A steerable catheter comprising a hollow outer tube, a pair of coaxially aligned inner tubes disposed within a distal end portion of the outer tube, an actuating mechanism disposed at a proximal end of the outer tube, and a pull wire extending through the inner tubes from the distal end portion of the outer tube to the proximal end of the catheter. The actuating means includes a bushing slidable in the axial direction of the outer tube for tensioning the pull wire to thereby bend the distal end portion of the outer tube. A flat wire is disposed within the outer tube and is secured to the outer surface of the inner tubes to limit the direction of bending of the distal end portion. The catheter further includes a plurality of electrodes disposed at the distal end portion and connected by wires to an external monitor.

Patent
   5125896
Priority
Oct 10 1990
Filed
Oct 10 1990
Issued
Jun 30 1992
Expiry
Oct 10 2010
Assg.orig
Entity
Large
128
9
all paid
13. An electrode catheter having a proximal end portion and a distal end portion comprising means for bending said distal end portion of said catheter, said bending means comprising actuating means connected to said proximal end portion and a pull wire extending from said actuating means to said distal end portion, said actuating means slidable axially of said catheter to a distal position to tension said pull wire to bend said distal end portion, said pull wire extending through first and second coaxially aligned and axially spaced inner tubes disposed within said catheter at said distal end portion.
14. An electrode catheter having a proximal end portion and a distal end portion comprising means for bending said distal end portion of said catheter, said bending means comprising actuating means connected to said proximal end portion and a pull wire extending from said actuating means to said distal end portion, said actuating means slidable axially of said catheter to a distal position to tension said pull wire to bend said distal end portion, said pull wire extending through first and second coaxially aligned inner tubes disposed within said catheter at said distal end portion, and a longitudinally extending flat wire disposed parallel to said pull wire and secured to an outer surface of said first and second inner tubes to limit the direction of bending of said distal end portion of said catheter.
1. A steerable catheter comprising:
a hollow outer tube having a distal end portion and a proximal end portion;
a first inner tube disposed within said outer tube at said distal end portion;
actuating means disposed adjacent said proximal end portion of said outer tube;
a pull wire extending longitudinally from said actuating means to said distal end portion of said outer tube, said pull wire extending through said first inner tube;
said actuating means being slidable towards said distal end portion for tensioning said pull wire to thereby bend said distal end portion of said outer tube; and
a flat wire disposed within said outer tube parallel to said pull wire and secured to an outer surface of said first inner tube, said flat wire restricting the direction of bending of said distal end portion of said outer tube when said pull wire is tensioned.
7. A steerable catheter comprising:
a hollow outer tube having a distal end portion and a proximal end portion;
a first inner tube disposed within said outer tube at said distal end portion;
actuating means disposed adjacent said proximal end portion of said outer tube;
a pull wire extending longitudinally from said actuating means to said distal end portion of said outer tube, said pull wire extending through said first inner tube;
said actuating means being slidable towards said distal end portion for tensioning said pull wire to thereby bend said distal end portion of said outer tube;
a flat wire disposed within said outer tube parallel to said pull wire and secured to an outer surface of said first inner tube, said flat wire restricting the direction of bending of said distal end portion of said outer tube when said pull wire is tensioned;
said actuating means comprising a slidable plunger and an actuating bushing disposed between said plunger and said proximal end portion of said outer tube.
2. A steerable catheter comprising:
a hollow outer tube having a distal end portion and a proximal end portion;
a first inner tube disposed within said outer tube at said distal end portion;
actuating means disposed adjacent said proximal end portion of said outer tube;
a pull wire extending longitudinally from said actuating means to said distal end portion of said outer tube, said pull wire extending through said first inner tube;
said actuating means being slidable towards said distal end portion for tensioning said pull wire to thereby bend said distal end portion of said outer tube;
a flat wire disposed within said outer tube parallel to said pull wire and secured to an outer surface of said first inner tube, said flat wire restricting the direction of bending of said distal end portion of said outer tube when said pull wire is tensioned; and
a second inner tube spaced apart from and in coaxial alignment with said first inner tube, said second inner tube secured to said flat wire, and said pull wire extending through said second inner tube.
3. A steerable catheter as recited in claim 2, further comprising an electrode disposed at a tip of said distal end portion of said outer tube and a conducting wire extending from said electrode through said outer tube to a proximal end of the catheter.
4. A steerable catheter as recited in claim 3, further comprising a plurality of ring electrodes disposed within a wall of said outer tube at said distal end portion, and a conducting wire extending from each of said ring electrodes through said outer tube to said proximal end of said catheter.
5. A steerable catheter as recited in claim 2, further comprising a hollow stiffening tube disposed within said outer tube and extending from a central portion of said outer tube to said proximal end portion.
6. A steerable catheter as recited in claim 2, wherein an outer surface of said first and second inner tubes are secured to a surface of said flat wire.
8. A steerable catheter as recited in claim 2, wherein a central and proximal end portion of said outer tube comprises a wire braid.
9. A steerable catheter as recited in claim 2, wherein said outer tube comprises a flexible tube at said distal end portion and a rigid tube having a wire braid embedded therein at a central and proximal portion, said rigid tube secured to said flexible tube in coaxial alignment with said flexible tube.
10. A steerable catheter as recited in claim 2, wherein said first and second inner tubes are composed of a flexible plastic material.
11. A steerable catheter as recited in claim 2, wherein a length of said first inner tube is greater than a length of said second inner tube.
12. A steerable catheter as recited in claim 11, wherein said outer tube comprises a reinforced portion and a flexible portion, said first inner tube extending both distal and proximal of a junction between said reinforced and flexible portions.
15. A steerable catheter as recited in claim 14, wherein said first inner tube has a length greater than the length of said second inner tube.
16. A steerable catheter as recited in claim 15, wherein said first and second inner tubes are composed of a flexible plastic material.
17. A steerable catheter as recited in claim 16, wherein said second inner tube is positioned proximally of said first inner tube and is spaced from a distal tip of the catheter.
18. A steerable catheter as recited in claim 17, wherein said catheter comprises an outer tube having a flexible portion at said distal end portion and a rigid portion at said proximal end portion.
19. A steerable catheter as recited in claim 18, further comprising a longitudinally extending stiffening tube disposed inside said catheter proximally of said distal end portion.

