facility |
5343524, | Jun 21 1991 | Intelligent security device | |
5481610, | Feb 28 1994 | Ericsson Inc. | Digital radio transceiver with encrypted key storage |
5515540, | Aug 27 1990 | Maxim Integrated Products, Inc | Microprocessor with single pin for memory wipe |
5533123, | Jun 28 1994 | National Semiconductor Corporation | Programmable distributed personal security |
5796335, | Jan 11 1996 | International Business Machines Corporation | Security foil with shielding from electromagnetic radiation |
5956408, | Sep 15 1994 | International Business Machines Corporation | Apparatus and method for secure distribution of data |
5998858, | Jul 19 1996 | Maxim Integrated Products, Inc | Microcircuit with memory that is protected by both hardware and software |
6175924, | Jun 20 1997 | International Business Machines Corp.; International Business Machines Corporation | Method and apparatus for protecting application data in secure storage areas |
6233339, | Oct 25 1996 | FUJI XEROX CO , LTD | Physical property based cryptographics |
6268567, | Jan 25 2000 | International Business Machines Corporation | Dual purpose ribbon cable |
6351220, | Jun 15 1999 | Francotyp-Postalia AG & Co | Security module for monitoring security in an electronic system and method |
6362724, | Jun 15 1999 | FRANCOTYP-POSTALLA AG & CO | Security module and method for securing computerized postal registers against manipulation |
6433283, | Jan 25 2000 | International Business Machines Corporation | Dual purpose ribbon cable |
6438825, | Mar 28 1995 | Intel Corporation | Method to prevent intrusions into electronic circuitry |
6477650, | Oct 28 1997 | Nec Corp. | Data protecting system and method for protecting data |
6512376, | Dec 11 2000 | Francotyp-Postalia AG & Co. KG | Method for determining a requirement to replace a component part and arrangement for the implementation of the method |
6686539, | Jan 03 2001 | International Business Machines Corporation | Tamper-responding encapsulated enclosure having flexible protective mesh structure |
6782479, | Apr 26 1991 | Raytheon Company | Apparatus and method for inhibiting analysis of a secure circuit |
6929900, | Jan 03 2001 | International Business Machines Corporation | Tamper-responding encapsulated enclosure having flexible protective mesh structure |
6938021, | Nov 06 1997 | Intertrust Technologies Corporation | Methods for matching, selecting, narrowcasting, and/or classifying based on rights management and/or other information |
6948070, | Feb 13 1995 | Intertrust Technologies Corporation | Systems and methods for secure transaction management and electronic rights protection |
6957345, | May 11 2000 | GLOBALFOUNDRIES Inc | Tamper resistant card enclosure with improved intrusion detection circuit |
6982642, | Nov 20 2000 | International Business Machines Corporation | Security cloth design and assembly |
6993654, | Jun 29 2000 | Fujitsu Limited | Secure encryption processor with tamper protection |
7020019, | May 21 2004 | Western Digital Technologies, INC | System and method for destructive purge of memory device |
7062500, | Feb 25 1997 | Intertrust Technologies Corp. | Techniques for defining, using and manipulating rights management data structures |
7069451, | Feb 13 1995 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
7076652, | Feb 13 1995 | Intertrust Technologies Corporation | Systems and methods for secure transaction management and electronic rights protection |
7092914, | Nov 06 1997 | Intertrust Technologies Corporation | Methods for matching, selecting, narrowcasting, and/or classifying based on rights management and/or other information |
7095854, | Feb 13 1995 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
7100199, | Feb 13 1995 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
7110983, | Nov 06 1997 | Intertrust Technologies Corporation | Methods for matching, selecting, narrowcasting, and/or classifying based on rights management and/or other information |
7120800, | Feb 13 1995 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
7120802, | Aug 12 1996 | Intertrust Technologies Corp. | Systems and methods for using cryptography to protect secure computing environments |
7124302, | Feb 13 1995 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
7133845, | Feb 13 1995 | INTERTRUST TECHNOLOGIES CORP | System and methods for secure transaction management and electronic rights protection |
7133846, | Feb 13 1995 | Intertrust Technologies Corp. | Digital certificate support system, methods and techniques for secure electronic commerce transaction and rights management |
7143066, | Nov 06 1997 | Intertrust Technologies Corp. | Systems and methods for matching, selecting, narrowcasting, and/or classifying based on rights management and/or other information |
7143290, | Feb 13 1995 | Intertrust Technologies Corporation | Trusted and secure techniques, systems and methods for item delivery and execution |
7146509, | Dec 28 2000 | STMICROELECTRONICS S A | Method and device for protecting integrated circuits against piracy |
