A thin film electrode for a rechargeable (secondary) battery is prepared by electron beam deposition of LiMn2 O4, LiCoO2, or LiNiO2 on a smooth, amorphous substrate surface and in situ annealing of the deposited lithium composition at a temperature below about 500°C The amorphous nature of the substrate surface prevents epitaxial growth or ordered orientation of the minute composition crystallites thus formed. The finely granular structure of the resulting electrode thin film presents abundant surface area that enables a 4V battery to provide current densities in the range of 500 microamps/cm2. The low annealing temperature enables formation of the electrode structure and subsequent battery assembly directly upon semiconductor devices and integrated circuitry.

Patent
   5110696
Priority
Nov 09 1990
Filed
Jul 22 1991
Issued
May 05 1992
Expiry
Nov 09 2010
Assg.orig
Entity
Large
99
3
EXPIRED
1. A method of preparing a thin film lithiated transition metal oxide intercalation battery electrode which comprises:
a) situating a suitable coating substrate in an air-tight enclosure with a supply of said lithiated metal oxide;
b) establishing within said enclosure a low pressure, carbon-free atmosphere;
c) vaporizing at least a portion of said metal oxide;
d) condensing said metal oxide vapor on a surface of said substrate in a coating having a thickness in the range of about 1 to 5 micrometers; and
e) heating said coating within said atmosphere at a temperature and for a time sufficient to convert said coating to crystallites of said metal oxide having a grain size in the range of about 0.05 to 0.1 micrometers.
12. A rechargeable lithium battery comprising an electrode providing a source of lithium ions, an electrolyte, and a counter-electrode consisting essentially of a lithiated transition metal oxide intercalation compound selected from the class consisting of LiMn2 O4, LiCoO2, and LiNiO2
characterized in that said counter-electrode consists essentially of a thin film of said intercalation compound prepared by
a) situating a suitable coating substrate in an air-tight enclosure with a supply of said lithiated metal oxide;
b) establishing within said enclosure a low pressure, carbon-free atmosphere;
c) vaporizing at least a portion of said metal oxide;
d) condensing said metal oxide vapor on a surface of said substrate in a coating having a thickness in the range of about 1 to 5 micrometers; and
e) heating said coating within said atmosphere at a temperature and for a time sufficient to convert said coating to crystallites of said metal oxide having a grain size in the range of about 0.05 to 0.1 micrometer.
2. A method according to claim 1 wherein said lithiated metal oxide is selected from the class consisting of LiMn2 O4, LiCoO2, LiNiO2.
3. A method according to claim 1 wherein during said vapor condensing step said carbon-free atmosphere consists essentially of oxygen at a pressure in the range of about 10-5 to 10-3 torr.
4. A method according to claim 3 wherein said substrate is maintained at a temperature below about 140°C during said vapor condensing step.
5. A method according to claim 1 wherein said lithiated metal oxide is LiMn2 O4 and said heating is effected at about 400°C in an atmosphere consisting essentially of oxygen at a pressure in the range of about 10 to 100 torr.
6. A method according to claim 5 wherein said heating is effected for a period of about 2 hours.
7. A method according to claim 1 wherein said substrate coating surface consists essentially of an amorphous, substantially chemically inert substance.
8. A method according to claim 7 wherein said substrate coating surface substance is gold.
9. A rechargeable lithium intercalation battery cell comprising a thin film electrode prepared according to the method of claim 2.
10. A battery cell according to claim 9 wherein said thin film is the positive electrode of said cell.
11. A battery cell according to claim 10 wherein said negative electrode comprises a material selected from the class consisting of Li, Al, WO2, and graphite.
13. A battery according to claim 12
characterized in that said substrate coating surface consists essentially of an amorphous, substantially chemically inert substance.
14. A battery according to claim 13
characterized in that said substrate coating surface substance is gold.
15. A battery according to claim 14
characterized in that said substrate is maintained at a temperature below about 140°C during said vapor condensing step.
16. A battery according to claim 15
characterized in that said lithiated metal oxide is LiMn2 O4 and said heating is effected at about 400°C in an atmosphere consisting essentially of oxygen at a pressure in the range of about 10 to 100 torr.
17. A battery according to claim 16
characterized in that said heating is effected for a period of about 2 hours.

This application is a continuation-in-part of Ser. No. 07/612,086, filed 9, Nov. 1990, now abandoned.

