An intelligent security system capable of sensing the presence of an object to be identified, interrogating the object with an encrypted code, and receiving and processing an encoded response from a passive transceiver carried by the object so that the intelligent security system can be utilized for controlling access to a location, performing inventory control, controlling toll access systems, operating multi-station complex machinery systems, or providing object locating information, for example. The intelligent security system is particularly characterized by its utilization of a totally passive transceiver including a transmit circuit which will only be activated upon receipt by the transceiver of a predetermined encrypted interrogation signal. In response to receipt of a proper interrogation signal, an encoded response signal is transmitted by the passive transceiver and then received, decoded and processed by other elements of the security system.

Patent
   5099226
Priority
Jan 18 1991
Filed
Jan 18 1991
Issued
Mar 24 1992
Expiry
Jan 18 2011
Assg.orig
Entity
Small
174
16
EXPIRED
1. An intelligent security system, said system comprising: scanner means to detect the presence of a predetermined object and to transmit an encrypted interrogation signal upon so detecting the object; a passive transceiver means carried by the object, said passive transceiver means comprising first circuit means for receiving said encrypted interrogation signal, rectifying said interrogation signal to provide a source of power for said transceiver means, and decoding said interrogation signal, and second circuit means for transmitting a predetermined encoded response signal in response to a predetermined said decoded interrogation signal; a response signal decoder means operatively connected to said scanner means to receive and decode said response signal; and a central processing unit operatively connected to said response signal decoder means to receive and process said decoded response signal.
2. An intelligent security system as in claim 1 wherein said encrypted interrogation signal and said encoded response signal comprise electromagnetic radiation.
3. An intelligent security system as in claim 1 wherein said encrypted interrogation signal and said encoded response signal comprise radio frequency signals.
4. An intelligent security system as in claim 1 wherein said scanner means, said response signal decoder means, and said central processing unit are operatively connected to an external power source, and wherein said passive transceiver means derives its power from said encrypted interrogation signal.
5. An intelligent security system as in claim 4 wherein said encrypted interrogation signal comprises a first radio frequency signal.
6. An intelligent security system as in claim 5 wherein said encoded response signal comprises a second radio frequency signal.
7. An intelligent security system as in claim 1 wherein said passive transceiver means derives its power solely from said encrypted interrogation signal, and wherein said encrypted interrogation signal and said encoded response signal comprise radio frequency signals.
8. An intelligent security system as in claim 7 wherein said first and second circuit means are integrally formed.
9. An intelligent security system as in claim 8 wherein said first and second circuit means are integrally formed on a single semiconductor chip.
10. An intelligent security system as in claim 9 wherein said first circuit means comprises antenna means for receiving said encrypted interrogation signal, first diode means for rectifying said interrogation signal and first capacitor means operatively connected to said first diode means to receive and store energy from said rectified signal, said first circuit means further comprising logic means for decoding said interrogation signal and, in response to a predetermined said interrogation signal, generating a logic output signal.
11. An intelligent security system as in claim 10 wherein said second circuit means comprises switch means operatively connected to said logic means for receiving said logic output signal and a negative resistance device operatively connected to said switch means to generate said predetermined encoded response signal, said second circuit means further comprising a resonant tank circuit comprising second capacitor means and said antenna means for transmitting said predetermined encoded response signal to said response signal decoder means.

1. Field of the Invention

The present invention relates to an intelligent security system including a truly passive transceiver means which may be attached to virtually any object so that the intelligent security system may be utilized to identify and process information concerning the particular object to which the passive transceiver is attached. Power to operate the passive transceiver is derived from electromagnetic radiation, preferably in the form of encrypted radio frequency energy, which is transmitted by a scanner which is one element of the security system. The passive transceiver includes circuitry capable of both rectifying and decoding the encrypted radio frequency power. If a predetermined radio frequency message is received by the passive transceiver, its transmit circuitry will then be energized to provide an encoded response. The encoded response is received by the scanner means and provided to a decoder, and that decoded response is then fed to a central processing unit for operation of the security system in accord with pre-programmed instructions.

Throughout the specification and claims of this patent, it is to be understood that the term "passive" is meant to indicate operability without connection to an external power source and also without the necessity for any internal power source such as a battery.

2. Description of the Prior Art

The prior art discloses and teaches numerous devices which are useful for providing locator information and/or access to controlled spaces by the use of a passive card or tag. For example, virtually all automatic teller machines require the insertion of a magnetically-encoded card for proper operation of that machine. Similar, magnetically-encoded devices are frequently used as key cards to provide access to controlled spaces or as fee cards for toll booths or vending machines. However, utilization of such magnetically-encoded cards invariably requires that the card be properly inserted into the device to be actuated so that the code embedded therein may be read.

