A rearview mirror system for a vehicle includes a plane mirror pivotably mounted to a vehicle having a directional signal means. A solenoid is operatively connected to the plane mirror for automatically changing the position of the plane mirror in response to a signal from the directional signal means in order to render the blind spot viewable to a driver. A reference position corresponding to a properly focused mirror is established by visually aligning an indicium on the mirror with an indicium on the vehicle.

Patent
   5097362
Priority
Jul 19 1989
Filed
Aug 20 1990
Issued
Mar 17 1992
Expiry
Jul 19 2009
Assg.orig
Entity
Small
308
20
EXPIRED
9. A rearview mirror system for a vehicle comprising
a plane mirror pivotally mounted on the vehicle;
a directional signal-indicating device comprising a multi-position switch having first, second and third output terminals for selectively generating a left turn signal on the first output terminal, a right turn signal on the second output terminal, and a lane change signal on the third output terminal; and
an actuator engageable with the mirror and electrically connected to the third output terminal and responsive to the lane change signal to pivot the mirror.
5. A rearview mirror system for a vehicle comprising:
a plane mirror pivotably mounted on the vehicle;
a directional signal-indicating device comprising a multi-position switch having first, second, third, and fourth output terminals for selectively generating a left turn signal on the first output terminal, a right turn signal on the second output terminal, a left lane change signal on the third output terminal, and a right lane change signal on the fourth output terminal; and
an actuator engageable with the mirror and electrically connected to one of the third and fourth output terminals and responsive to a lane change signal on one of the third and fourth output terminals to pivot the plane mirror.
1. In a rearview mirror system for a vehicle, said system including a housing mounted to the vehicle, a plane mirror, and means for mounting the plane mirror in the housing, the improvement comprising:
a switch which is adapted to generate a first signal to indicate a left turn of the vehicle, a second signal to indicate a right turn of the vehicle, a third signal to indicate a left lane change of the vehicle, and a fourth signal to indicate a right lane change of the vehicle; and
an actuator adapted to receive a signal from the switch and operatively connected to the plane mirror mounting means for automatically changing the position of the plane mirror with respect to the vehicle only when said actuator receives one of the third signal and fourth signal.
10. A rearview mirror system for a vehicle having a switch which is operable to generate a first signal to indicate a left turn of the vehicle, a second signal to indicate a right turn of the vehicle, a third signal to indicate a left lane change of the vehicle, and a fourth signal to indicate a right lane change of the vehicle, said system comprising:
a housing adapted to be attached to the outside of the vehicle;
a bracket pivotably mounted to the housing for rotation relative thereto between a normal position and an indexed position about an axis extending at a predetermined angle from the vertical direction;
a plane mirror pivotably mounted to the bracket; and
a solenoid mounted to the housing and having a shaft which is adapted to engage the bracket and move the bracket toward the indexed position when the solenoid is energized, said solenoid being adapted to be energized only in response to one of the third signal and fourth signal.
2. A rearview mirror system according to claim 1 wherein the plane mirror mounting means comprises a bracket pivotally connected to said housing, the plane mirror is pivotally mounted to the bracket, and the actuator is mounted to said housing and engageable with the bracket so that said bracket pivots when said actuator is actuated.
3. A rearview mirror system according to claim 2 wherein the actuator includes a solenoid having a push rod engageable with the bracket for causing the bracket to pivot between a normal position and an indexed position, said bracket remaining in the indexed position for as long as the one of the third and fourth signal is received.
4. A rearview mirror system according to claim 1 and further comprising a delay timer connected between the switch and the actuator to transmit the one of the third signal and fourth signal from the switch to the actuator only when the one of the third signal and fourth signal has a duration greater than a predetermined period of time, whereby a temporary activation of the switch for a period of time less than the predetermined period will not result in changing the position of the plane mirror.
6. The mirror system in accordance with claim 5 and further comprising a delay timer connected between the actuator and the one of the third and fourth output terminals and responsive to the lane change signal to transmit an output signal to the actuator only when the lane change signal has a duration greater than a predetermined period of time, whereby a temporary activation of the lane change signal for a period of time less than the predetermined period does not result in a pivoting of the mirror.
7. The system in accordance with claim 6 wherein the switch comprises a neutral position and the first and second terminals are positioned on opposite sides of the neutral position and the third and fourth terminals are positioned between the neutral position nd the first and second terminals, respectively.
8. The system in accordance with claim 5 wherein the mirror is pivotable between a normal position and an indexed position about an axis extending in a predetermined angle from the vertical direction whereby movement of the mirror between the normal position and an arbitrarily selected index position is facilitated.

This application is a continuation of U.S. application Ser. No. 07,382,551, filed July 19, 1989, now U.S. Pat. No. 4,971,430, issued Nov. 20, 1990.

1. Field of the Invention

The present invention relates to rearview mirrors for vehicles, and more particularly to a system for improved focusing of a rearview mirror including repositioning a rearview mirror automatically in response to a vehicle directional signal.

2. Description of the Prior Art

Rearview mirrors are commonly used on vehicles to expand the driver's field of vision. The driver can better observe traffic conditions behind the vehicle with a consequent improvement in traffic safety. A conventional rearview mirror system of the type used on passenger cars is shown in FIG. 1 as used in a typical modern three-lane highway. The three lanes are identified with the numerals 1, 2, and 3. Each lane is defined by highway markers 5, 7, where solid lines 5 typically denote the path of travel in a single direction as shown by the arrow, and the spaced lines 7 separate the individual lanes within a given direction of travel. Six vehicles A, B, C, D, E, and F are shown in various positions in the respective lanes. A conventional rearview mirror system installed on vehicle A includes a mirror 10 on the left side of the vehicle, a mirror 12 on the right side of the vehicle, and a mirror 13 and mounted and generally centered within a front portion of the passenger compartment. The mirrors 10, 12 are typically focused to provide a view of objects in the traffic lanes immediately to the left and right, 1 and 3, respectively, and to the rear of vehicle A. Thus a field of view subtended by angle α may be seen in the left-hand mirror 10 from a typical driver's position within vehicle A, and a rear field of view subtended by angle β may be seen in right-hand mirror 12. The mirror 13 is typically focused to provide a view of objects immediately behind the vehicle, with a field of view subtended by angle Γ. Thus, a driver sitting in vehicle A can readily observe the presence and movements of vehicles D, E, and F without shifting the eyes too far out of the line of travel of vehicle A.

However, vehicles B and C are typically not within the driver's field of vision in any of the rearview mirrors 10, 12 or 13. Being slightly behind vehicle A in the direction of travel, vehicles B and C are similarly outside the peripheral vision of the driver in vehicle A. Thus, vehicles B and C are located in positions customarily referred to as the "blind spot", and cannot be seen by a driver in vehicle A unless the driver were to direct the line of vision away from the direction of travel to look either to the left or to the right. Thus, if a driver in vehicle A seeks to move vehicle A to either lanes 1 or 3, the driver must remove his eyes from the road and look to the right or left before changing direction.