This invention relates to secondary (rechargeable) lithium batteries which utilize thin film intercalation compounds, principally as the positive electrode. In particular, the invention provides means for fabricating such battery electrodes as thin films of lithiated ternary transition metal oxides, including LiMn2 O4, LiCoO2, and LiNiO2.

Rapid growth in the use of electronics instrumentation ranging from sophisticated telecommunication equipment and computers to audio-visual systems, watches, and toys has generated a wide-spread requirement for electronic circuits that include devices having their own power sources and energy storage. Therefore, there is a critical need for low-cost, miniaturized, rechargeable energy storage devices (batteries) that have high energy densities and can deliver power reliably at a constant voltage over many recharge cycles. As an additional requirement for most practical applications, the fabrication of these secondary batteries must be compatible with microelectronics technologies in order that such power sources may be fully integrated into complex microcircuits.

Thin-film, multilayer heterostructure systems including compounds capable of intercalating lithium ions have thus far offered the most promise of meeting the need for miniaturized secondary batteries. For example, Meunier et al., in Mat. Sci. and Eng., B3 (1989) 19-23, describe such layered structures that include TiS2 or TiSx OY positive electrode intercalation compounds with elemental lithium negative electrodes. These materials provide only about 1.25 to 2.6 V at a 1 microamp/cm2 current density, however. A similar lithium anode thin film cell described in U.S. Pat. No. 4,751,159 employs AgMo6 S8 as the positive electrode intercalation material and is reportedly capable of providing voltages of about 1.4 to 3 V at a current density of 300 microamps/cm2. Although this intercalation cathode compound shows improving performance capability, thin film battery composites continue to suffer from the disadvantage of depending upon dangerously reactive lithium metal anodes as the Li+ ion source.

Further improved performance with open circuit voltages in the range of 4 V at energy densities of 200 to 500 microamps/cm2 has been exhibited by secondary battery cells having bulk, pelletized positive intercalation electrodes of three-dimensional, spinel-structured LiMn2 O4 (U.S. Pat. No. 4,828,834), and layered LiCoO2 (Mizushima et al., Mat. Res. Bull., 15, 783 (1980)) and LiNiO2 (Dahn et al., Solid State Ionics, 44, 87 (1990)). These materials exhibit the additional benefits of being light weight and providing a source of lithium ions that enables substitution of similar or other intercalatable materials, e.g., graphite, WO2, and Al, for the environmentally undesirable lithium metal anode.

Unfortunately, however, these lithiated transition metal oxides have properties that until now have detracted from their serious consideration as candidates in thin film fabrication processes with widely-used electronic component materials such as GaAs and silicon. Initially, the great disparity between the melting points and atomic masses of lithium and the transition metal constituent would ordinarily prevent stoichiometric deposition from a bulk intercalation compound source in commonly-employed fabrication processes such as reactive electron beam evaporation. Further, the high temperatures, often in excess of 800°C, at which these intercalation compounds are normally crystallized in bulk are inimical to their incorporation into microcircuits with GaAs decomposing above 350°C or Si which deteriorates above about 500°C Such high temperature processing of these lithiated ternary metal oxides has also been found to produce crystallite grain sizes generally larger than about one micrometer, thereby severely limiting the electrode surface area, and thus the intercalation kinetics, in typical 0.5 to 1.5 micrometer thin films.

In the present invention, we have found the means to avoid these disadvantages and to fabricate lithiated ternary transition metal oxide thin film intercalation electrodes for secondary batteries under conditions that are compatible with microelectronics technology and that produce high electrode surface area and resulting exceptional performance.

A thin film intercalation electrode of fine grain lithiated transition metal oxide is prepared in the present invention by low temperature annealing of a stoichiometrically composed thin film lithiated oxide layer deposited by reactive electron beam evaporation onto a suitable substrate from a bulk source of the oxide compound. In order to obtain a desirable 0.05 to 0.1 micrometer crystallite grain size during annealing, any epitaxial influence there may be at the substrate surface which might promote ordered or preferential crystal growth is suppressed by interposing an amorphous, inert buffer layer between the substrate surface and the deposited film.

A crystalline substrate, for example, is typically coated with a thin film layer of gold in any evaporative or sputtering technique to provide such a buffer layer upon which the lithiated electrode compound condenses during the evaporative coating operation. In the subsequent annealing step, the ternary lithiated composition film, having no contact with any influential substrate surface formation, crystallizes to the desired intercalatable phase in unordered, random fashion and thereby develops crystallites no larger than about 0.1 micrometer.