Prior patent literature teaches another form of passive security tags which are energized by electromagnetic radiation from a remote source. One such device is disclosed in U.S. Pat. No. 4,857,893 to Carroll. According to the disclosure of that patent, a transponder device receives a carrier signal from an interrogator unit. Circuitry within the transponder device rectifies the carrier signal to generate operating power, and logic circuits within the transponder device then respond by broadcasting a reply data word which is received and processed by the interrogator unit which provided the initial carrier signal. The disclosure of this Carroll patent is particularly pertinent, for the transponder device is constructed by providing all electrical circuits on a single monolithic semiconductor chip. However, it must be noted that the output from the Carroll transponder device is a submultiple of the input, or carrier, frequency, and there is no real security with regard to that incoming frequency. A predetermined frequency will trigger any corresponding transponder device by which it is received.

U.S. Pat. No. 4,688,026 to Scribner, et al., discloses a method for collecting and using data associated with tagged objects wherein radio frequency energy is used to activate tags capable of wirelessly transmitting unique codes. However, according to the disclosure of this Scribner patent, there is no encryption of the interrogating signal so that any tag capable of receiving the broadcast interrogation frequency will be activated to respond.

Yet another device utilizing what are referred to as "passive transceivers" for the purpose of monitoring location, identification, movement, or inventory of items is disclosed in U.S. Pat. No. 4,656,463 to Anders, et al. However, notwithstanding that patent's use of the word "passive," the disclosure of this patent is quite clear that its "passive transceiver" is actually battery-powered.

Still another identification system, which does utilize a passive transponder, is taught in U.S. Pat. No. 4,730,188, to Milheiser. As with other similar prior art devices, the Milheiser system includes a passive integrated transponder attached to or embedded in an item to be identified which is actuated by an inductive coupling from an interrogator. Upon actuation, the passive integrated transponder responds to the integrator via the inductive coupling with a signal consisting of a stream of data unique to that particular item. However, also as with the similar prior art devices, the Milheiser system does not disclose or teach an encrypted interrogation signal which is firs decoded by the passive integrated transponder before its transmit circuit may be actuated to provide data.

U.S. Pat. No. 4,260,983 to Falck, et al., discloses a presence sensing detector and a system for detecting an article by virtue of a receiver/transmitter affixed to that article. However, according to the disclosure of this patent, the detector is always transmitting its interrogation signal, and as with the other devices identified above, there is not security code, or encryption, associated with the incoming signal.

Two prior art inventory data acquisition systems are represented by U.S. Pat. No. 4,673,932 and U.S. Pat. No. 4,862,160, both to Ekchian, et al. According to the disclosures of those patents, a computerized transceiver repeatedly sweeps through a set of transmit/receive frequencies to interrogate collectively a plurality of items. Items in each group are tagged with a printed circuit transponder tuned to frequencies uniquely assigned to each group. The printed circuit transponders reply to the computerized transceiver for accumulation of inventory control data. However, the replies are frequency coded only, no digital data is transmitted, and, as above, the interrogating signal could only be said to be frequency coded, and not encrypted.

Two other prior art patents have been noted and are deemed pertinent to the general scope of the present invention. U. S. Pat. No. 4,475,481 to Carroll relates to an identification system comprising an intermittent electromagnetic generator at one frequency and a remote receiver for receiving the electromagnetic energy and using it to power an encoder of digital information. Clearly, there is no real security associated with this identification system, for the remote receiver will respond to any incoming signal so long as it is simply of a predetermined frequency. U.S. Pat. No. 4,931,788 to Creswick discloses a transponder for receiving a modulated interrogating signal, means for demodulating the received signal to produce a periodic base band signal, and means for transmitting data at a rate determined by periodicity of that base band signal. As with the other prior art devices noted, there is no incoming security code which must be decoded before the transponder of this invention will respond with its data information.

It is therefore quite clear that there remains a significant need in the art for an intelligent security system utilizing a truly passive transceiver capable of receiving and decoding a incoming interrogation signal before being actuated to generate and transmit unique data information held by the passive transceiver.

The present invention relates to an intelligent security system comprising scanner means to detect the presence of a predetermined object and to transmit an encrypted interrogation signal upon detecting that object. A passive transceiver means is carried by the object and includes a first circuit for receiving the encrypted interrogation signal, rectifying that signal to provide a source of power for the transceiver, and decoding the interrogation signal. The decoded signal is then provided to second circuit means including logic circuitry to determine whether or not a proper interrogation signal has been received. If so, the second circuit means is then actuated to transmit a predetermined encoded response signal. The encoded response signal is received by a signal decoder means which is operatively connected to the scanner means, and the encoded response signal is decoded. The decoded signal includes data information which is then passed to a central processing unit which is operatively connected to the response signal decoder. Dependent only upon the operational parameters of the central processing unit, the information received from the passive transceiver is appropriately processed.