1. Field of the Invention

This invention relates to a catheter and, more particularly, to an electrode catheter having a remotely curvable tip.

2. Description of the Related Art

The advantages of steerable catheters are known. Such catheters are inserted into a blood vessel or other body area and their distal end guided in various directions to reach areas of the body which would otherwise be inaccessible. Examples of steerable catheters are disclosed in U.S. Pat. Nos. 3,749,086 to Kline et al.; 3,773,034 to Burns et al., 3,552,384 to Pieric and 3,521,620 to Cook.

A steerable catheter should have both flexibility for steering the catheter tip and rigidity to control steering. Known prior art catheters have been unable to successfully combine these two characteristics, tending instead to sacrifice one of these characteristics at the expense of the other. It is also desirable to limit the direction of bending of the distal end of the catheter to provide better steering control.

Catheters having electrode means for monitoring parts of the body, such as the heart, by transmitting electrical signals for analysis on an external monitor are also known. Currently a need exists for an electrode catheter which is steerable to access areas of the heart which could not be reached by a non-bendable catheter. It would be desirable to provide an electrode catheter with a steerable tip that combines sufficient flexibility to allow steering of the catheter to desired areas with good torsional rigidity and steering control.

According to the invention, an improved steerable electrode catheter comprises a hollow outer tube, first and second inner tubes disposed within the outer tube, actuating means disposed at the proximal end of the outer tube, and a pull wire extending through the inner tubes and secured to the distal end portion of the catheter. The actuating means is slidable distally to displace the outer tube towards the distal end, thereby tensioning the pull wire and causing the distal end portion to bend. A flat wire is disposed within the outer tube and is secured to an outer surface of the inner tubes, parallel to the pull wire, to limit bending of the distal end portion of the outer tube in a direction perpendicular to the flat wire. The catheter also includes a plurality of electrodes at the distal end portion to transmit electrical signals from the location in the body, such as the heart, to an external monitor.