With less influential substrates, such as quartz, stainless steel, aluminum, and the like, the inert buffer layer is nonetheless useful in masking any physical imperfections that might nucleate larger crystal growth. The inert property of the buffer is particularly beneficial in preventing chemical reaction between a substrate and the highly reactive lithium component of the electrode composition film, even at annealing temperatures.

The unique physical and chemical properties of lithium which previously have prevented practical thin film coating of desirable intercalation compositions have been accounted for in the present method of electrode preparation. In order to minimize preferential evaporation of the lower melting lithium and to thus prevent disruption of the stoichiometric component balance of the ternary compound during the coating process, the preannealed intercalation composition source is presented in sufficiently small size to ensure that the non-scanning electron beam cone eminating from the coating apparatus ring filament contacts substantially the entire surface of the source material. Disproportionate accumulation of lithium at the substrate target due to lower atomic mass is limited by reducing the space, and thus the flight time, between the composition source and the target. Finally, reevaporation loss of lithium from the target due to heat generated in the coating process is minimized by supplemental cooling of the substrate until the desired film thickness is deposited.

The lower temperature annealing of the coated ternary composition film that yields fine crystallite formation is made possible by eliminating intermediate exposure of the film to air. A heating element incorporated into the substrate support plate enables the coated film to remain in the evacuated arena throughout the coating and annealing operations. The reactive lithium film component is thereby prevented from otherwise forming the carbonate that requires destructively high annealing temperatures.

After in situ annealing and intercalation compound crystallite formation, the thin film electrode element may be safely removed to ambient atmosphere for completion of conventional storage cell assembly with appropriate electrolyte and anode elements. The thin film lithiated intercalation materials prepared by the present method may be employed also as anodes where it is desired to replaced metallic lithium.

The present invention will be described with reference to the accompanying drawing of which:

FIG. 1 is a representative elevation view, in cross-section, of a thin film intercalation electrode of the invention;

FIG. 2 is an exploded view of a test cell apparatus employed to test the efficacy of a thin film cathode prepared according to the invention; and

FIG. 3 is a graph of test results of a thin film cathode of the invention charting voltage output and recharging characteristics against the level of lithium in the intercalation composition.

The thin film materials of the present invention are intended primarily for use as positive electrodes in secondary, i.e., rechargable, lithium battery cells with lithium metal or environmentally preferred lithium intercalated negative electrodes, such as Al, WO2,or graphite. The present intercalatable thin films may, of course, also find use as such substitute negative electrodes. In either event, the invention provides means for preparing these electrodes as thin films which, by generally accepted definition, range up to a few micrometers in thickness.

Previously, maintaining a stoichiometric balance of compound ingredients during the fabrication of such thin film electrodes of known lithium intercalation compounds, e.g., LiMn2 O4, LiCoO2, and LiNiO2, was considered markedly infeasible due to the contributing effects of chemical reactivity of lithium, the great disparity of its melting point and atomic mass from those properties of the component transition metals, and the high temperatures usually required in processing the compounds. For example, the accepted range of annealing temperatures, commonly in excess of 800°C, used in the phase conversion of these lithiated intercalation compounds discouraged their consideration for use in integration of power supplies with microelectronic circuitry typically employing materials decomposing or deteriorating at such temperatures. The vulnerability of other desirable substrates, e.g., aluminum with a melting point of about 700°C, and the exaggerated reactivity of lithium with useful substrate materials also detracted from the appeal of thin film lithiated intercalation compounds.

The present invention, however, avoids these apparent drawbacks in allowing fabrication of thin film electrodes using ternary lithiated transition metal oxides and comparatively low temperature substrate materials. These electrodes not only maintain, but in fact improve upon the functional performance properties of prior bulk or pelletized electrode applications of the same lithiated intercalation compounds in secondary batteries. This advance has been achieved primarily in the ability of the present processing to apply the thin film coating with stoichiometric compound balance and to convert the coated compound to the desired intercalation phase at a lower temperature and in an environment that promote an exceptionally small crystallite, high surface area intercalation medium.