To overcome the problem of the "blind spot", it is known to use a variety of convex mirrors either in place of or in addition to rearview mirrors 10, 12. Such mirrors are available with various radii of curvature ranging from about 8 inches to 24 inches which optically expand the field of vision subtended by angles α and β. However, the images projected by convex mirrors are badly distorted, which make it difficult to identify objects and accurately determine the approximate distance to an object being observed.

Further, drivers frequently do not adjust the mirrors 10, 12, and 13 to obtain the proper focus and thus maintain the optimum field of vision for safety. It is desirable therefore to provide a means whereby a driver can quickly and properly focus a rearview mirror to an optimum position.

It is further desirable to provide a means whereby a driver, upon signaling a change in lane of the vehicle, can readily check the blind spot without distortion and without shifting the field of vision too far out of the line of travel of the vehicle in order to ensure a safe change of lane.

The invention provides an improvement in a rearview mirror system for a vehicle. The rearview mirror system typically comprises a housing mounted to the vehicle, a plane mirror, and means for mounting the plane mirror in the housing. The improvement comprises a switch which is adapted to generate a first signal to indicate a left turn of the vehicle, a second signal to indicate a right turn of the vehicle, a third signal to indicate a left lane change of the vehicle, and a fourth signal to indicate a right lane change of the vehicle, The improvement further comprises an actuator which is adapted to receive a signal from the switch. The actuator is operatively connected to the plane mirror mounting means to automatically change the position of the plane mirror with respect to the vehicle only when the actuator receives either the third signal or the fourth signal. In other words, the position of the plane mirror is automatically moved only when the switch indicates a left lane change or a right lane change of the vehicle.

Typically, the plane mirror mounting means comprises a bracket pivotally connected to the housing. The plane mirror is pivotally mounted to the bracket, and the actuator is mounted to the housing and engageable with the bracket so that the bracket pivots when the actuator is actuated.

The actuator preferably includes a solenoid having a push rod which is engageable with the bracket. The push rod causes the bracket to pivot between a normal position and an indexed position. The bracket remains in the indexed position as long as the third or fourth signal is received from the switch.

In another aspect of the invention, the rearview mirror system further comprises a delay timer which is connected between the switch and the actuator. The delay timer transmits the third or fourth signals from the switch to the actuator only when the signals have a duration greater than a predetermined period of time. In other words, a temporary activation of the switch for a period of time less than the predetermined period will not result in changing the position of the plane mirror.

In yet another aspect of the invention, the rearview mirror system for a vehicle comprises a plane mirror which is pivotally mounted on the vehicle. A directional signal-indicating device comprises a multi-position switch having first, second, and third output terminals for selectively generating a left turn signal on the first output terminal, a right turn signal on the second output terminal, and a lane change signal on the third output terminal. An actuator is engageable with the mirror and electrically connected to the third output terminal and responsive to the lane change signal in order to pivot the mirror.

The invention will now be described with reference to the following drawings in which:

FIG. 1 schematically illustrates the field of vision provided by a conventional rearview mirror system;

FIG. 2 is a perspective view of a rearview mirror for a vehicle in accordance with the invention;

FIG. 3 is a plan view of the rearview mirror of FIG. 2 with a portion of the housing broken away;

FIG. 4 is a plan view similar to the view of FIG. 3, but with the solenoid actuated and with the bracket in an extended position;

FIG. 5 is a front elevational view of the rearview mirror of FIG. 2;

FIG. 6 is a schematic diagram illustrating the electrical circuitry of the directional signal means;

FIG. 7 is a plan view of a vehicle with the rearview mirror system of the invention installed to illustrate the visual indicia for targeting the focus of the mirror; and

FIG. 8 is a schematic view similar to FIG. 1, illustrating the field of vision provided by a rearview mirror system according to the invention, mounted on both sides of a vehicle.

Referring now more particularly to FIG. 2, a rearview mirror repositioning system includes a rearview mirror assembly 10 which includes a housing 12 and a base 14. The base 14 is contoured to provide a structure adapted to blend with the styling of a portion of a vehicle (not shown in FIG. 2). The rearview mirror assembly is typically secured to the front fender or the door on the right or left side of the vehicle, or both. In the embodiment shown, it is contemplated that the mirror is mounted on the door. The base 14 is adapted to be secured thereto by suitable fastening means (not shown). The base 14 may be integral with the housing 12 to form one unitary piece. A plane mirror 16 is mounted within the housing and is adapted to provide a field of vision to a driver sitting in the vehicle toward the rear thereof. A visual indicium 18 is located on the surface of the plane mirror for a purpose to be described hereinafter.

Referring now to FIG. 3, it will be seen that the plane mirror is adapted for movement within the housing by an adjustable mounting means 20. Typically, plane mirrors are adjustable either mechanically by means of a Bowden cable, or electrically by means of electric motors. In the embodiment shown in FIG. 3, the adjustable mounting means 20 comprises a housing 22 containing a pair of electric motors. The housing 22 mounts a socket 24 which supports a rotatable ball 26. The ball 26 is also seated in a second socket 28 which is secured to a backing plate 30 which holds the plane mirror 16. The ball 26 thus forms a pivot point about which the mirror 16 can rotate with respect to the adjustable motor housing 22. The same movement can also be obtained with a dual axis hinge mechanism.

An actuator shaft 32 extends from the housing 22 and is pivotally connected to the backing plate 30 by conventional means such as a bracket 34. The actuator shaft 32 is typically driven by a worm gear on the shaft of the motor mounted within the adjustable motor housing 22. Typically, two motors, each adapted to drive a separate actuator shaft are mounted within the adjustable motor housing 22 so that two actuator shafts extend toward the mirror backing plate 30. Thus, two perpendicular axes of rotation are defined about the adjustable mirror pivot 26.

Referring again to FIG. 2, the electric motors are electrically connected by means of the cable 36 to a switch 38 which controls the actuation of the motors within the adjustable motor housing 22. The mirror structure and adjustment means just described are conventional and many adaptations and variations are provided depending upon the particular application required by a given vehicle. This adjustment mechanism, however, is completely independent of the repositioning system according to the invention.

A typical vehicle also has a directional signal means to indicate a change in direction of the vehicle. As illustrated in FIG. 2, the directional signal means 38 is customarily provided on the steering column 40 on the driver's side of the vehicle. A lever 42 controls the directional signal means 38 at the discretion of the driver, and is mounted to the steering column 40 adjacent the steering wheel 44. The typical directional signal switch has three positions which do not electrically distinguish between lane change and full turn positions. A revised switch is introduced.