The objects, features and advantages of the present invention will be more fully appreciated as the same becomes better understood from the following detailed description of the present invention when considered in connection with the accompanying drawings, in which:

FIG. 1 is a side view showing the steerable catheter of the present invention;

FIG. 2 is a longitudinal sectional view showing the actuating mechanism of the steerable catheter of the present invention;

FIG. 3 is a longitudinal sectional view of the distal end portion of the catheter shown in a bent position;

FIG. 4 is a view of a catheter showing the distal end curved;

FIG. 5 is a cross section view taken along lines 4--4 of FIG. 3; and

FIG. 6 is a cross sectional view taken along lines 5--5 of FIG. 3.

Referring now to the drawings, wherein like reference numerals represent identical or corresponding parts throughout the several views, FIG. 1 shows the steerable catheter of the present invention designated generally by reference numeral 1. The catheter 1 can be used in a variety of applications, such as for cardiac treatment and diagnostic procedures. The catheter's steerability advantageously enables it to reach around curves or grooves and access narrow areas of the body, such as in the regions of the heart, which would otherwise not be accessible.

The catheter 1 of the present invention comprises a hollow outer tube 10 connected to an actuating mechanism 20. Reference numeral 30 designates generally the plug connection which joins the catheter 1 to an external monitor (not shown) for analyzing the region of the body in which the catheter is inserted.

Catheter 1 has a distal end portion 14 terminating in a distal electrode tip 15. Electrode tip 15 and distal end portion 14 are designed to be inserted into an area of a body such as an arterial blood vessel. A proximal end portion 12 and a central portion 16 connect the distal end portion 14 to the activating mechanism 20. It should be understood that the designation of these portions is for convenience of description only. Portion 14 is preferably composed of a soft material, and electrode tip 15 terminates in a hemispherically shaped region, thereby preventing puncturing of arterial (or other) walls.

Outer tube 10 has a central bore 104 extending through substantially its entire length. Central portion 16 and proximal end portion 12 of outer tube 10 are reinforced by a wire braid 105 (FIG. 5). The junction between the stiff wire braided area and the softer flexible distal portion 14 is designated in FIG. 3 by reference numeral 107. Although the outer tube 10 is shown as a single tube having a portion reinforced, alternatively, the reinforced portion can be in the form of a separate tube having a wire braid embedded therein which is welded to a flexible tube positioned at the distal end. In either embodiment, the reinforced portion provides rigidity to restrict bending of the proximal and central portions 12, 16 of the outer tube 10, thereby allowing only distal end portion 14 to flex.

Disposed within outer tube 10 is a pull wire 144 to induce bending of the catheter, a pair of inner tubes 142, 142' to retain pull wire 144, and a flat supporting wire 146 to restrict the direction of bending of the catheter. Inner tubes 142 and 142' are disposed within central bore 104 of outer tube 10 in the distal end portion 14. These inner tubes are disposed in approximate coaxial alignment and are spaced apart from one another so that the longer tube 142 is positioned proximally of the shorter tube 142'. Inner tubes 142 and 142' are spaced from the inner wall of outer tube 10 when outer tube 10 is in its straight position shown in FIG. 1.

Inner tubes 142, 142' are advantageously positioned and dimensioned to provide the desired curve for the distal end portion 14 when steering the catheter. Preferably, short inner tube 142' terminates slightly proximally of the distal tip electrode 15. Long tube 142 is positioned across junction 107 to provide for gradual transition in tensile strength of outer tube 10. That is, long tube 142 provides a progressive decrease in rigidity towards the distal tip 15, to thereby prevent breaking or snapping of the distal end portion 14 when steering the catheter. Tubes 142 and 142' also maintain the pull wire 144 on one side of a flat wire 146, the purpose of which is described below. In a preferred embodiment, the length of short tube 142' is approximately 0.5 cm, the length of long tube 142 is approximately 2.5 cm and it extends from approximately 1 cm proximal to junction 107. Of course, the inner tubes 142, 142' can be of other lengths as long as they achieve their function of allowing bending of the catheter and of retaining pull wire 144 as described below. The inner tubes 142, 142' are preferably composed of polyimide; however, other materials can be used as long as they have the same mechanical characteristics.