A typical electrode structure 10, such as used in the present examples, is depicted in FIG. 1 and consists essentially of a substrate 12, an inert buffer layer 14, and a thin film layer 16 of lithiated intercalation compound crystallites. The substrate may be selected from a wide range of materials according to intended application. In the development of the present invention, for instance, nickel and stainless steel substrates served effectively while providing structural testing support. Further, as a means of confirming low temperature applicability of the process, an aluminum substrate later employed in exemplary test cells not only imposed a readily satisfied temperature limitation, but also provided an effective current collector in the test cell assembly. In ultimate use with integrated microelectronic circuitry, substrate 12 could comprise GaAs, Si, or other semiconductor device material. An insulating layer (not shown) of SiO2 or the like would, of course, be interposed between the semiconductor device and the cell structure in order to maintain the autonomous function of each device. Metallic buffer layer 14 could then serve as the electrical contact for the cell electrode.

Gold serves particularly well as the thin film buffer layer 14 at about 300 nm thickness, providing both the desired properties of chemical inertness for protection of the substrate and surface amorphism to minimize ordered crystallite growth. Where gold does not exhibit optimal adhesion to a substrate, a thin film titanium ground layer 13 at about 10 nm is useful to ensure effective bonding. Both these layers may be applied with conventional thermal or electron beam evaporation or sputtering techniques in preparation for deposition of the lithiated thin film intercalation layer 16 in the present process.

Coating of prepared substrates to provide test cell electrodes was carried out in a commercial electron beam evaporator (Edwards High Vacuum International, model E06A) that had been refitted with fixtures for implementing the process of the invention. The approximately 10 mm diameter multiple, carousel-mounted source compound crucibles of the apparatus each accommodated less than about 1 gram of source material and were employed in sequence when deposits of greater than about 1 micrometer thickness was desired. The vertical location of the crucibles was also controllable to enable selective positioning of the source material in the tungsten ring filament electron beam cone. In order to obtain an optimally representative composition of source compound vapors, the active crucible was normally situated during the coating operation on a level at which the beam diameter was substantially the same as that of the source crucible, thus ensuring vaporization over the entire source surface.

The mounting stage for the sample substrate included both a Neslab Coolflow II closed circuit cooling unit and a heater assembly fashioned of a Union Carbide Boralectric boron nitride/graphite resistive heater sandwiched between Hayns-alloy stainless steel plates. The chilled water cooling system was capable of maintaining the substrate surface at about 140°C during the evaporative coating procedure and the Variac powerstat controlled sample heating system enabled the in situ annealing of lithium metal oxide coating up to temperatures in excess of 900° C. Having this wide range of temperature control during the entire electrode fabrication process was instrumental in eliminating the need for removing the coated substrate from the low pressure, oxygen background environment during transition between these operations. Thus isolating the thin film from atmospheric contact while in its amorphous coated phase avoids the carbonate contamination that previously dictated destructively high temperature phase conversion annealing and led to excessive crystal growth size of the intercalation composition.

Coating source compositions were initially prepared in the manner usually employed for obtaining the bulk, pelletized lithiated intercalation electrode materials. For example, well-mixed stoichiometric proportions of lithium carbonate and manganese oxide are normally reacted in air at 800°C for at least 24 hour to obtain intercalatable LiMn2 O4. LiCoO2 and LiNiO2 source materials are similarly prepared in known, and even more stringent, process conditions. Scanning electron microscope measurement of these bulk materials indicate a crystal grain size range, e.g., about 1 to 3 micrometers for LiMn2 O4, that is adequate for pellet cathode "button" batteries, but is grossly excessive for use in thin film electrode fabrication. Since these compounds are physically reconstituted from the vapor phase during the present coating process, however, the bulk-prepared source compound loaded into a coating apparatus crucible provides an effective source.

In the fabrication of an exemplary LiMn2 O4 thin film test cell electrode, a 0.5 mm thick prepared aluminum substrate of about 10 mm diameter was affixed to the coating apparatus support stage above the ring filament. The source compound crucibles were arranged on the carousel with one directly below the mounted substrate at a distance of about 225 mm. This separation between the source and substrate was considerably less than commonly employed in the commercial coating apparatus and was selected to minimize the vapor "flight time" to the deposition surface and thereby compensate for the significant difference between the atomic masses of lithium and manganese. Without such compensation, the more rapid movement of the lighter lithium could significantly disrupt the stoichiometric balance of the deposited thin film.