Referring now to FIG. 6, the directional signal means will comprise a five-position switch 46 mounted in the steering column 40, with each position selectively operated by the lever 42. The switch 46 provides a first position 48 to signal a left turn of the vehicle and a second position 50 to signal a right turn of the vehicle. Intermediate the left turn position 48 and the right turn position 50 is the neutral position 52 which generates no signal. The three positions 48, 50, and 52 are typically toggle positions where the switch 46 can be left in any one of the three positions until moved, manually or otherwise. Intermediate the left turn position 48 and the neutral position 52 is a fourth position 54 which generates a signal to indicate a left lane change of the vehicle. Similarly, intermediate the right turn position 50 and the neutral position 52 is a fifth position 56 which generates a signal to indicate a right lane change of the vehicle. The lane change signals 54, 56 are typically not toggled. In other words, the lever 42 is biased away from the lane change positions 54, 56 such that it must be manually held in either position when a lane change is to be indicated. When the left turn position 48 of the directional switch 46 is engaged, an electrical signal is typically sent to the taillights of a vehicle through a flasher (not shown) to cause the light to intermittently glow. Similarly, when the switch 46 is in either the right lane change position 56 or the right turn position 50, a right taillight (not shown) intermittently glows. Thus, a visual signal is sent to other vehicles regarding the driver's intentions to change the direction of the vehicle.

Referring again to FIG. 3, the plane mirror mounting means 20 also comprises a bracket 58 which is rigidly secured to the back 60 of the adjustable motor housing 22. The bracket 58, in turn, is mounted by means of a pedestal 62 to the housing 12. The pedestal 62 is preferably integral with the housing and may be molded therewith. The bracket 58 is mounted to the pedestal 62 by a single fixed hinge 64. A mounting bracket 66 extending toward the interior of the housing 12 mounts an actuating means 68 for moving the bracket 58 with respect to the housing 12. The actuating means 68 comprises an electric solenoid 70 which may be conventional. The solenoid 70 is rigidly secured to the bracket 66. A reciprocating push rod 72 extends from a cylindrical portion 73 of the solenoid 70 and pushes against the outer end 74 of the bracket 58. Thus, when the solenoid is electrically energized, the push rod 76 pushes against the end 74 of the bracket 58 causing the bracket 58 to pivot about the pivot point 64 to an indexed position. When the solenoid is de-energized, the push rod 76 is retracted within the cylinder 73, thus causing the bracket 58 to pivot back to its original position. A separate biasing means, such as a coil spring, may be used to cause the bracket 58 to return.

The hinge pivot method allows linear thrust of the solenoid up against a flat surface that results in the mirror being moved through a compound angle. The mirror is thrust out and down in one motion through the compound angle to pick up the bumper/headlight level of a vehicle entering the blind spot area. The ability to accomplish the compound angle movement is due to the hinge being engineered and placed on the mirror at a strategic location.

The actuating means 68 is electrically connected by means of a cable 78, as shown in FIG. 2 and 6, to the directional signal switch 46. Referring again to FIG. 6, there is preferably a delay timer 80 interposed in the electrical circuit between the switch 46 and the solenoid 70. When the solenoid is energized, the plane mirror can be made to assume the position illustrated in FIG. 4.

FIG. 5 illustrates the position of the solenoid 70 with respect to the plane mirror 16. It will be seen that the solenoid is mounted so to cause the plane mirror mounting means and thus the plane mirror to pivot about a single axis from a normal position to an indexed position. The indexed position of the plane mirror is preferably that position where a driver can readily view the front end including the bumper of a vehicle located in the "blind spot" as illustrated in positions B and C of FIG. 1. The position of the solenoid 70 is thus preconfigured and not adjustable once mounted in the housing 12.

In operation, a driver desiring to make a left lane change, for example, will depress the lever 42 to cause the switch 46 to engage the left lane change position 54. Thus engaged, the directional signal means simultaneously sends a flashing signal to the left taillight of the vehicle, and sends an electrical signal to the delay timer 80. When the switch 46 maintains the left lane change position 54 for more than the time allotted in the delay timer 80 (preferably one second), the solenoid 70 mounted in the left mirror assembly 10 is actuated. The push rod 72 causes the bracket 58 to pivot about the pivot point 64 and thus rotate the entire mirror mounting means 20 and thus the plane mirror 16 to the extended position as illustrated in FIG. 4. Thus repositioned, the plane mirror 16 will provide a field of vision to the driver which encompasses the blind spot to the left rear of the vehicle. Because of the speed at which modern vehicles travel, it is important that the movement of the plane mirror 16 between the normal position and the indexed position be very quick. The driver can thus quickly visually determine the existence of a clear field in the blind spot in order to complete the change in direction of the vehicle, and it will be seen that such determination can be made without significantly removing the driver's eyes from the line of direction of the vehicle.

Thus, the mirror can be changed to the blind-spot position as illustrated in FIG. 4 when the "lane change" section of the directional signal system is used. Further, this repositioning of the mirror is solely at the discretion of the driver. The position can be maintained by the driver as long as the driver wishes by simply manually holding the lever 42 in the lane-change position for as long as needed. It will be seen that when the lever 42 is manually placed in the turn-signal position, no signal is sent to the solenoid 70, and the mirror 16 remains in the normal position. As shown in FIG. 8, the invention provides a total available field of vision to the rear of a vehicle subtended by angle δ which is greater than that provided by conventional mirror systems (the sum of angles δ, β, and Γ as shown in FIG. 1).

It will readily become apparent that it is important to target each mirror in order to render the blind spot observable when the lane change position of directional signal is engaged. The targeting means is best illustrated in FIGS. 2 and 7. As seen in FIG. 2, a visual indicium 18 is provided on the surface of the plane mirror 16 A second visual indicium 84 is provided on the vehicle preferably near the rear window where it can be seen in the rearview mirror 10 by the driver. When the driver aligns the first visual indicium 18 with the second visual indicium 84 in the line of sight provided in the mirror 16, a reference position is established for the plane mirror 16 with respect to the vehicle. Thus, each driver with varying heights and varying positions within the vehicle can independently adjust the mirror by means of the adjusting means to a reference position. The position of the solenoid 20 with respect to the plane mirror 16 is fixed for each vehicle. When properly targeted, the plane mirror 16 will automatically be indexed to show the blind spot with respect to that vehicle when the rearview mirror repositioning system is engaged. The location of the indicia 18, 84 will preferably be established to obtain the optimum field of vision for each vehicle.

It will thus be seen that a rearview mirror repositioning system in accordance with the invention may be used on demand, provides no image distortion in the wider field of vision, and can be used on manual mirrors and sophisticated electrically operated mirrors on any vehicle.

Reasonable variation and modification are possible within the scope of the foregoing disclosure and drawings without departing from the scope of the invention as defined by the appended claims.

Lynas, Robert M.