While the above information summarizes the intelligent security system of this invention, certain features of the system, and especially of the passive transceiver means, are worthy of further comment. As with generally similar prior art devices, the passive transceiver means of this invention is preferably constructed as a single semiconductor chip. By virtue of this construction and its truly passive nature, the passive transceiver means may be quite small and easily embedded in a tag or label affixed to the predetermined object, or it may even be incorporated into the object's structure. In the preferred embodiment, both the encrypted interrogation signal and the encoded response signal are preferably radio frequency energy, so there is never any necessity of any direct physical contact between the scanner means and the passive transceiver means.

Also, of particular note is the construction of the first and second circuits of the passive transceiver means to permit it to decode a truly encrypted interrogation signal and to transmit a new, encoded response signal while maintaining simplicity of circuit design, low cost, and small space requirements. In fact, according to a preferred embodiment of the system of this invention, the encrypted interrogation signal received by the passive transceiver means may be any one of about 2256 combinations, and the encoded response signal transmitted by the passive transceiver means may be of the same order of complexity. It is clear, then, that the intelligent security system of this invention provides a much more secure system than any of the prior art of which this inventor is aware.

The invention accordingly comprises the features of construction, combination of elements, and arrangement of parts which will be exemplified in the construction hereinafter set forth, and the scope of the invention will be indicated in the claims.

For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings, in which:

FIG. 1 is a block diagram of a preferred intelligent security system in accord with this invention.

FIG. 2 is a schematic representation of the passive transceiver means of this invention.

Similar reference characters refer to similar parts throughout the several views of the drawings.

A preferred embodiment for the intelligent security system of this invention is depicted in block diagram form in the view of FIG. 1. As shown in that figure, the system comprises a scanner means 10 to detect the presence of a predetermined object (not shown) and to transmit an encrypted interrogation signal upon so detecting the object. A passive transceiver means shown in this preferred embodiment as tag 12 is carried by the detected object as by any suitable means and comprises first circuit means for receiving the encrypted interrogation signal, for rectifying the interrogation signal to provide a source of power for tag 12 and for decoding the interrogation signal. Tag 12 further includes second circuit means for transmitting a predetermined encoded response signal in response to a predetermined decoded interrogation signal as provided by the first circuit means. Details of a preferred construction for tag 12 are discussed hereinafter and shown in the view of FIG. 2.

The system further comprises a response signal decoder means 14 operatively connected to scanner means 10 to receive and decode the response signal transmitted by tag 12. Finally, a central processing unit, illustrated as computer 16 in the view of FIG. 1, is operatively connected to the decoder 14 to receive and process the decoded response signal. In this preferred embodiment, both the encrypted interrogation signal and the encoded response signal comprise electromagnetic radiation, and are preferably radio frequency signals. Therefore, there is no necessity of any physical contact between scanner 10 and tag 12.

At this point it should be noted that scanner 10 may be of suitable construction to detect the presence of virtually any object so as to cause scanner 10 to transmit its predetermined encrypted interrogation code. For example, scanner 10 may include photoelectric means to detect the presence of any object within a beam of light, resulting in transmission of the encrypted interrogation signal. Such an embodiment for scanner 10 might be used, for example, to monitor the progress of articles along a conveyor belt. Alternatively, scanner 10 may include heat sensing elements to detect the presence of, for example, a person, to actuate transmission of the encrypted interrogation signal and such an embodiment, would be appropriate for controlling access to a secure space. Yet another embodiment for scanner 10 might include means for detecting a change in magnetic field to result in transmission of the encrypted interrogation signal. In any event, it is not intended to limit the scope of the present invention to any single means for detecting the presence of an object carrying a tag 12 in order to cause scanner 10 to broadcast its predetermined encrypted interrogation signal.

In similar fashion, the scope of this intelligent security system is not to be limited to any single construction for decoder 14 or computer 16. All that is required is that decoder 14 be operatively connected to scanner 10 so as to receive and decode the response signal from tag 12. Then, decoder 14 is operatively connected to computer 16 so as to provide the decoded signal to computer 16 for final processing. Dependent only upon the program instructions installed within computer 16, it can then utilize the data transmitted from tag 12 in accord with its program instructions. For example, it might then provide access to a secured space. Alternatively, it might make an inventory control entry, or even a retail sales entry in combination with the inventory control entry.

We turn then to a consideration of the passive transceiver means of this invention, shown as tag 12 in the view of FIG. 1, and represented schematically in the view of FIG. 2. Once scanner 10 has detected the proximity of an object believed to be carrying the passive transceiver means (tag 12), scanner 10 generates a predetermined radio frequency encrypted interrogation signal. The incoming signal is received by antenna 18 and is rectified by first diode means including diode 20 and diode 22. The rectified radio frequency energy is transmitted to capacitor 24 where it is stored as an energy source for powering other circuit functions. Diode 20 performs the additional function of demodulating the incoming digital data stream received by antenna 18 and applies this demodulated signal to the data pin 26 of logic device 28.