The coating operation generally followed common electron beam evaporation procedures with evacuation of the sealed apparatus at the outset to a base pressure of about 3 to 5×10-7 torr. A pure oxygen background gas was then added to obtain a stable initial operating pressure of about 3×10-5 torr which, due to coating material vaporization, would ultimately increase further to about 3×10-4 torr. The ring filament was then energized at 5.5 KV and about 100 mA to initiate evaporation of the source compound with resulting deposition of the lithiated metal oxide on the substrate. The substrate temperature thereafter increased gradually from the combined affects of the heat radiating from the source and the heat of condensation of the deposited composition. This temperature was allowed to increase to about 140° C. at which it was maintained throughout the remainder of the coating operation by controlling the flow of coolant to the substrate support stage.

Deposition of lithiated compound was monitored by means of the integral quartz crystal microbalance thickness gauge of the coating apparatus and was maintained at a uniform rate of about 0.5 to 1 nm/sec by responsive control of power to the filament. Upon completion of the desired thin film coating of about 1 micrometer, filament power was discontinued. For thin film electrode coatings of up to about 5 micrometers, the nearly depleted source compound crucible was replaced as required during the coating operation with other carousel-mounted crucibles.

At the completion of the coating operation, cooling was discontinued and the oxygen background atmosphere was increased to a range of about 10 to 100 torr. The substrate support stage heating element was then energized to raise the substrate and thin film lithium metal oxide coating to about 400°C where it was maintained for about 2 hours to effect the desired intercalatable crystalline phase. After natural cooling to ambient temperature, the completed electrode element coating was analyzed by RBS, NMR, and X-ray diffraction techniques and was determined to consist essentially of Lix Mn2 O4 with x nearly 1 and the Li/Mn ratio smaller than the crystal grains of bulk Lix Mn2 O4 intercalation compound annealed at 800°C

The intercalation kinetics of the sample electrode thus prepared were tested in a conventional Swagelock test cell generally depicted in FIG. 2. This device comprises a body fitting 23 in which are assembled insulating polypropylene inserts 24 and the active cell elements consisting of the sample cathode of substrate 12 and electrode thin film 16, an anode 21 of lithium-plated stainless steel, and an intermediate electrolyte separator 22 of glass cloth saturated with a 1 molar solution of LiClO4 in equal parts of ethylene carbonate and diethoxyethane. A stainless steel backing plate 25 and compression spring 26 are added and the assembly is completed with stainless steel plungers 27 mounted in and electrically insulated from end caps 28. When caps 28 are threaded upon body 23, the electrolyte and electrode elements are brought into firm active contact to form the test cell.

A sample electrode having a 1.5 micrometer thin film layer of about 350 micrograms of LiMn2 O4 was tested over series of charge/discharge cycles at varying current densities. FIG. 3 shows a representative performance of the test cell over the first 14 cycles at a current density of 10 microamps/cm2. The efficacy of the cell is apparent in the exceptionally small voltage difference in the charge and discharge cycling between about 3.5 and 4.4 V which demonstrates the limited polarization of the charges and the ability of the cell to maintain high charge and discharge current densities. Performance at other current densities was likewise superior to prior art thin film electrode cells. For example, even at 55°C and a current density of 200 microamps/cm2 the sample positive electrode was able to maintain about 70% of the first discharge capacity after more than 200 charge/discharge cycles. Room temperature discharge of the test cell within about 7 minutes at a current density of 500 microamps/cm2 showed polarization of only about 0.1 volt and a capacity decrease of less than about 10% from that exhibited at 100 microamps/cm2.

The admirable performance of the lithiated thin film electrode batteries of the present invention is due in large measure to its capability of maintaining a stoichiometric balance of the coated thin film composition throughout the fabrication process and of enabling a low temperature, unordered formation of fine, high surface area crystallite layers that enhance lithium ion intercalation. These advantageous properties have heretofore not been achieved in other attempted lithiated thin film batteries, nor has the performance of the present test cells been approached with prior thin film batteries of other intercalation compositions. In addition to the suggested variations in electrode composition and processing, it is anticipated that other embodiments of the present invention will undoubtedly occur to the skilled artisan in the light of the foregoing description. Such embodiments are likewise intended to be encompassed within the scope of the invention as recited in the following claims.

Tarascon, Jean-Marie, Shokoohi, Frough K.