As shown in FIGS. 2 and 3, pull wire 144 is disposed longitudinally within bore 104 of outer tube 10 and is anchored at its distal end to the distal electrode 15 to direct the catheter to its desired position. Pull wire 144 extends the entire length of bore 104 through a housing of the actuating mechanism 20 so that its proximal end is anchored to a proximal portion of the mechanism in a manner described below. Pull wire 144 passes through the central openings of both inner tubes 142, 142' and is consequently retained therein and maintained on one side of flat wire 146. The tensioning of pull wire 144 causes the distal end portion 14 of outer tube 10 to bend from a straight position shown in FIG. 1 to a bent position illustrated in FIG. 4, which will be described in more detail below.

Flexible flat wire 146, preferably rectangular in cross section, is disposed longitudinally within bore 104 of outer tube 10, substantially parallel to pull wire 144 and inner tubes 142, 142', to limit the bending direction of the distal end portion 14 of the catheter 1 to one plane. The flat wire 146 extends through a substantial length of the distal end portion 14 of outer tube 10, its distal end terminating just proximally of the distal electrode 15. The proximal end of flat wire 146 terminates proximally of junction 107. In one embodiment, the length of flat wire 146 is 8 cm, its width is approximately 1 mm, and it is coated with an insulating material to prevent shorts between electrodes. Each of the inner tubes 142, 142' is secured to the bottom illustrated surface of flat wire 146 at the positions depicted in FIG. 3, preferably by adhesive, although other means of attachment can be utilized. Thus, flat wire 146 limits flexing of distal end portion 14 to a direction perpendicular to the large surface of wire 146 to thereby control steering.

Catheter 1 is provided with a plurality of electrodes, preferably made of platinum, at its distal end portion 14. The electrodes are electrically connected to a cable which feeds into a monitor for analysis of the part of the body in which the catheter 1 is inserted. For example, the electrodes can provide information regarding electrical signals within the heart by transmitting electrical signals from the distal end portion 14 of the catheter 1 to the monitor connected externally of the proximal end of the catheter. Thus, as shown in FIG. 3, in addition to electrode 15, three spaced apart ring electrodes 148 are disposed around the distal end portion 14. Pull wire 144 is anchored at its distal end to distal electrode 15. A conducting wire 147 is connected to distal electrode 15 and extends through inner tubes 142 and 142'. Separate conducting wires 145 are connected to each ring electrode 148 and extend outside of inner tubes 142 and 142'. The conducting wires 145, 147 extend through the entire length of central bore 104 and actuating mechanism 20, into plug connector 30 for connection to the external monitor. The ring electrodes 148 preferably range from 1 mm to 2 mm in width and are preferably spaced apart at a distance of approximately 1 cm. The distal electrode 15 preferably ranges from 1 mm to 5 mm in length.

A stiffening tube 162 (FIG. 3), having a bore 163, is disposed within central bore 104 of the outer tube 10 proximally to long inner tube 142 so that it frictionally engages central bore 104. Stiffening tube 162 is positioned proximal to junction 107, preferably at a distance of approximately 1 cm, and extends to proximal end portion 12 of outer tube 10, thereby providing increased rigidity to further restrict bending of the central and proximal end portions 12, 16 of outer tube 10. Bore 163 is dimensioned to allow passage therethrough of conducting wires 145, 147 and pull wire 144.