7165174, | Feb 13 1995 | Intertrust Technologies Corp. | Trusted infrastructure support systems, methods and techniques for secure electronic commerce transaction and rights management |
7180777, | May 21 2004 | Western Digital Technologies, INC | System and method for destructive purge of memory device |
7256692, | Dec 23 2004 | Lockheed Martin Corporation | Anti-tamper apparatus |
7281133, | Feb 13 1995 | Intertrust Technologies Corp. | Trusted and secure techniques, systems and methods for item delivery and execution |
7392395, | Feb 13 1995 | Intertrust Technologies Corp. | Trusted and secure techniques, systems and methods for item delivery and execution |
7415617, | Feb 13 1995 | Intertrust Technologies Corp. | Trusted infrastructure support systems, methods and techniques for secure electronic commerce, electronic transactions, commerce process control and automation, distributed computing, and rights management |
7424609, | Jul 11 2003 | CA, INC | Method and system for protecting against computer viruses |
7430136, | Nov 30 2004 | Western Digital Technologies, INC | Purge operations for solid-state storage devices |
7430670, | Jul 29 1999 | INTERTRUST TECHNOLOGIES CORP | Software self-defense systems and methods |
7475474, | Jan 23 2004 | Pitney Bowes Inc. | Method of making tamper detection circuit for an electronic device |
7489013, | Oct 17 2005 | TELEDYNE BROWN ENGINEERING, INC | Destructor integrated circuit chip, interposer electronic device and methods |
7502256, | Nov 30 2004 | Western Digital Technologies, INC | Systems and methods for reducing unauthorized data recovery from solid-state storage devices |
7640658, | Oct 18 2005 | TELEDYNE BROWN ENGINEERING, INC | Methods for forming an anti-tamper pattern |
7645951, | Dec 22 2004 | Frama AG | Device for protecting data stored in a switching arrangement that consists of electronic components and a processor |
7679921, | Nov 20 2000 | International Business Machines Corporation | Security cloth design and assembly |
7705439, | Jan 25 2005 | TELEDYNE BROWN ENGINEERING, INC | Destructor integrated circuit chip, interposer electronic device and methods |
7844835, | Feb 13 1995 | Intertrust Technologies Corporation | Systems and methods for secure transaction management and electronic rights protection |
7898855, | Nov 30 2004 | Western Digital Technologies, INC | Systems and methods for reducing unauthorized data recovery from solid-state storage devices |
7901977, | Jan 27 2000 | INTERNATIONAL BUSINESS MACHINES CORP | Data protection by detection of intrusion into electronic assemblies |
7917749, | Feb 13 1995 | Intertrust Technologies Corporation | Systems and methods for secure transaction management and electronic rights protection |
7925898, | Aug 12 1996 | Intertrust Technologies Corp. | Systems and methods using cryptography to protect secure computing environments |
7936603, | Nov 30 2004 | Western Digital Technologies, INC | Purge operations for solid-state storage devices |
7947911, | Oct 18 2005 | TELEDYNE BROWN ENGINEERING, INC | Anti-tamper mesh |
7988054, | Mar 04 2004 | VERIFONE ISRAEL LTD | Secure card reader |
8185473, | Feb 13 1995 | Intertrust Technologies Corporation | Trusted infrastructure support systems, methods and techniques for secure electronic commerce, electronic transactions, commerce process control and automation, distributed computing, and rights management |
8201267, | Oct 24 2008 | Pitney Bowes Inc. | Cryptographic device having active clearing of memory regardless of state of external power |
8240038, | Oct 18 2005 | TELEDYNE BROWN ENGINEERING, INC | Method for forming an anti-tamper mesh |
8307212, | Aug 12 1996 | Intertrust Technologies Corp. | Steganographic techniques for securely delivering electronic digital rights management control information over insecure communication channels |
8399781, | Oct 18 2005 | TELEDYNE BROWN ENGINEERING, INC | Anti-tamper mesh |
8533851, | Aug 30 1996 | Intertrust Technologies Corporation | Systems and methods for secure transaction management and electronic rights protection |
8543842, | Feb 13 1995 | Intertrust Technologies Corporation | System and methods for secure transaction management and electronics rights protection |
8613111, | Apr 28 2011 | International Business Machines Corporation | Configurable integrated tamper detection circuitry |
8650639, | Sep 29 2010 | Malikie Innovations Limited | System and method for hindering a cold boot attack |
8751793, | Feb 13 1995 | Intertrust Technologies Corp. | Trusted infrastructure support systems, methods and techniques for secure electronic commerce transaction and rights management |
8836509, | Apr 09 2009 | WINDCAVE LIMITED | Security device |
9088593, | Jul 11 2003 | CA, INC | Method and system for protecting against computer viruses |
9313027, | Dec 29 2005 | Proton World International N.V. | Protection of a calculation performed by an integrated circuit |
9554477, | Dec 18 2015 | International Business Machines Corporation | Tamper-respondent assemblies with enclosure-to-board protection |