Patent Priority Assignee Title
10003755, Oct 04 2007 MAGNA ELECTRONICS INC. Imaging system for vehicle
10015452, Apr 15 2004 MAGNA ELECTRONICS INC. Vehicular control system
10023161, Nov 19 2012 MAGNA ELECTRONICS INC. Braking control system for vehicle
10025994, Dec 04 2012 MAGNA ELECTRONICS INC. Vehicle vision system utilizing corner detection
10027930, Mar 29 2013 MAGNA ELECTRONICS INC. Spectral filtering for vehicular driver assistance systems
10043082, Apr 25 2011 MAGNA ELECTRONICS INC. Image processing method for detecting objects using relative motion
10046702, Jul 31 2001 MAGNA ELECTRONICS INC. Control system for vehicle
10053012, Sep 01 2009 MAGNA ELECTRONICS INC. Imaging and display system for vehicle
10057489, May 06 2013 MAGNA ELECTRONICS INC. Vehicular multi-camera vision system
10071676, Aug 11 2006 MAGNA ELECTRONICS INC Vision system for vehicle
10075650, Jan 30 2009 MAGNA ELECTRONICS INC. Vehicular imaging system with controlled illumination device and camera
10078789, Jul 17 2015 MAGNA ELECTRONICS INC Vehicle parking assist system with vision-based parking space detection
10086747, Jul 12 2007 MAGNA ELECTRONICS INC. Driver assistance system for vehicle
10089537, May 18 2012 MAGNA ELECTRONICS INC Vehicle vision system with front and rear camera integration
10089541, Sep 26 2012 MAGNA ELECTRONICS INC. Vehicular control system with trailering assist function
10099610, Jul 31 2001 MAGNA ELECTRONICS INC. Driver assistance system for a vehicle
10104298, Nov 19 2012 MAGNA ELECTRONICS INC. Vehicle vision system with enhanced display functions
10106155, Jul 27 2009 MAGNA ELECTRONICS INC. Vehicular camera with on-board microcontroller
10107905, Jan 25 2007 MAGNA ELECTRONICS INC. Forward facing sensing system for vehicle
10110860, Apr 15 2004 MAGNA ELECTRONICS INC. Vehicular control system
10115310, Sep 04 2012 MAGNA ELECTRONICS INC. Driver assistant system using influence mapping for conflict avoidance path determination
10118618, May 03 2002 MAGNA ELECTRONICS INC. Vehicular control system using cameras and radar sensor
10127738, Mar 01 2012 MAGNA ELECTRONICS INC. Method for vehicular control
10144352, Dec 22 2010 MAGNA ELECTRONICS INC. Vision display system for vehicle
10160382, Feb 04 2014 MAGNA ELECTRONICS INC. Trailer backup assist system
10171709, Dec 05 2012 MAGNA ELECTRONICS INC. Vehicle vision system utilizing multiple cameras and ethernet links
10187615, Apr 15 2004 MAGNA ELECTRONICS INC. Vehicular control system
10207705, Apr 10 2013 MAGNA ELECTRONICS INC. Collision avoidance system for vehicle
10222224, Jun 24 2013 MAGNA ELECTRONICS INC. System for locating a parking space based on a previously parked space
10232797, Apr 29 2013 MAGNA ELECTRONICS INC Rear vision system for vehicle with dual purpose signal lines
10255509, Dec 18 2014 MAGNA ELECTRONICS INC. Adaptive lane marker detection for a vehicular vision system
10257432, Sep 26 2011 MAGNA ELECTRONICS INC. Method for enhancing vehicle camera image quality
10284764, Sep 21 2011 MAGNA ELECTRONICS INC. Vehicle vision using image data transmission and power supply via a coaxial cable
10300855, Sep 26 2012 MAGNA ELECTRONICS INC. Trailer driving assist system
10300856, Sep 01 2009 MAGNA ELECTRONICS INC. Vehicular display system
10306190, Apr 15 2004 MAGNA ELECTRONICS INC. Vehicular control system
10321064, Nov 19 2012 MAGNA ELECTRONICS INC. Vehicular vision system with enhanced display functions
10326969, Aug 12 2013 MAGNA ELECTRONICS INC. Vehicle vision system with reduction of temporal noise in images
10336255, Dec 22 2010 MAGNA ELECTRONICS INC. Vehicular vision system with rear backup video display
10351135, May 03 2002 MAGNA ELECTRONICS INC. Vehicular control system using cameras and radar sensor
10406980, Jul 31 2001 MAGNA ELECTRONICS INC. Vehicular lane change system
10427679, Nov 19 2010 MAGNA ELECTRONICS INC. Lane keeping system and lane centering system
10434944, Apr 16 2012 MAGNA ELECTRONICS INC. Vehicle vision system with reduced image color data processing by use of dithering
10449899, May 08 2015 MAGNA ELECTRONICS INC Vehicle vision system with road line sensing algorithm and lane departure warning
10452931, Apr 25 2011 MAGNA ELECTRONICS INC. Processing method for distinguishing a three dimensional object from a two dimensional object using a vehicular system
10462426, Apr 15 2004 MAGNA ELECTRONICS INC. Vehicular control system
10486597, Dec 22 2010 MAGNA ELECTRONICS INC. Vehicular vision system with rear backup video display
10493917, Feb 04 2014 MAGNA ELECTRONICS INC. Vehicular trailer backup assist system
10497262, Feb 04 2013 MAGNA ELECTRONICS INC. Vehicular collision mitigation system
10509972, Dec 23 2004 MAGNA ELECTRONICS INC. Vehicular vision system
10515279, May 18 2012 MAGNA ELECTRONICS INC. Vehicle vision system with front and rear camera integration
10523904, Feb 04 2013 MAGNA ELECTRONICS INC. Vehicle data recording system
10560610, Dec 05 2012 MAGNA ELECTRONICS INC. Method of synchronizing multiple vehicular cameras with an ECU
10567633, Sep 21 2011 MAGNA ELECTRONICS INC. Vehicle vision system using image data transmission and power supply via a coaxial cable
10567705, Jun 10 2013 MAGNA ELECTRONICS INC. Coaxial cable with bidirectional data transmission
10569804, Jul 27 2009 MAGNA ELECTRONICS INC. Parking assist system
10574885, May 06 2013 MAGNA ELECTRONICS INC. Method for displaying video images for a vehicular vision system
10586119, Sep 26 2012 MAGNA ELECTRONICS INC. Vehicular control system with trailering assist function
10589678, Dec 22 2010 MAGNA ELECTRONICS INC. Vehicular rear backup vision system with video display
10609335, Mar 23 2012 MAGNA ELECTRONICS INC Vehicle vision system with accelerated object confirmation
10611306, Jul 31 2001 MAGNA ELECTRONICS INC. Video processor module for vehicle
10616507, Oct 04 2007 MAGNA ELECTRONICS INC. Imaging system for vehicle
10623704, Sep 30 2004 Donnelly Corporation Driver assistance system for vehicle