If the demodulated signal received by logic device 28 corresponds to the interrogation code stored therein, then a logic output signal is generated, causing the predetermined stored contents of logic device 28 to be transmitted through data pin 26 to activate radio frequency switch 30. Switch 30 controls a two terminal negative resistance device 32 causing it to generate an encoded radio frequency response signal for transmission back to scanner 10 and decoder 14. The frequency of the encoded response signal is determined by a resonant tank circuit comprising capacitor 34 and antenna 18. It is also to be noted that a zene diode 36 is provided for regulating the stored potential of capacitor 24.

It is, of course, to be understood that logic device 28 is actuated to transmit its stored data only upon receiving a predetermined demodulated interrogation signal from diode 20 of the passive transceiver means first circuit. Then, and only then, is energy taken from capacitor 24 to actuate the passive transceiver means second circuit including switch 30, negative resistance device 32, and the resonant tank circuit. As previously indicated, the logic device 28 in this preferred embodiment is capable of responding to any one of about 2256 combinations for the encrypted interrogation code, and may transmit an encoded response signal of that same number of combinations.

Because of the construction of the passive transceiver means (tag 12) to decode and respond to only a proper encrypted interrogation signal, the system of this invention is remarkably secure. The likelihood of the passive transceiver means responding to an unauthorized interrogation signal is so small as to be virtually non-existent. Of course, similar security in the form of encoding is provided for the response signal. Also, because the passive transceiver means is preferably integrally formed on a single semiconductor chip, it is extremely small and relatively inexpensive, thereby permitting use of the passive transceiver means of this invention in an extremely wide variety of applications.

It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained, and since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matter contained in the above description, or shown in the accompanying drawings, shall be interpreted as illustrative and not in a limiting sense.

It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.

Andrews, George F.