The actuating mechanism 20, depicted in FIGS. 1 and 2, comprises an actuating knob 201, a plunger 203 and a rubber stop 209, all of which are contained within a housing 205. Plunger 203 is disposed within bore 204 of a guide cap 207. Plunger housing 205 includes a threaded portion 206 that receives a mating threaded portion 208 of guide cap 207. Guide cap 207 has a central aperture extending therethrough to guide the axial movement of plunger 203. Pull wire 144 and conducting wires 145, 147, pass through the central aperture of guide cap 207 and bore 204 of plunger housing 205 and through a bore 210 in a rubber stop 209.

Plunger 203 is axially slidable within plunger housing 205. Rubber stop 209 is secured to the proximal end of the plunger 203 and frictionally engages the inner wall of the plunger housing 205 to control axial movement of plunger 203. Outward movement of plunger 203 is limited by guide cap 207 since its inner diameter is smaller than the outer diameter of plunger stop 203'.

Actuating knob 201 is secured at its proximal end to plunger 203 between the proximal end portion 12 of outer tube 10 and guide cap 207. The distal end of knob 201 is attached to the proximal end of tube 10 within a short protective sheath 206. Thus, movement of knob 201 causes simultaneous movement of plunger 203 and tube 10.

Plunger housing 205 further includes a retainer 214 to anchor the proximal end of pull wire 144. The proximal end of pull wire 144 is attached to a ball 217, which is housed within retainer 214 and its forward movement is restricted since its diameter is larger than the diameter of restricted passageway 219.

A second passageway 215, spaced from retainer 214, is formed in the rearmost portion of plunger housing 205 and is dimensioned to allow conducting wires 145 and 147 to pass from the plunger housing 205 into tubing 301 of plug connector 30.

An end cap 220 is attached to the rear portion of plunger housing 205. Cap 220 has a bore 221 cooperating with retainer 214 and an opening to receive tubing 301. Conducting wires 145 and 147 extend through tubing 301 and through socket 302 (FIG. 1) to link the electrodes of the catheter to an external monitor.

As is apparent from the description above, when catheter 1 is in its straight position shown in FIG. 1, actuating knob 201 is contiguous with front cap 207, and plunger 203 is in its inner position within plunger housing 205. To steer (bend) the catheter, actuating knob 201 is moved axially toward the distal end portion 14 of outer tube 10 in the direction of arrow A (FIG. 2), thereby causing displacement of the outer tube 10 as it moves forward relative to the anchored pull wire 144. The tension created by the pull wire 144 as it becomes taut causes the flexible distal end portion 14 of outer tube 10 to flex or bend. The direction of bending is limited by flat wire 146 which allows bending only in the direction normal to its width (perpendicular to the longitudinal axis of catheter 1). To return the distal end portion 14 to its original straight position of FIG. 1, the actuator bushing 201 is pulled back towards proximal end portion 12, reducing the tension on pull wire 144.

The catheter can be directed to any desired location by rotating the knob 201, which in turn causes corresponding rotation of the outer tube 10, and by sliding the bushing 201 distally to tension pull wire 144 to bend distal end portion 14.

The steerability of the catheter of the present invention advantageously enables the distal end portion 14 to access areas of the body which could not be reached by a non-bending catheter due to the presence of grooves, curves or narrow parts.

The catheter of the present invention can be inserted into a body through a femoral or brachial approach and has a variety of uses. In one application it is used for cardiac treatment and diagnostic procedures. One example of such cardiac use is to detect electrical signals inside the atrium of the heart, which are then sent to an external monitor. Another use of the catheter is for mapping the area of the heart valves to determine different areas of electrical activity. For example, the catheter can detect accessory pathways; i.e. improper pathways through which the signal is passing. The catheter can also be used for mapping electrical signals in the right or left ventricle to detect ectopic sites, e.g. areas where the ventricle is undesirably generating its own electric signals. These applications are mentioned by way of example only since there are additional uses of the catheter 1 of the present invention.

The soft distal end portion of the catheter increases the catheter's versatility since it can be used for exploratory purposes in areas of the body having thin walls, such as the coronary sinus, because, unlike catheters with stiff distal end portions, it will not puncture or otherwise damage these walls.