10640040, Nov 28 2011 MAGNA ELECTRONICS INC. Vision system for vehicle
10670713, Jan 25 2007 MAGNA ELECTRONICS INC. Forward sensing system for vehicle
10683008, May 03 2002 MAGNA ELECTRONICS INC. Vehicular driving assist system using forward-viewing camera
10688993, Dec 12 2013 MAGNA ELECTRONICS INC. Vehicle control system with traffic driving control
10692380, Jun 19 2013 MAGNA ELECTRONICS INC. Vehicle vision system with collision mitigation
10713506, Dec 18 2014 MAGNA ELECTRONICS INC Vehicle vision system with 3D registration for distance estimation
10718624, Jun 24 2013 MAGNA ELECTRONICS INC. Vehicular parking assist system that determines a parking space based in part on previously parked spaces
10726578, Aug 17 2007 MAGNA ELECTRONICS INC. Vehicular imaging system with blockage determination and misalignment correction
10733892, Sep 04 2012 MAGNA ELECTRONICS INC. Driver assistant system using influence mapping for conflict avoidance path determination
10735695, Apr 15 2004 MAGNA ELECTRONICS INC. Vehicular control system with traffic lane detection
10766417, Sep 11 2007 MAGNA ELECTRONICS INC. Imaging system for vehicle
10787116, Aug 11 2006 MAGNA ELECTRONICS INC Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera
10793067, Jul 26 2011 MAGNA ELECTRONICS INC Imaging system for vehicle
10800332, Sep 26 2012 MAGNA ELECTRONICS INC. Trailer driving assist system
10803744, Feb 04 2013 MAGNA ELECTRONICS INC. Vehicular collision mitigation system
10805550, Jan 30 2009 MAGNA ELECTRONICS INC. Vehicular imaging system with controlled illumination device and camera
10807515, Jul 12 2007 MAGNA ELECTRONICS INC. Vehicular adaptive headlighting system
10814785, Dec 22 2010 MAGNA ELECTRONICS INC. Vehicular rear backup vision system with video display
10819943, May 07 2015 MAGNA ELECTRONICS INC Vehicle vision system with incident recording function
10827108, Sep 21 2011 MAGNA ELECTRONICS INC. Vehicular vision system using image data transmission and power supply via a coaxial cable
10839233, Feb 27 2009 MAGNA ELECTRONICS INC. Vehicular control system
10858042, Jan 26 2011 MAGNA ELECTRONICS INC. Trailering assist system with trailer angle detection
10868974, Dec 01 2010 MAGNA ELECTRONICS INC. Method for determining alignment of vehicular cameras
10873682, Dec 05 2012 MAGNA ELECTRONICS INC. Method of synchronizing multiple vehicular cameras with an ECU
10875455, Sep 01 2009 MAGNA ELECTRONICS INC. Vehicular vision system
10875526, Jul 27 2009 MAGNA ELECTRONICS INC. Vehicular vision system
10875527, Apr 10 2013 MAGNA ELECTRONICS INC. Collision avoidance system for vehicle
10877147, Jan 25 2007 MAGNA ELECTRONICS INC. Forward sensing system for vehicle
10909393, Sep 26 2012 MAGNA ELECTRONICS INC. Vehicular control system with trailering assist function
10911721, Mar 23 2012 MAGNA ELECTRONICS INC. Vehicle vision system with accelerated determination of an object of interest
10922563, May 18 2012 MAGNA ELECTRONICS INC. Vehicular control system
11012668, Feb 04 2013 MAGNA ELECTRONICS INC. Vehicular security system that limits vehicle access responsive to signal jamming detection
11025859, Jun 10 2013 MAGNA ELECTRONICS INC. Vehicular multi-camera vision system using coaxial cables with bidirectional data transmission
11050934, May 06 2013 MAGNA ELECTRONICS INC. Method for displaying video images for a vehicular vision system
11130487, Apr 02 2014 MAGNA ELECTRONICS INC. Method for controlling a vehicle in accordance with parameters preferred by an identified driver
11142123, Nov 28 2011 MAGNA ELECTRONICS INC. Multi-camera vehicular vision system
11148583, Aug 11 2006 MAGNA ELECTRONICS INC. Vehicular forward viewing image capture system
11155211, Dec 22 2010 MAGNA ELECTRONICS INC. Vehicular multi-camera surround view system with video display
11165975, Oct 04 2007 MAGNA ELECTRONICS INC. Imaging system for vehicle
11184585, Mar 23 2012 MAGNA ELECTRONICS INC. Vehicular vision system with accelerated determination of an object of interest
11198434, Nov 19 2010 MAGNA ELECTRONICS INC. Vehicular lane centering system
11201994, Sep 21 2011 MAGNA ELECTRONICS INC. Vehicular multi-camera surround view system using image data transmission and power supply via coaxial cables
11203340, May 03 2002 MAGNA ELECTRONICS INC. Vehicular vision system using side-viewing camera
11270134, Dec 18 2014 MAGNA ELECTRONICS INC. Method for estimating distance to an object via a vehicular vision system
11277558, Feb 01 2016 MAGNA ELECTRONICS INC. Vehicle vision system with master-slave camera configuration
11279343, Oct 27 2011 MAGNA ELECTRONICS INC. Vehicular control system with image processing and wireless communication
11285873, Jul 26 2011 MAGNA ELECTRONICS INC. Method for generating surround view images derived from image data captured by cameras of a vehicular surround view vision system
11285875, Sep 26 2012 MAGNA ELECTRONICS INC. Method for dynamically calibrating a vehicular trailer angle detection system
11285877, Sep 01 2009 MAGNA ELECTRONICS INC. Vehicular vision system
11288888, Feb 27 2009 MAGNA ELECTRONICS INC. Vehicular control system
11290679, Jun 10 2013 MAGNA ELECTRONICS INC. Vehicular multi-camera vision system using coaxial cables with bidirectional data transmission
11308718, May 18 2012 MAGNA ELECTRONICS INC. Vehicular vision system
11308720, Dec 23 2004 MAGNA ELECTRONICS INC. Vehicular imaging system
11328447, Aug 17 2007 MAGNA ELECTRONICS INC. Method of blockage determination and misalignment correction for vehicular vision system
11396257, Aug 11 2006 MAGNA ELECTRONICS INC. Vehicular forward viewing image capture system
11410431, Sep 26 2012 MAGNA ELECTRONICS INC. Vehicular control system with trailering assist function
11431916, Jan 30 2009 MAGNA ELECTRONICS INC. Vehicular imaging system with controlled illumination device and camera
11433809, Feb 02 2016 MAGNA ELECTRONICS INC. Vehicle vision system with smart camera video output