Patent Priority Assignee Title
10346647, Apr 04 2012 BANK OF AMERICA, N A Configuring signal devices in thermal processing systems
10455682, Apr 04 2012 BANK OF AMERICA, N A Optimization and control of material processing using a thermal processing torch
10486260, Apr 04 2012 BANK OF AMERICA, N A Systems, methods, and devices for transmitting information to thermal processing systems
10713448, Apr 04 2012 BANK OF AMERICA, N A Configuring signal devices in thermal processing systems
10786924, Mar 07 2014 BANK OF AMERICA, N A Waterjet cutting head temperature sensor
10839388, Jul 10 2001 Liberty Peak Ventures, LLC Funding a radio frequency device transaction
11087100, Apr 04 2012 BANK OF AMERICA, N A Configuring signal devices in thermal processing systems
11110626, Mar 07 2014 BANK OF AMERICA, N A Liquid pressurization pump and systems with data storage
11331743, Apr 04 2012 BANK OF AMERICA, N A Systems, methods, and devices for transmitting information to thermal processing systems
11610218, Mar 19 2014 BANK OF AMERICA, N A Methods for developing customer loyalty programs and related systems and devices
11707860, Mar 07 2014 Hypertherm, Inc. Liquid pressurization pump and systems with data storage
11783138, Apr 04 2012 Hypertherm, Inc. Configuring signal devices in thermal processing systems
5218343, Feb 05 1990 STOBBE, ANATOLI Portable field-programmable detection microchip
5317330, Oct 07 1992 Westinghouse Electric Corp. Dual resonant antenna circuit for RF tags
5448220, Apr 08 1993 Apparatus for transmitting contents information
5491468, Jun 24 1993 Westinghouse Electric Corporation Identification system and method with passive tag
5491471, Oct 23 1991 Access control system where the card controls the transmission format of the card reader
5493312, Oct 26 1993 Texas Instruments Incorporated Reduced current antenna circuit
5565846, Apr 26 1994 ASSA ABLOY AB Reader system for waste bin pickup vehicles
5565858, Sep 14 1994 Northrop Grumman Systems Corporation Electronic inventory system for stacked containers
5603287, Apr 12 1993 Animal sensing and repelling system
5626630, Oct 13 1994 TRACOR AEROSPACE ELECTRONIC SYSTEMS, INC Medical telemetry system using an implanted passive transponder
5640144, Oct 19 1995 MATRIX S.A.S. di G. De Zorzi ec. RF/ultrasonic separation distance alarm
5741462, Apr 25 1995 NEXUS BIOSYSTEMS, INC Remotely programmable matrices with memories
5745036, Sep 12 1996 CHECKPOINT SYSTEMS, INC ; Mitsubishi Material Corporation Electronic article security system for store which uses intelligent security tags and transaction data
5751629, Apr 25 1995 IRORI TECHNOLOGIES, INC Remotely programmable matrices with memories
5777884, Oct 16 1995 Minnesota Mining and Manufacturing Company Article inventory tracking and control system
5825329, Oct 04 1993 Transcore, LP; TC BERMUDA FINANCE, LTD ; TC BERMUDA LICENSE, LTD ; HARRIS TRUST & SAVINGS BANK, AS AGENT Modulated backscatter microstrip patch antenna
5874214, Apr 25 1995 NEXUS BIOSYSTEMS, INC Remotely programmable matrices with memories
5887176, Jun 28 1996 Randtec, Inc. Method and system for remote monitoring and tracking of inventory
5889489, Aug 31 1995 INTERMEC IP CORP , A CORPORATION OF DELAWARE Diode receiver for radio frequency transponder
5926093, Aug 15 1997 CHECKPOINT SYSTEMS, INC ; Mitsubishi Material Corporation Drive circuit for reactive loads
5940363, May 07 1996 LG Electronics Inc. Optical disk with a memory chip mounted thereon
5963134, Jul 24 1997 CHECKPOINT SYSTEMS, INC ; Mitsubishi Material Corporation Inventory system using articles with RFID tags
5986571, Mar 04 1998 OMEGA PATENTS, L L C Building security system having remote transmitter code verification and code reset features
6017496, Apr 25 1995 IRORI TECHNOLOGIES, INC Matrices with memories and uses thereof
6025780, Jul 25 1997 CHECKPOINT SYSTEMS, INC RFID tags which are virtually activated and/or deactivated and apparatus and methods of using same in an electronic security system
6037859, Mar 05 1998 OMEGA PATENTS, L L C Vehicle security system including control switch mounted to window antenna unit and associated methods
6140939, Mar 25 1996 OMEGA PATENTS, L L C Biometric characteristic vehicle control system having verification and reset features
6144315, Mar 25 1996 OMEGA PATENTS, L L C Remote control system suitable for a vehicle and having remote transmitter verification and code reset features
6150926, Mar 05 1998 OMEGA PATENTS, L L C Vehicle security system including indicator mounted to window antenna unit and related methods
6154137, Jun 08 1998 3M Innovative Properties Company Identification tag with enhanced security
6188326, Mar 25 1996 OMEGA PATENTS, L L C Vehicle control system including token verification and code reset features
6195006, Jul 24 1997 Checkpoint Systems Inc. Inventory system using articles with RFID tags
6226622, Nov 27 1995 Methods and devices utilizing a GPS tracking system
6232870, Aug 14 1998 3M Innovative Properties Company Applications for radio frequency identification systems
6329139, Jun 07 1995 IRORI TECHNOLOGIES, INC Automated sorting system for matrices with memory
6331273, Apr 25 1995 IRORI TECHNOLOGIES, INC Remotely programmable matrices with memories
6335686, Aug 14 1998 3M Innovative Properties Company Application for a radio frequency identification system