It is understood that the foregoing is considered as illustrative only of the principles of the invention. Therefore, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

Hojeibane, Hikmat J.

Patent Priority Assignee Title
10022521, Dec 28 2004 St. Jude Medical, Atrial Fibrillation Division, Inc. Long travel steerable catheter actuator
10035000, Dec 28 2004 St. Jude Medical, Atrial Fibrillation Division, Inc. Fixed dimensional and bi-directional steerable catheter control handle
10099036, May 16 2006 St. Jude Medical, Atrial Fibrillation Division, Inc. Steerable catheter using flat pull wires and having torque transfer layer made of braided flat wires
10143516, Nov 29 2000 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrophysiology/ablation catheter having lariat configuration of variable radius
10183149, Dec 28 2004 St. Jude Medical, Atrial Fibrillation Division, Inc. Five degree of freedom ultrasound catheter and catheter control handle
10493708, Jan 10 2005 St. Jude Medical, Atrial Fibrillation Division, Inc. Steerable catheter and methods of making the same
10675443, Mar 07 2016 ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC Medical device including an actuator restraining assembly
10737062, Jun 28 2005 St. Jude Medical, Atrial Fibrillation Division, Inc. Auto lock for catheter handle
10898685, Dec 31 2008 St. Jude Medical, Atrial Fibrillation Division, Inc. Shaft and handle for a catheter with independently-deflectable segments
10912923, May 16 2006 St. Jude Medical, Atrial Fibrillation Division, Inc. Steerable catheter using flat pull wires and having torque transfer layer made of braided flat wires
10960181, Dec 28 2004 St. Jude Medical, Atrial Fibrillation Division, Inc. Fixed dimensional and bi-directional steerable catheter control handle
11504501, Oct 15 2015 THE BRIGHAM AND WOMEN S HOSPITAL INC Steerable medical instrument
11517714, Mar 07 2016 St. Jude Medical, Cardiology Division, Inc. Medical device including an actuator restraining assembly
5318525, Apr 10 1992 Medtronic CardioRhythm Steerable electrode catheter
5318526, Sep 29 1992 BALLARD PURCHASE CORPORATION; NEURO NAVIGATIONAL, L L C Flexible endoscope with hypotube activating wire support
5364352, Mar 12 1993 Cardiac Pacemakers, Inc Catheter for electrophysiological procedures
5383852, Dec 04 1992 Boston Scientific Scimed, Inc Catheter with independent proximal and distal control
5391147, Oct 12 1993 Cardiac Pathways Corporation Steerable catheter with adjustable bend location and/or radius and method
5395328, Jan 19 1994 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Steerable catheter tip having an X-shaped lumen
5396880, Apr 08 1992 SDGI Holdings, Inc Endoscope for direct visualization of the spine and epidural space
5397304, Apr 10 1992 Medtronic CardioRhythm Shapable handle for steerable electrode catheter
5423814, May 08 1992 Loma Linda University Medical Center Endoscopic bipolar coagulation device
5462527, Jun 29 1993 Boston Scientific Scimed, Inc Actuator for use with steerable catheter
5465716, Nov 22 1993 Catheter control handle
5478330, Dec 01 1992 Boston Scientific Scimed, Inc Steerable catheter with adjustable bend location and/or radius and method
5489270, Jun 11 1993 CORDIS WEBSTER, INC Controlled flexible catheter
5500012, Jul 15 1992 LIGHTWAVE ABLATIOIN SYSTEMS Ablation catheter system
5509411, Jan 29 1993 Medtronic, Inc Intravascular sensing device
5549109, Oct 01 1993 TRANSAMERICA BUSINESS CREDIT CORP Sheathed multipolar catheter and multipolar guidewire for sensing cardiac electrical activity
5562619, Aug 19 1993 Boston Scientific Scimed, Inc Deflectable catheter
5562722, Mar 14 1994 CUSTOM MEDICAL APPLICATIONS, INC Multiple electrode catheter
5611777, May 14 1993 Boston Scientific Scimed, Inc Steerable electrode catheter
5624379, Oct 13 1995 G I MEDICAL TECHNOLOGIES, INC Endoscopic probe with discrete rotatable tip