9555606, | Dec 09 2015 | International Business Machines Corporation | Applying pressure to adhesive using CTE mismatch between components |
9560737, | Mar 04 2015 | ELPIS TECHNOLOGIES INC | Electronic package with heat transfer element(s) |
9578764, | Sep 25 2015 | International Business Machines Corporation | Enclosure with inner tamper-respondent sensor(s) and physical security element(s) |
9591776, | Sep 25 2015 | International Business Machines Corporation | Enclosure with inner tamper-respondent sensor(s) |
9661747, | Dec 18 2015 | International Business Machines Corporation | Tamper-respondent assemblies with enclosure-to-board protection |
9717154, | Sep 25 2015 | International Business Machines Corporation | Enclosure with inner tamper-respondent sensor(s) |
9740888, | Feb 07 2014 | Seagate Technology LLC | Tamper evident detection |
9858776, | Jun 28 2016 | International Business Machines Corporation | Tamper-respondent assembly with nonlinearity monitoring |
9877383, | Dec 18 2015 | International Business Machines Corporation | Tamper-respondent assemblies with enclosure-to-board protection |
9881880, | May 13 2016 | International Business Machines Corporation | Tamper-proof electronic packages with stressed glass component substrate(s) |
9894749, | Sep 25 2015 | International Business Machines Corporation | Tamper-respondent assemblies with bond protection |
9904811, | Apr 27 2016 | International Business Machines Corporation | Tamper-proof electronic packages with two-phase dielectric fluid |
9911012, | Sep 25 2015 | DOORDASH, INC | Overlapping, discrete tamper-respondent sensors |
9913362, | Sep 25 2015 | International Business Machines Corporation | Tamper-respondent assemblies with bond protection |
9913370, | May 13 2016 | EPIC APPLIED TECHNOLOGIES, LLC | Tamper-proof electronic packages formed with stressed glass |
9913389, | Dec 01 2015 | International Business Machines Corporation | Tamper-respondent assembly with vent structure |
9913416, | Sep 25 2015 | International Business Machines Corporation | Enclosure with inner tamper-respondent sensor(s) and physical security element(s) |
9916744, | Feb 25 2016 | International Business Machines Corporation | Multi-layer stack with embedded tamper-detect protection |
9924591, | Sep 25 2015 | International Business Machines Corporation | Tamper-respondent assemblies |
9936573, | Sep 25 2015 | International Business Machines Corporation | Tamper-respondent assemblies |
9978231, | Oct 21 2015 | International Business Machines Corporation | Tamper-respondent assembly with protective wrap(s) over tamper-respondent sensor(s) |
9999124, | Nov 02 2016 | International Business Machines Corporation | Tamper-respondent assemblies with trace regions of increased susceptibility to breaking |
Patent | Priority | Assignee | Title |
3594770, | |||
3851602, | |||
4413327, | Jun 09 1970 | The United States of America as represented by the Secretary of the Navy | Radiation circumvention technique |
4446475, | Jul 10 1981 | MOTOROLA, INC , A CORP OF DE | Means and method for disabling access to a memory |
4593384, | Dec 21 1984 | NCR Corporation | Security device for the secure storage of sensitive data |
4639826, | Jun 03 1983 | Compagnie d'Informatique Militaire, Spatiale et Aeronautique | Radiation-hardened casing for an electronic component |
4691350, | Oct 30 1985 | NCR Corporation | Security device for stored sensitive data |
4807284, | Sep 24 1986 | NCR Corporation | Security device for sensitive data |
4811288, | Sep 25 1985 | NCR Corporation | Data security device for protecting stored data |
4860351, | Nov 05 1986 | IBM Corporation | Tamper-resistant packaging for protection of information stored in electronic circuitry |
4882752, | Jun 25 1986 | Computer security system |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 31 1989 | DOUBLE, GLEN P | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST | 005135 | /0479 | |
Aug 31 1989 | WEINGART, STEVE H | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST | 005135 | /0479 | |
Sep 12 1989 | International Business Machines Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 25 1994 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 04 1998 | M184: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 08 2003 | REM: Maintenance Fee Reminder Mailed. |
Jun 25 2003 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Jul 23 2003 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 25 1994 | 4 years fee payment window open |
Dec 25 1994 | 6 months grace period start (w surcharge) |
Jun 25 1995 | patent expiry (for year 4) |
Jun 25 1997 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 25 1998 | 8 years fee payment window open |
Dec 25 1998 | 6 months grace period start (w surcharge) |
Jun 25 1999 | patent expiry (for year 8) |
Jun 25 2001 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 25 2002 | 12 years fee payment window open |
Dec 25 2002 | 6 months grace period start (w surcharge) |
Jun 25 2003 | patent expiry (for year 12) |
Jun 25 2005 | 2 years to revive unintentionally abandoned end. (for year 12) |