6346877, Mar 05 1998 OMEGA PATENTS, L L C Vehicle security system including information display unit and related methods
6416714, Apr 25 1995 IRORI TECHNOLOGIES, INC Remotely programmable matrices with memories
6424262, Aug 14 1998 3M Innovative Properties Company Applications for radio frequency identification systems
6438447, Oct 16 1995 Minnesota Mining and Manufacturing Company Article inventory tracking apparatus and method
6448886, Aug 14 1998 3M Innovative Properties Company Application for radio frequency identification systems
6480117, Apr 14 1995 OMEGA PATENTS, L L C Vehicle control system including token verification and code reset features for electrically connected token
6486780, Aug 14 1998 3M Innovative Properties Company Applications for radio frequency identification systems
6600420, Aug 14 1998 3M Innovative Properties Company Application for a radio frequency identification system
6646554, Jun 08 1998 3M Innovative Properties Company Identification tag with enhanced security
6693539, Jul 24 1997 Checkpoint Systems, Inc. Inventory system using articles with RFID tags
6768419, Aug 14 1998 3M Innovative Properties Company Applications for radio frequency identification systems
6801119, Mar 04 1998 OMEGA PATENTS, L L C Programmer for vehicle security systems and related methods
7044373, Aug 14 1998 3M Innovative Properties Company Radio frequency identification systems applications
7059531, Jul 10 2001 Liberty Peak Ventures, LLC Method and system for smellprint recognition biometrics on a fob
7070112, Sep 07 1999 Liberty Peak Ventures, LLC Transparent transaction device
7093767, Sep 07 1999 Liberty Peak Ventures, LLC System and method for manufacturing a punch-out RFID transaction device
7113094, Aug 14 1998 3M Innovative Properties Company Applications for radio frequency identification systems
7119659, Jul 10 2001 Liberty Peak Ventures, LLC Systems and methods for providing a RF transaction device for use in a private label transaction
7123151, Aug 14 1998 3M Innovative Properties Company Applications for radio frequency identification systems
7156301, Sep 07 1999 Liberty Peak Ventures, LLC Foldable non-traditionally-sized RF transaction card system and method
7172112, Jan 21 2000 Liberty Peak Ventures, LLC Public/private dual card system and method
7228155, Jul 10 2001 Liberty Peak Ventures, LLC System and method for remotely initializing a RF transaction
7239226, Jul 10 2001 Liberty Peak Ventures, LLC System and method for payment using radio frequency identification in contact and contactless transactions
7249112, Jul 16 2002 Liberty Peak Ventures, LLC System and method for assigning a funding source for a radio frequency identification device
7258276, Oct 20 2000 Promega Corporation Radio frequency identification method and system of distributing products
7268667, May 09 2003 Liberty Peak Ventures, LLC Systems and methods for providing a RF transaction device operable to store multiple distinct accounts
7268668, May 09 2003 Liberty Peak Ventures, LLC Systems and methods for managing multiple accounts on a RF transaction instrument
7270268, Aug 14 1998 3M Innovative Properties Company Radio frequency identification systems applications
7293705, Oct 20 2000 Promega Corporation Radio frequency identification method and system of distributing products
7303120, Jul 10 2001 Liberty Peak Ventures, LLC System for biometric security using a FOB
7306158, Jul 10 2001 Liberty Peak Ventures, LLC Clear contactless card
7360689, Jul 10 2001 Liberty Peak Ventures, LLC Method and system for proffering multiple biometrics for use with a FOB
7429927, Jul 10 2001 Liberty Peak Ventures, LLC System and method for providing and RFID transaction device
7463133, Jul 10 2001 Liberty Peak Ventures, LLC Systems and methods for providing a RF transaction device operable to store multiple distinct calling card accounts
7471205, Aug 14 1998 3M Innovative Properties Company Applications for radio frequency identification systems
7493288, Oct 17 2003 Liberty Peak Ventures, LLC RF payment via a mobile device
7494058, Jul 01 2004 Liberty Peak Ventures, LLC Smartcard transaction method and system using voiceprint recognition
7500616, Jul 10 2001 Liberty Peak Ventures, LLC Authenticating fingerprints for radio frequency payment transactions
7503480, Jul 10 2001 Liberty Peak Ventures, LLC Method and system for tracking user performance
7506818, Jul 10 2001 Liberty Peak Ventures, LLC Biometrics for radio frequency payment transactions
7506819, Jul 10 2001 Liberty Peak Ventures, LLC Biometric security using a fob
7542942, Jul 10 2001 Liberty Peak Ventures, LLC System and method for securing sensitive information during completion of a transaction
7543738, Jul 10 2001 Liberty Peak Ventures, LLC System and method for secure transactions manageable by a transaction account provider
7578448, Jul 10 2001 Liberty Peak Ventures, LLC Authorizing radio frequency transactions using a keystroke scan
7587756, Jul 23 2004 Liberty Peak Ventures, LLC Methods and apparatus for a secure proximity integrated circuit card transactions
7588185, Jun 07 2001 3M Innovative Properties Company RFID data collection and use
7591421, Oct 20 2000 Promega Corporation Radio frequency identification method and system of distributing products
7619529, Aug 14 1998 3M Innovative Properties Company Application for a radio frequency identification system