5643255, Dec 12 1994 TACCOR, INC Steerable catheter with rotatable tip electrode and method of use
5645064, Jan 29 1992 RUI XING LIMITED High resolution intravascular signal detection
5645082, Jan 29 1993 SICHUAN JINJIANG ELECTRONIC SCIENCE AND TECHNOLOGY CO , LTD Intravascular method and system for treating arrhythmia
5662606, Mar 12 1993 Cardiac Pacemakers, Inc Catheter for electrophysiological procedures
5666970, May 02 1995 Cardiac Pacemakers, Inc Locking mechanism for catheters
5681280, May 02 1995 Cardiac Pacemakers, Inc Catheter control system
5685322, Apr 05 1993 SICHUAN JINJIANG ELECTRONIC SCIENCE AND TECHNOLOGY CO , LTD Intravascular system for treating arrhythmia
5699796, Jan 29 1993 Medtronic, Inc High resolution intravascular signal detection
5706809, Jan 29 1993 Medtronic, Inc Method and system for using multiple intravascular sensing devices to detect electrical activity
5711298, May 18 1995 Medtronic, Inc High resolution intravascular signal detection
5715817, Jun 29 1993 Boston Scientific Scimed, Inc Bidirectional steering catheter
5722963, Aug 13 1993 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Coronary sinus catheter
5741320, May 02 1995 Cardiac Pacemakers, Inc Catheter control system having a pulley
5827272, Aug 07 1995 Medtronic CardioRhythm Simplified torquing electrode catheter
5857997, Nov 14 1994 Cardiac Pacemakers, Inc Catheter for electrophysiological procedures
5865800, Aug 19 1993 Boston Scientific Corporation Deflectable catheter
5881732, Jan 29 1993 RUI XING LIMITED Intravascular method and system for treating arrhythmia
5935102, May 14 1993 Boston Scientific Scimed, Inc Steerable electrode catheter
5957842, Jan 27 1994 Medtronic, Inc High resolution intravascular signal detection
5960796, Jan 29 1993 SICHUAN JINJIANG ELECTRONIC SCIENCE AND TECHNOLOGY CO , LTD Intravascular method and device for occluding a body lumen
5967978, Jan 29 1993 Medtronic, Inc Intravascular sensing device
5984909, Aug 13 1993 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Coronary sinus catheter
6001085, Aug 13 1993 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Coronary sinus catheter
6029671, Jul 16 1991 Edwards Lifesciences, LLC System and methods for performing endovascular procedures
6033378, Feb 02 1990 EP Technologies, Inc. Catheter steering mechanism
6088610, Jan 29 1993 Medtronic, Inc Method and system for using multiple intravascular sensing devices to detect electrical activity
6141576, Jan 29 1993 Medtronic, Inc Intravascular sensing device
6203507, Mar 03 1999 CORDIS WEBSTER, INC Deflectable catheter with ergonomic handle
6319250, Nov 23 1998 Boston Scientific Scimed, Inc Tricuspid annular grasp catheter
6325779, Aug 21 1998 BIOTRONIK MESS- UND THERAPIEGERAETE GMBH & CO INGENIEURBUERO BERLIN Balloon catheter
6482172, Feb 09 2000 Flow-by channel catheter and method of use
6482221, Aug 21 2000 VASCULAR FX, LLC Manipulatable delivery catheter for occlusive devices (II)
6544215, Oct 02 1998 Boston Scientific Scimed, Inc Steerable device for introducing diagnostic and therapeutic apparatus into the body
6551302, Sep 24 1997 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT Steerable catheter with tip alignment and surface contact detector
6554794, Sep 24 1997 Eclipse Surgical Technologies, Inc Non-deforming deflectable multi-lumen catheter
6585718, May 02 2001 Cardiac Pacemakers, Inc. Steerable catheter with shaft support system for resisting axial compressive loads
6605086, May 02 2001 Cardiac Pacemakers, Inc. Steerable catheter with torque transfer system
6610058, May 02 2001 Cardiac Pacemakers, Inc. Dual-profile steerable catheter
6689097, Feb 09 2000 Flow-by channel catheter and method of use
6716207, May 22 2001 Boston Scientific Scimed, Inc Torqueable and deflectable medical device shaft
6726700, Aug 21 2000 VASCULAR FX, LLC Manipulatable delivery catheter for occlusive devices