11483514, May 07 2015 MAGNA ELECTRONICS INC. Vehicular vision system with incident recording function
11485358, Apr 10 2013 MAGNA ELECTRONICS INC. Vehicular collision avoidance system
11503253, Apr 15 2004 MAGNA ELECTRONICS INC. Vehicular control system with traffic lane detection
11506782, Jan 25 2007 MAGNA ELECTRONICS INC. Vehicular forward-sensing system
11508160, May 18 2012 MAGNA ELECTRONICS INC. Vehicular vision system
11518377, Jul 27 2009 MAGNA ELECTRONICS INC. Vehicular vision system
11533452, Jun 10 2013 MAGNA ELECTRONICS INC. Vehicular multi-camera vision system using coaxial cables with bidirectional data transmission
11548444, Dec 22 2010 MAGNA ELECTRONICS INC. Vehicular multi-camera surround view system with video display
11553140, Dec 01 2010 MAGNA ELECTRONICS INC. Vehicular vision system with multiple cameras
11565690, Apr 02 2014 MAGNA ELECTRONICS INC. Vehicular driving assistance system that controls a vehicle in accordance with parameters preferred by an identified driver
11613209, Sep 11 2007 MAGNA ELECTRONICS INC. System and method for guiding reversing of a vehicle toward a trailer hitch
11616910, May 06 2013 MAGNA ELECTRONICS INC. Vehicular vision system with video display
11623559, Aug 11 2006 MAGNA ELECTRONICS INC. Vehicular forward viewing image capture system
11627286, Mar 23 2012 MAGNA ELECTRONICS INC. Vehicular vision system with accelerated determination of another vehicle
11634073, Nov 28 2011 MAGNA ELECTRONICS INC. Multi-camera vehicular vision system
11638070, Sep 21 2011 MAGNA ELECTRONICS INC. Vehicular vision system using image data transmission and power supply via a coaxial cable
11663917, Sep 04 2012 MAGNA ELECTRONICS INC. Vehicular control system using influence mapping for conflict avoidance path determination
11673546, Oct 27 2011 MAGNA ELECTRONICS INC. Vehicular control system with image processing and wireless communication
11708025, Feb 02 2016 MAGNA ELECTRONICS INC. Vehicle vision system with smart camera video output
11708026, Dec 22 2010 MAGNA ELECTRONICS INC. Vehicular rear backup system with video display
11718291, Apr 10 2013 MAGNA ELECTRONICS INC. Vehicular collision avoidance system
11753007, Nov 19 2010 MAGNA ELECTRONICS INC. Vehicular lane centering system
11763573, Feb 27 2009 MAGNA ELECTRONICS INC. Vehicular control system
11769335, May 18 2012 MAGNA ELECTRONICS INC. Vehicular rear backup system
11792360, Jun 10 2013 MAGNA ELECTRONICS INC. Vehicular vision system using cable with bidirectional data transmission
11794651, Sep 01 2009 MAGNA ELECTRONICS INC. Vehicular vision system
11798419, Feb 04 2013 MAGNA ELECTRONICS INC. Vehicular collision mitigation system
11815594, Jan 25 2007 MAGNA ELECTRONICS INC. Vehicular forward-sensing system
11820424, Jan 26 2011 MAGNA ELECTRONICS INC. Trailering assist system with trailer angle detection
11836989, Dec 18 2014 MAGNA ELECTRONICS INC. Vehicular vision system that determines distance to an object
11847836, Apr 15 2004 MAGNA ELECTRONICS INC. Vehicular control system with road curvature determination
11872939, Sep 26 2012 MAGNA ELECTRONICS INC. Vehicular trailer angle detection system
11877054, Sep 21 2011 MAGNA ELECTRONICS INC. Vehicular vision system using image data transmission and power supply via a coaxial cable
11908166, Aug 17 2007 MAGNA ELECTRONICS INC. Vehicular imaging system with misalignment correction of camera
5576901, May 31 1995 DC motor actuator for light modification
5694259, Jan 10 1995 Apparatus for automating the adjustment of rearview mirrors
5706144, Nov 25 1994 Methods and apparatus for automating the adjustment of rearview mirrors
5719713, Feb 28 1994 ULTRA-VIEW TECHNOLOGY, INC Automatic side view mirror tracking system
5914824, Jul 02 1997 CEVAL, INC Rear view mirror apparatus and method for vehicle lane changing
5971549, May 22 1996 Remote controlled mirror system for vehicles
6193380, Apr 20 1999 Vehicle blind spot mirror
6276807, Dec 02 1997 EATON AUTOMOTIVE B V Method for mounting adjusting means in a vehicle rear view mirror, mounting plate used therefor, and mirror provided with such a mounting plate
6547405, Jun 08 2001 Vehicle side view mirror blind spot adjustment method
6672731, Nov 20 2000 Donnelly Corporation Vehicular rearview mirror with blind spot viewing system
6824282, Aug 19 2003 Rearview mirror redirecting system
6882287, Jul 31 2001 MAGNA ELECTRONICS INC Automotive lane change aid
6971755, Jan 26 2004 Adjustable side-mounted rear view mirror
7009498, Apr 03 2001 Lang-Mekra North America, LLC Mirror arrangement for motor vehicles
7038577, May 03 2002 MAGNA ELECTRONICS INC Object detection system for vehicle
7079017, Apr 23 2001 Lang-Mekra North America, LLC Warning device in motor vehicles
7205904, Jul 31 2001 MAGNA ELECTRONICS INC Automotive lane change aid
7355524, Jul 31 2001 MAGNA ELECTRONICS INC Automotive lane change aid
7463138, May 03 2002 MAGNA ELECTRONICS INC Object detection system for vehicle
7526103, Apr 15 2004 MAGNA ELECTRONICS INC Imaging system for vehicle
7551103, Jul 31 2001 MAGNA ELECTRONICS INC Alert system for a vehicle
7616781, Apr 15 2004 MAGNA ELECTRONICS INC Driver assistance system for vehicle
7679498, May 03 2002 MAGNA ELECTRONICS INC Object detection system for vehicle
7720580, Dec 23 2004 MAGNA ELECTRONICS INC Object detection system for vehicle
7792329, Apr 15 2004 MAGNA ELECTRONICS INC Imaging system for vehicle
7873187, Apr 15 2004 MAGNA ELECTRONICS INC Driver assistance system for vehicle
7877175, Dec 23 2004 MAGNA ELECTRONICS, INC Imaging system for vehicle
7949152, Apr 15 2004 MAGNA ELECTRONICS INC Driver assistance system for vehicle
7991522, Dec 23 2004 MAGNA ELECTRONICS, INC Imaging system for vehicle
8070332, Jul 12 2007 MAGNA ELECTRONICS INC. Automatic lighting system with adaptive function
8090153, Apr 15 2004 MAGNA ELECTRONICS INC Imaging system for vehicle
8116929, Dec 23 2004 MAGNA ELECTRONICS INC Imaging system for vehicle