7637434, Jul 10 2001 Liberty Peak Ventures, LLC Registering a biometric for radio frequency transactions
7639116, Jul 10 2001 Liberty Peak Ventures, LLC Converting account data associated with a radio frequency device
7650314, May 25 2001 Liberty Peak Ventures, LLC System and method for securing a recurrent billing transaction
7661591, Oct 20 2000 Promega Corporation RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags
7668750, Jul 10 2001 Liberty Peak Ventures, LLC Securing RF transactions using a transactions counter
7690577, Jul 10 2001 Liberty Peak Ventures, LLC Registering a biometric for radio frequency transactions
7694876, Jul 10 2001 Liberty Peak Ventures, LLC Method and system for tracking user performance
7710275, Mar 16 2007 Promega Corporation RFID reader enclosure and man-o-war RFID reader system
7725427, May 25 2001 Liberty Peak Ventures, LLC Recurrent billing maintenance with radio frequency payment devices
7728732, Aug 14 1998 3M Innovative Properties Company Applications for radio frequency identification systems
7735732, Oct 20 2000 Promega Corporation Radio frequency identification method and system of distributing products
7746215, Jul 10 2001 Liberty Peak Ventures, LLC RF transactions using a wireless reader grid
7762457, Jul 10 2001 Liberty Peak Ventures, LLC System and method for dynamic fob synchronization and personalization
7768379, Jul 10 2001 Liberty Peak Ventures, LLC Method and system for a travel-related multi-function fob
7784689, Oct 20 2000 Promega Corporation Radio frequency identification method and system of distributing products
7791479, Feb 21 2002 Promega Corporation RFID point of sale and delivery method and system
7793845, Jul 01 2004 Liberty Peak Ventures, LLC Smartcard transaction system and method
7805378, Jul 10 2001 Liberty Peak Ventures, LLC System and method for encoding information in magnetic stripe format for use in radio frequency identification transactions
7814332, Jul 10 2001 Liberty Peak Ventures, LLC Voiceprint biometrics on a payment device
7827106, Dec 24 2003 Liberty Peak Ventures, LLC System and method for manufacturing a punch-out RFID transaction device
7835960, Mar 07 2000 Liberty Peak Ventures, LLC System for facilitating a transaction
7837116, Sep 07 1999 Liberty Peak Ventures, LLC Transaction card
7886157, Jul 10 2001 Liberty Peak Ventures, LLC Hand geometry recognition biometrics on a fob
7889052, Jul 10 2001 Liberty Peak Ventures, LLC Authorizing payment subsequent to RF transactions
7925535, Jul 10 2001 Liberty Peak Ventures, LLC System and method for securing RF transactions using a radio frequency identification device including a random number generator
7942321, Oct 20 2000 Promega Corporation Radio frequency identification method and system of disturbing products
7967199, Oct 20 2000 Promega Corporation Radio frequency identification method and system of distributing products
7988038, Jul 10 2001 Liberty Peak Ventures, LLC System for biometric security using a fob
7996324, Jul 10 2001 Liberty Peak Ventures, LLC Systems and methods for managing multiple accounts on a RF transaction device using secondary identification indicia
8001054, Jul 10 2001 Liberty Peak Ventures, LLC System and method for generating an unpredictable number using a seeded algorithm
8006902, Aug 14 1998 3M Innovative Properties Company Radio frequency identification systems applications
8016191, Jul 01 2004 Liberty Peak Ventures, LLC Smartcard transaction system and method
8025228, Oct 20 2000 Promega Corporation RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags
8031072, Mar 16 2007 Promega Corporation RFID reader enclosure and man-o-war RFID reader system
8074889, Jul 10 2001 Liberty Peak Ventures, LLC System for biometric security using a fob
8113425, Oct 20 2000 Promega Corporation RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags
8191788, Sep 07 1999 Liberty Peak Ventures, LLC Transaction card
8231053, Oct 20 2000 Promega Corporation Radio frequency identification method and system of distributing products
8258961, Mar 16 2007 Promega Corporation RFID reader enclosure and man-o-war RFID reader system
8266056, Jul 10 2001 Liberty Peak Ventures, LLC System and method for manufacturing a punch-out RFID transaction device
8279042, Jul 10 2001 Liberty Peak Ventures, LLC Iris scan biometrics on a payment device
8284025, Jul 10 2001 Liberty Peak Ventures, LLC Method and system for auditory recognition biometrics on a FOB
8289136, Jul 10 2001 Liberty Peak Ventures, LLC Hand geometry biometrics on a payment device
8294552, Jul 10 2001 Liberty Peak Ventures, LLC Facial scan biometrics on a payment device
8378826, Oct 02 2009 CHECKPOINT SYSTEMS, INC Key device for monitoring systems
8390479, May 17 2006 Airbus Device for locking a movable component of an aircraft
8429041, May 09 2003 Liberty Peak Ventures, LLC Systems and methods for managing account information lifecycles
8452868, Sep 21 2009 CHECKPOINT SYSTEMS, INC Retail product tracking system, method, and apparatus
8502673, Aug 14 1998 3M Innovative Properties Company Applications for radio frequency identification systems
8508367, Sep 21 2009 CHECKPOINT SYSTEMS, INC Configurable monitoring device
8538863, Jul 10 2001 Liberty Peak Ventures, LLC System and method for facilitating a transaction using a revolving use account associated with a primary account