Patent Priority Assignee Title
10617306, Nov 01 2012 BLUE SPARK INNOVATIONS, LLC Body temperature logging patch
10631731, Dec 31 2014 BLUE SPARK INNOVATIONS, LLC Body temperature logging patch
10680277, Jun 07 2010 Sapurast Research LLC Rechargeable, high-density electrochemical device
10849501, Aug 09 2017 BLUE SPARK INNOVATIONS, LLC Body temperature logging patch
5168019, Mar 13 1991 Sony Corporation Nonaqueous electrolyte secondary battery
5192629, Apr 21 1992 VALENCE TECHNOLOGY NEVADA , INC High-voltage-stable electrolytes for Li1+x Mn2 O4 /carbon secondary batteries
5196279, Jan 28 1991 VALENCE TECHNOLOGY, INC DE Rechargeable battery including a Li1+x Mn2 O4 cathode and a carbon anode
5211933, Apr 23 1991 VALENCE TECHNOLOGY NEVADA , INC Method for preparation of LiCoO2 intercalation compound for use in secondary lithium batteries
5366829, Jun 14 1993 Valence Technology, Inc. Method of forming an anode material for lithium-containing solid electrochemical cells
5370710, Oct 09 1990 Sony Corporation Nonaqueous electrolyte secondary cell
5393622, Feb 07 1992 Matsushita Electric Industrial Co., Ltd. Process for production of positive electrode active material
5418090, Feb 17 1993 Valence Technology, Inc Electrodes for rechargeable lithium batteries
5422203, Sep 28 1992 VALENCE TECHNOLOGY NEVADA , INC Rapid reversible intercalation of lithium into carbon secondary battery electrodes
5425932, May 19 1993 VALENCE TECHNOLOGY NEVADA , INC Method for synthesis of high capacity Lix Mn2 O4 secondary battery electrode compounds
5525443, Oct 25 1990 Matsushita Electric Industrial Co., Ltd. Non-aqueous secondary electrochemical battery
5569520, Jan 12 1994 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
5569561, Jan 21 1994 Renata A.G. Primary or secondary electrochemical generator having a nanoparticulate electrode
5612152, Jan 12 1994 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
5648057, Apr 01 1993 Toda Kogyo Corporation Process for producing LiM3+ O2 or LiMn2 O4 and LiNi+ O2 for use in positive electrode of secondary battery
5656391, Dec 08 1992 lectrochemical alkali metal cell and process for its manufacture
5667660, Sep 12 1995 ENERSYS ADVANCED SYSTEMS INC Synthesis of charged Lix CoO2 (0<×<1) for primary and secondary batteries
5709969, Oct 26 1994 Sony Corporation Non-aqueous electrolyte secondary cell
5718877, Jun 18 1996 FMC Corporation Highly homogeneous spinal Li1+x Mn2-x O4+y intercalation compounds and method for preparing same
5750288, Oct 03 1995 ROYAL BANK OF CANADA Modified lithium nickel oxide compounds for electrochemical cathodes and cells
5766800, Jun 18 1996 FMC Corporation Highly homogeneous spinel Li1+X Mn2-X O4+Y intercalation compounds and method for preparing same
5789115, Apr 05 1996 FMC Corporation Method for preparing spinel Li1+X Mn2-X O4+Y intercalation compounds
5792442, Jun 18 1996 FMC Corporation Highly homogeneous spinel Li1+X Mn2-X O4 intercalation compounds and method for preparing same
5824434, Nov 30 1992 Canon Kabushiki Kaisha Secondary battery
5888669, Mar 14 1997 WANXIANG CLEAN ENERGY USA ACQUISITION LLC; A123 SYSTEMS LLC Transition metal-based ceramic material and articles fabrication therefrom
5961949, Apr 05 1996 FMC Corporation Method for preparing spinel Li1+x MN2-x O4-Y intercalation compounds
5998063, Dec 02 1994 Canon Kabushiki Kaisha Lithium secondary cell
6045942, Dec 15 1997 Avery Dennison Corporation Low profile battery and method of making same
6045950, Jun 26 1998 DURACELL U S OPERATIONS, INC Solvent for electrolytic solutions
6114064, Dec 05 1995 FMC Corporation Highly homogeneous spinel Li1+x Mn2-x O4 intercalation compounds and method for preparing same
6187282, Aug 13 1996 MURATA MANUFACTURING CO , LTD Manufacturing method of lithium complex oxide comprising cobalt or nickel
6207326, Nov 30 1992 Canon Kabushiki Kaisha Secondary battery
6270924, Jul 16 1996 MURATA MANUFACTURING CO , LTD , A CORP OF JAPAN Lithium secondary battery
6270926, Jul 16 1996 Murata Manufacturing Co., Ltd. Lithium secondary battery