8142059, Jul 12 2007 MAGNA ELECTRONICS INC. Automatic lighting system
8189871, Sep 30 2004 Donnelly Corporation Vision system for vehicle
8197075, Oct 28 2008 Ford Global Technologies, LLC Rear view mirror with facet containing selective acceptance layer
8203440, Jun 07 1995 MAGNA ELECTRONICS INC Vehicular vision system
8217830, Jan 25 2007 MAGNA ELECTRONICS INC. Forward facing sensing system for a vehicle
8239086, Dec 23 2004 MAGNA ELECTRONICS INC Imaging system for vehicle
8289142, May 03 2002 MAGNA ELECTRONICS INC Object detection system for vehicle
8294608, Jan 25 2007 Magna Electronics, Inc. Forward facing sensing system for vehicle
8314689, Jun 09 1995 MAGNA ELECTRONICS, INC Vehicular vision system
8325986, Apr 15 2004 MAGNA ELECTRONICS INC Imaging system for vehicle
8386114, Dec 23 2004 MAGNA ELECTRONICS, INC Imaging system for vehicle
8421865, Oct 24 2008 Magna Electronics Europe GmbH & Co. KG Method for calibrating a vehicular camera system
8446470, Oct 04 2007 MAGNA ELECTRONICS INC Combined RGB and IR imaging sensor
8451107, Sep 11 2007 MAGNA ELECTRONICS INC Imaging system for vehicle
8466806, Jul 31 2001 MAGNA ELECTRONICS INC Alert system for a vehicle
8483439, Sep 30 2004 Donnelly Corporation Vision system for vehicle
8543277, Dec 23 2004 MAGNA ELECTRONICS INC Imaging system for vehicle
8593521, Apr 15 2004 MAGNA ELECTRONICS INC Imaging system for vehicle
8599001, Jun 07 1995 MAGNA ELECTRONICS INC Vehicular vision system
8614640, Jan 25 2007 MAGNA ELECTRONICS INC. Forward facing sensing system for vehicle
8629768, Aug 12 1999 MAGNA ELECTRONICS INC Vehicle vision system
8636393, Aug 11 2006 MAGNA ELECTRONICS INC Driver assistance system for vehicle
8637801, Mar 25 1996 MAGNA ELECTRONICS INC Driver assistance system for a vehicle
8643724, May 22 1996 MAGNA ELECTRONICS INC Multi-camera vision system for a vehicle
8665079, May 03 2002 MAGNA ELECTRONICS INC Vision system for vehicle
8694224, Mar 01 2012 MAGNA ELECTRONICS INC Vehicle yaw rate correction
8814401, Jul 12 2007 MAGNA ELECTRONICS INC. Vehicular vision system
8818042, Apr 15 2004 MAGNA ELECTRONICS INC Driver assistance system for vehicle
8842176, May 22 1996 Donnelly Corporation Automatic vehicle exterior light control
8849495, Mar 01 2012 MAGNA ELECTRONICS INC. Vehicle vision system with yaw rate determination
8874317, Jul 27 2009 MAGNA ELECTRONICS INC Parking assist system
8886401, Oct 14 2003 Donnelly Corporation Driver assistance system for a vehicle
8890955, Feb 10 2010 Magna Mirrors of America, Inc Adaptable wireless vehicle vision system based on wireless communication error
8908040, Oct 04 2007 MAGNA ELECTRONICS INC. Imaging system for vehicle
8917169, Jun 07 1995 MAGNA ELECTRONICS INC Vehicular vision system
8964032, Jan 30 2009 MAGNA ELECTRONICS INC. Rear illumination system
8977008, Sep 30 2004 Donnelly Corporation Driver assistance system for vehicle
8993951, Mar 25 1996 MAGNA ELECTRONICS INC.; MAGNA ELECTRONICS INC Driver assistance system for a vehicle
9008369, Apr 15 2004 MAGNA ELECTRONICS INC Vision system for vehicle
9014904, Dec 23 2004 MAGNA ELECTRONICS INC Driver assistance system for vehicle
9018577, Aug 17 2007 MAGNA ELECTRONICS INC. Vehicular imaging system with camera misalignment correction and capturing image data at different resolution levels dependent on distance to object in field of view
9041806, Sep 01 2009 MAGNA ELECTRONICS INC Imaging and display system for vehicle
9085261, Jan 26 2011 MAGNA ELECTRONICS INC Rear vision system with trailer angle detection
9090234, Nov 19 2012 MAGNA ELECTRONICS INC Braking control system for vehicle
9092986, Feb 04 2013 MAGNA ELECTRONICS INC Vehicular vision system
9117123, Jul 05 2010 MAGNA ELECTRONICS INC. Vehicular rear view camera display system with lifecheck function
9126525, Feb 27 2009 MAGNA ELECTRONICS INC Alert system for vehicle
9131120, May 22 1996 MAGNA ELECTRONICS INC Multi-camera vision system for a vehicle
9140789, Jan 25 2007 MAGNA ELECTRONICS INC. Forward facing sensing system for vehicle
9146898, Oct 27 2011 MAGNA ELECTRONICS INC. Driver assist system with algorithm switching
9171217, May 03 2002 MAGNA ELECTRONICS INC. Vision system for vehicle
9180908, Nov 19 2010 MAGNA ELECTRONICS INC. Lane keeping system and lane centering system
9191574, Jul 31 2001 MAGNA ELECTRONICS INC Vehicular vision system
9191634, Apr 15 2004 MAGNA ELECTRONICS INC. Vision system for vehicle
9193303, Dec 23 2004 MAGNA ELECTRONICS INC. Driver assistance system for vehicle
9244165, Jan 25 2007 MAGNA ELECTRONICS INC. Forward facing sensing system for vehicle
9245448, Jul 31 2001 MAGNA ELECTRONICS INC Driver assistance system for a vehicle
9260095, Jun 19 2013 MAGNA ELECTRONICS INC Vehicle vision system with collision mitigation
9264672, Dec 22 2010 MAGNA ELECTRONICS INC Vision display system for vehicle
9308865, Dec 18 2013 Vehicle side rear-view mirror assembly having a means for exposing a blind spot
9318020, Feb 04 2013 MAGNA ELECTRONICS INC. Vehicular collision mitigation system
9327693, Apr 10 2013 MAGNA ELECTRONICS INC. Rear collision avoidance system for vehicle
9335411, Jan 25 2007 MAGNA ELECTRONICS INC. Forward facing sensing system for vehicle
9340227, Aug 14 2012 MAGNA ELECTRONICS INC Vehicle lane keep assist system
9346468, Mar 01 2012 MAGNA ELECTRONICS INC. Vehicle vision system with yaw rate determination
9376060, Jul 31 2001 MAGNA ELECTRONICS INC. Driver assist system for vehicle
9428192, Apr 15 2004 MAGNA ELECTRONICS INC. Vision system for vehicle
9436880, Aug 12 1999 MAGNA ELECTRONICS INC Vehicle vision system
9440535, Aug 11 2006 MAGNA ELECTRONICS INC Vision system for vehicle
9446713, Sep 26 2012 MAGNA ELECTRONICS INC. Trailer angle detection system
9457717, Jul 27 2009 MAGNA ELECTRONICS INC. Parking assist system
9463744, Jul 31 2001 MAGNA ELECTRONICS INC. Driver assistance system for a vehicle
9469250, Dec 22 2010 MAGNA ELECTRONICS INC. Vision display system for vehicle