8543423, Jul 16 2002 Liberty Peak Ventures, LLC Method and apparatus for enrolling with multiple transaction environments
8548927, Jul 10 2001 Liberty Peak Ventures, LLC Biometric registration for facilitating an RF transaction
8635131, Jul 10 2001 Liberty Peak Ventures, LLC System and method for managing a transaction protocol
8818907, Mar 07 2000 Liberty Peak Ventures, LLC Limiting access to account information during a radio frequency transaction
8872619, Jul 10 2001 Liberty Peak Ventures, LLC Securing a transaction between a transponder and a reader
8960535, Jul 10 2001 Liberty Peak Ventures, LLC Method and system for resource management and evaluation
9024719, Jul 10 2001 Liberty Peak Ventures, LLC RF transaction system and method for storing user personal data
9031880, Jul 10 2001 Liberty Peak Ventures, LLC Systems and methods for non-traditional payment using biometric data
9138910, Dec 01 2005 Mitsuboshi Diamond Industrial Co., Ltd. Scribe device, scribe method, and tip holder
9336634, Jul 10 2001 Liberty Peak Ventures, LLC Hand geometry biometrics on a payment device
9395715, Apr 04 2012 BANK OF AMERICA, N A Identifying components in a material processing system
9454752, Jul 10 2001 Liberty Peak Ventures, LLC Reload protocol at a transaction processing entity
9643273, Oct 14 2013 BANK OF AMERICA, N A Systems and methods for configuring a cutting or welding delivery device
9672460, Apr 04 2012 BANK OF AMERICA, N A Configuring signal devices in thermal processing systems
9737954, Apr 04 2012 BANK OF AMERICA, N A Automatically sensing consumable components in thermal processing systems
9782852, Jul 16 2010 BANK OF AMERICA, N A Plasma torch with LCD display with settings adjustment and fault diagnosis
9881294, Jul 10 2001 Liberty Peak Ventures, LLC RF payment via a mobile device
9886692, Jul 10 2001 Liberty Peak Ventures, LLC Securing a transaction between a transponder and a reader
9993934, Mar 07 2014 BANK OF AMERICA, N A Liquid pressurization pump and systems with data storage
RE36109, Jul 12 1995 Mobile Technics LLC Checkout system
RE38702, Feb 11 1992 Innovation 2 Market Limited Security system
RE43157, Sep 12 2002 Liberty Peak Ventures, LLC System and method for reassociating an account number to another transaction account
RE43460, Jan 21 2000 Liberty Peak Ventures, LLC Public/private dual card system and method
RE45615, Jul 10 2001 Liberty Peak Ventures, LLC RF transaction device
RE46326, Oct 20 2000 Promega Corporation RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags
RE47599, Oct 20 2000 Promega Corporation RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags
Patent Priority Assignee Title
3832530,
4068232, Feb 12 1976 CITICORP NORTH AMERICA, INC Passive encoding microwave transponder
4207468, Jul 27 1976 Kilo Corporation Object identification system
4242663, Feb 01 1979 Lockheed Electronics Corporation Electronic identification system
4260983, Jan 11 1978 Tag Radionics Limited Presence sensing detector and system for detecting a receiver/transmitter device affixed to an article
4475481, Jul 06 1981 B I INCORPORATED Identification system
4656463, Apr 21 1983 Intelli-Tech Corporation LIMIS systems, devices and methods
4663625, Nov 30 1983 Motion Magnetics Inc. Passive tag identification system and method
4673932, Dec 29 1983 Revlon Consumer Products Corporation Rapid inventory data acquistion system
4688026, May 15 1984 Method of collecting and using data associated with tagged objects
4730188, Feb 15 1984 Digital Angel Corporation Identification system
4742470, Dec 30 1985 GTE Valeron Corporation; GTE VALERON CORPORATION, 750 STEPHENSON HIGHWAY, TROY, MI , 48007-3950, A CORP OF DE Tool identification system
4857893, Jul 18 1986 B I INCORPORATED Single chip transponder device
4862160, Dec 29 1983 Revlon Consumer Products Corporation Item identification tag for rapid inventory data acquisition system
4931788, Dec 05 1986 Meridian Micro-Systems Ltd. Transponder and interrogator
4963887, Aug 31 1988 YOKOWO CO , LTD Full duplex transponder system
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 15 1991ANDREWS, GEORGE F INTERAMERICAN INDUSTRIAL COMPANY, A CORP OF FLASSIGNMENT OF ASSIGNORS INTEREST 0055920714 pdf
Jan 18 1991Interamerican Industrial Company(assignment on the face of the patent)
Mar 24 1992Interamerican Industrial CompanyRAMATEC CORPORATIONMERGER SEE DOCUMENT FOR DETAILS 0067520840 pdf
Oct 18 1993RAMATEC CORPORATONANDREWS, GEORGE F ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0067520842 pdf
Date Maintenance Fee Events
Oct 31 1995REM: Maintenance Fee Reminder Mailed.
Mar 24 1996EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Mar 24 19954 years fee payment window open
Sep 24 19956 months grace period start (w surcharge)
Mar 24 1996patent expiry (for year 4)
Mar 24 19982 years to revive unintentionally abandoned end. (for year 4)
Mar 24 19998 years fee payment window open
Sep 24 19996 months grace period start (w surcharge)
Mar 24 2000patent expiry (for year 8)
Mar 24 20022 years to revive unintentionally abandoned end. (for year 8)
Mar 24 200312 years fee payment window open
Sep 24 20036 months grace period start (w surcharge)
Mar 24 2004patent expiry (for year 12)
Mar 24 20062 years to revive unintentionally abandoned end. (for year 12)