6280699, Apr 05 1996 FMC Corporation Method for preparing spinel Li1+xMn2-xO4+y intercalation compounds
6344366, Sep 15 1999 Lockheed Martin Energy Research Corporation Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing
6391492, Apr 05 1992 Canon Kabushiki Kaisha Secondary battery
6409984, Jun 17 1996 Murata Manufacturing Co., Ltd. Spinel-type lithium manganese complex oxide for a cathode active material of a lithium secondary battery
6555270, Sep 15 1999 Lockheed Martin Energy Research Corporation Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing
6562518, Sep 15 1999 Lockheed Martin Energy Research Corporation Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing
6582481, Nov 23 1999 Johnson Research & Development Company, Inc. Method of producing lithium base cathodes
6652605, Apr 14 1998 Commissariat a l'Energie Atomique Process for preparation of a lithiated or overlithiated transition metal oxide, active positive electrode materials containing this oxide, and a battery
6916679, Aug 09 2002 Sapurast Research LLC Methods of and device for encapsulation and termination of electronic devices
6982132, Oct 15 1997 Trustees of Tufts College Rechargeable thin film battery and method for making the same
7022290, Jun 19 2001 Rutgers, The State University System structure for in situ x-ray study of electrochemical cell component performance
7081320, Nov 30 1992 Canon Kabushiki Kaisha High energy density secondary battery for repeated use
7166384, Mar 10 1998 BiPolar Technologies Corp. Microscopic batteries for MEMS systems
7169328, Jan 17 2003 WANXIANG CLEAN ENERGY USA ACQUISITION LLC; A123 SYSTEMS LLC Multiphase nanocomposite material and method for its manufacture
7205662, Feb 27 2003 DEMARAY, LLC Dielectric barrier layer films
7238628, May 23 2003 DEMARAY, LLC Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
7262131, Feb 27 2003 DEMARAY, LLC Dielectric barrier layer films
7462419, Mar 10 1998 Bipolar Technologies, Inc. Microscopic batteries for MEMS systems
7557433, Oct 25 2004 HOFMAN, DAVID R Microelectronic device with integrated energy source
7838133, Sep 02 2005 DEMARAY, LLC Deposition of perovskite and other compound ceramic films for dielectric applications
7959769, Dec 08 2004 Sapurast Research LLC Deposition of LiCoO2
7993773, Aug 09 2002 Sapurast Research LLC Electrochemical apparatus with barrier layer protected substrate
8021778, Aug 09 2002 Sapurast Research LLC Electrochemical apparatus with barrier layer protected substrate
8029927, Mar 22 2005 BLUE SPARK INNOVATIONS, LLC Thin printable electrochemical cell utilizing a “picture frame” and methods of making the same
8062708, Sep 29 2006 Sapurast Research LLC Masking of and material constraint for depositing battery layers on flexible substrates
8076005, May 23 2003 DEMARAY, LLC Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
8197781, Nov 07 2006 Sapurast Research LLC Sputtering target of Li3PO4 and method for producing same
8236443, Jun 15 2005 Sapurast Research LLC Metal film encapsulation
8260203, Sep 12 2008 Sapurast Research LLC Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
8268475, Mar 22 2005 BLUE SPARK INNOVATIONS, LLC Thin printable electrochemical cell and methods of making the same
8268488, Dec 21 2007 Sapurast Research LLC Thin film electrolyte for thin film batteries
8350519, Apr 02 2008 Sapurast Research LLC Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
8394522, Apr 29 2008 Sapurast Research LLC Robust metal film encapsulation
8404376, Aug 09 2002 Sapurast Research LLC Metal film encapsulation
8431264, Aug 09 2002 Sapurast Research LLC Hybrid thin-film battery
8441411, Jul 18 2007 BLUE SPARK INNOVATIONS, LLC Integrated electronic device and methods of making the same
8445130, Nov 17 2005 Sapurast Research LLC Hybrid thin-film battery
8508193, Oct 08 2008 Sapurast Research LLC Environmentally-powered wireless sensor module
8518581, Jan 11 2008 Sapurast Research LLC Thin film encapsulation for thin film batteries and other devices
8535396, Aug 09 2002 Sapurast Research LLC Electrochemical apparatus with barrier layer protected substrate