9481301, Dec 05 2012 MAGNA ELECTRONICS INC. Vehicle vision system utilizing camera synchronization
9481344, Nov 19 2012 MAGNA ELECTRONICS INC. Braking control system for vehicle
9495876, Jul 27 2009 MAGNA ELECTRONICS INC Vehicular camera with on-board microcontroller
9507021, Jan 25 2007 MAGNA ELECTRONICS INC. Forward facing sensing system for vehicle
9508014, May 06 2013 MAGNA ELECTRONICS INC Vehicular multi-camera vision system
9545921, Apr 10 2013 MAGNA ELECTRONICS INC. Collision avoidance system for vehicle
9547795, Apr 25 2011 MAGNA ELECTRONICS INC Image processing method for detecting objects using relative motion
9555803, May 03 2002 MAGNA ELECTRONICS INC. Driver assistance system for vehicle
9558409, Sep 26 2012 MAGNA ELECTRONICS INC Vehicle vision system with trailer angle detection
9563809, Feb 04 2013 MAGNA ELECTRONICS INC. Vehicular vision system
9598014, Dec 22 2010 MAGNA ELECTRONICS INC. Vision display system for vehicle
9609289, Apr 15 2004 MAGNA ELECTRONICS INC. Vision system for vehicle
9623878, Apr 02 2014 MAGNA ELECTRONICS INC Personalized driver assistance system for vehicle
9643605, May 03 2002 MAGNA ELECTRONICS INC. Vision system for vehicle
9656608, Jul 31 2001 MAGNA ELECTRONICS INC. Driver assist system for vehicle
9681062, Sep 26 2011 MAGNA ELECTRONICS INC. Vehicle camera image quality improvement in poor visibility conditions by contrast amplification
9715769, Mar 01 2012 MAGNA ELECTRONICS INC. Process for determining state of a vehicle
9731653, Dec 22 2010 MAGNA ELECTRONICS INC. Vision display system for vehicle
9736435, Apr 15 2004 MAGNA ELECTRONICS INC. Vision system for vehicle
9743002, Nov 19 2012 MAGNA ELECTRONICS INC. Vehicle vision system with enhanced display functions
9751465, Apr 16 2012 MAGNA ELECTRONICS INC. Vehicle vision system with reduced image color data processing by use of dithering
9758163, Nov 19 2010 MAGNA ELECTRONICS INC. Lane keeping system and lane centering system
9761142, Sep 04 2012 MAGNA ELECTRONICS INC. Driver assistant system using influence mapping for conflict avoidance path determination
9769381, May 06 2013 MAGNA ELECTRONICS INC. Vehicular multi-camera vision system
9774790, Sep 26 2011 MAGNA ELECTRONICS INC. Method for enhancing vehicle camera image quality
9779313, Sep 26 2012 MAGNA ELECTRONICS INC. Vehicle vision system with trailer angle detection
9789821, Sep 01 2009 MAGNA ELECTRONICS INC. Imaging and display system for vehicle
9796332, Sep 11 2007 MAGNA ELECTRONICS INC. Imaging system for vehicle
9802542, Sep 26 2012 MAGNA ELECTRONICS INC. Trailer angle detection system calibration
9802609, Apr 10 2013 MAGNA ELECTRONICS INC. Collision avoidance system for vehicle
9824285, Feb 04 2013 MAGNA ELECTRONICS INC. Vehicular control system
9824587, Jun 19 2013 MAGNA ELECTRONICS INC. Vehicle vision system with collision mitigation
9834142, Jul 31 2001 MAGNA ELECTRONICS INC. Driving assist system for vehicle
9834216, May 03 2002 MAGNA ELECTRONICS INC. Vehicular control system using cameras and radar sensor
9868463, Jul 27 2009 MAGNA ELECTRONICS INC. Parking assist system
9900490, Sep 21 2011 MAGNA ELECTRONICS INC. Vehicle vision system using image data transmission and power supply via a coaxial cable
9900522, Dec 01 2010 MAGNA ELECTRONICS INC System and method of establishing a multi-camera image using pixel remapping
9911050, Feb 27 2009 MAGNA ELECTRONICS INC. Driver active safety control system for vehicle
9912841, Dec 05 2012 MAGNA ELECTRONICS INC. Vehicle vision system utilizing camera synchronization
9916699, Mar 01 2012 MAGNA ELECTRONICS INC. Process for determining state of a vehicle
9919705, Oct 27 2011 MAGNA ELECTRONICS INC. Driver assist system with image processing and wireless communication
9940528, Dec 23 2004 MAGNA ELECTRONICS INC. Driver assistance system for vehicle
9946940, Dec 18 2014 MAGNA ELECTRONICS INC Vehicle vision system with adaptive lane marker detection
9948904, Apr 15 2004 MAGNA ELECTRONICS INC. Vision system for vehicle
9950707, Apr 02 2014 MAGNA ELECTRONICS INC. Method for controlling a vehicle in accordance with parameters preferred by an identified driver
9950738, Jan 26 2011 MAGNA ELECTRONICS INC. Trailering assist system with trailer angle detection
9972100, Aug 17 2007 MAGNA ELECTRONICS INC. Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device
9988047, Dec 12 2013 MAGNA ELECTRONICS INC Vehicle control system with traffic driving control
Patent Priority Assignee Title
1311253,
2718175,
2806408,
2871754,
3609014,
4105301, Nov 15 1976 Car mirror with U-shaped slot means and solenoid control
4792220, Mar 08 1985 Shiftable outside rearview mirror for use on vehicles
4834522, Sep 19 1985 Outside mirror for motor vehicles with programmer means responsive to starting viewing angle
4907870, Apr 10 1987 Device to manipulate side view mirrors for motor vehicles
4938577, Mar 08 1989 Rear-view mirror pivoting apparatus for use in a vehicle
4955704, Mar 08 1985 Shiftable outside rearview mirror for use on vehicles
DE2932146,
DE3509653,
DE3509655,
FR2579149,
GB2148814,
JP1164638,
JP525128,
JP58105105,
JP83431,
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events
Jun 03 1992ASPN: Payor Number Assigned.
Oct 24 1995REM: Maintenance Fee Reminder Mailed.
Mar 17 1996EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Mar 17 19954 years fee payment window open
Sep 17 19956 months grace period start (w surcharge)
Mar 17 1996patent expiry (for year 4)
Mar 17 19982 years to revive unintentionally abandoned end. (for year 4)
Mar 17 19998 years fee payment window open
Sep 17 19996 months grace period start (w surcharge)
Mar 17 2000patent expiry (for year 8)
Mar 17 20022 years to revive unintentionally abandoned end. (for year 8)
Mar 17 200312 years fee payment window open
Sep 17 20036 months grace period start (w surcharge)
Mar 17 2004patent expiry (for year 12)
Mar 17 20062 years to revive unintentionally abandoned end. (for year 12)