8574754, Dec 19 2007 BLUE SPARK INNOVATIONS, LLC High current thin electrochemical cell and methods of making the same
8599572, Sep 01 2009 Sapurast Research LLC Printed circuit board with integrated thin film battery
8636876, Dec 08 2004 DEMARAY, LLC Deposition of LiCoO2
8722233, May 06 2005 BLUE SPARK INNOVATIONS, LLC RFID antenna-battery assembly and the method to make the same
8722235, Apr 21 2004 BLUE SPARK INNOVATIONS, LLC Thin printable flexible electrochemical cell and method of making the same
8728285, May 23 2003 DEMARAY, LLC Transparent conductive oxides
8734980, May 06 2005 BLUE SPARK INNOVATIONS, LLC Electrical device-battery assembly and the method to make the same
8765284, May 21 2012 BLUE SPARK INNOVATIONS, LLC Multi-cell battery
8906523, Aug 11 2008 Sapurast Research LLC Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
9027242, Sep 22 2011 BLUE SPARK INNOVATIONS, LLC Cell attachment method
9099410, Jul 11 2011 HOFMAN, DAVID R Microelectronic device with integrated energy source
9334557, Dec 21 2007 Sapurast Research LLC Method for sputter targets for electrolyte films
9413405, Oct 13 2003 HOFMAN, DAVID R Microelectronic device with integrated energy source
9444078, Nov 27 2012 BLUE SPARK INNOVATIONS, LLC Battery cell construction
9532453, Sep 01 2009 Sapurast Research LLC Printed circuit board with integrated thin film battery
9608307, May 11 2010 Robert Bosch GmbH Semiconductor substrate-based system for an RFID device, RFID device, and method for manufacturing such a semiconductor substrate-based system
9634296, Aug 09 2002 Sapurast Research LLC Thin film battery on an integrated circuit or circuit board and method thereof
9693689, Dec 31 2014 BLUE SPARK INNOVATIONS, LLC Body temperature logging patch
9782082, Nov 01 2012 BLUE SPARK INNOVATIONS, LLC Body temperature logging patch
9786873, Jan 11 2008 Allegro MicroSystems, LLC Thin film encapsulation for thin film batteries and other devices
9793523, Aug 09 2002 Sapurast Research LLC Electrochemical apparatus with barrier layer protected substrate
Patent Priority Assignee Title
4340652, Jul 30 1980 UNITED STATES OF AMERICA, AS REPRESENTED BY THE UNITED STATES DEPARTMENT OF ENERGY Ternary compound electrode for lithium cells
4567031, Dec 27 1983 Combustion Engineering, Inc. Process for preparing mixed metal oxides
4828834, Oct 29 1986 Sony Corporation Rechargeable organic electrolyte cell
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 19 1991SHOKOOHI, FROUGH K BELL COMMUNICATIONS RESEARCH, INC A CORP OF DELAWAREASSIGNMENT OF ASSIGNORS INTEREST 0057860860 pdf
Jul 19 1991TARASCON, JEAN-MARIEBELL COMMUNICATIONS RESEARCH, INC A CORP OF DELAWAREASSIGNMENT OF ASSIGNORS INTEREST 0057860860 pdf
Jul 22 1991Bell Communications Research(assignment on the face of the patent)
Mar 16 1999BELL COMMUNICATIONS RESEARCH, INC Telcordia Technologies, IncCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0102630311 pdf
Nov 03 2000Telcordia Technologies, IncVALENCE TECHNOLOGY NEVADA , INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0121340724 pdf
Date Maintenance Fee Events
Aug 11 1995M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 08 1995ASPN: Payor Number Assigned.
Sep 30 1999M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 19 2003REM: Maintenance Fee Reminder Mailed.
Nov 20 2003REM: Maintenance Fee Reminder Mailed.
May 05 2004EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
May 05 19954 years fee payment window open
Nov 05 19956 months grace period start (w surcharge)
May 05 1996patent expiry (for year 4)
May 05 19982 years to revive unintentionally abandoned end. (for year 4)
May 05 19998 years fee payment window open
Nov 05 19996 months grace period start (w surcharge)
May 05 2000patent expiry (for year 8)
May 05 20022 years to revive unintentionally abandoned end. (for year 8)
May 05 200312 years fee payment window open
Nov 05 20036 months grace period start (w surcharge)
May 05 2004patent expiry (for year 12)
May 05 20062 years to revive unintentionally abandoned end. (for year 12)