6728563, Nov 29 2000 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Electrophysiology/ablation catheter having "halo" configuration
6793667, Aug 21 2000 VASCULAR FX, LLC Manipulatable delivery catheter for occlusive devices (II)
6916317, Nov 23 1998 Boston Scientific Scimed, Inc Tricuspid annular grasp catheter
6976987, May 02 2001 Cardiac Pacemakers, Inc. Dual-profile steerable catheter
6976991, Aug 21 2000 VASCULAR FX, LLC Manipulatable delivery catheter for occlusive devices (LL)
6991616, Oct 02 1998 Boston Scientific Scimed, Inc Steerable device for introducing diagnostic and therapeutic apparatus into the body
7081114, Nov 29 2000 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Electrophysiology/ablation catheter having lariat configuration of variable radius
7101362, Jul 02 2003 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Steerable and shapable catheter employing fluid force
7137990, Aug 21 2000 Micrus Endovascular Corporation Manipulatable delivery catheter for occlusive devices (II)
7235070, Jul 02 2003 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Ablation fluid manifold for ablation catheter
7465288, Jun 28 2005 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Actuation handle for a catheter
7591784, Apr 26 2005 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Bi-directional handle for a catheter
7670351, May 20 2006 Medical device using beam construction and methods
7691095, Dec 28 2004 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Bi-directional steerable catheter control handle
7695451, Oct 02 1998 Boston Scientific Scimed, Inc. Steerable device for introducing diagnostic and therapeutic apparatus into the body
7717875, Jul 20 2004 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Steerable catheter with hydraulic or pneumatic actuator
7731682, Oct 02 1998 Boston Scientific Scimed, Inc. Steerable device for introducing diagnostic and therapeutic apparatus into the body
7780646, May 22 2001 Boston Scientific Scimed, Inc Torqueable and deflectable medical device shaft
7819866, Jan 21 2003 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Ablation catheter and electrode
7819868, Jun 21 2005 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Ablation catheter with fluid distribution structures
7881809, Jun 20 1997 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrophysiology/ablation catheter and remote actuator therefor
7972323, Oct 02 1998 Boston Scientific Scimed, Inc Steerable device for introducing diagnostic and therapeutic apparatus into the body
8000764, Jun 20 1997 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Electrophysiology/ablation catheter having second passage
8007462, May 17 2004 Boston Scientific Scimed, Inc Articulated catheter
8123721, Dec 31 2008 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Catheter having independently-deflectable segments and method of its manufacture
8172829, May 22 2001 Boston Scientific Scimed, Inc. Torqueable and deflectable medical device shaft
8177711, Apr 26 2005 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Bi-directional handle for a catheter
8273285, Jan 10 2005 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Steerable catheter and methods of making the same
8369930, Jun 16 2009 CLEARPOINT NEURO, INC MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
8396532, Jun 16 2009 CLEARPOINT NEURO, INC MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
8506562, Jun 15 2007 CathRx Ltd Deflectable stylet
8529504, May 17 2004 Boston Scientific Scimed, Inc Articulated catheter
8556850, Dec 31 2008 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Shaft and handle for a catheter with independently-deflectable segments
8583260, Dec 28 2004 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Long travel steerable catheter actuator
8690871, Mar 04 2005 CathRx Ltd Catheter handle and a catheter assembly including such a handle
8758338, Nov 29 2000 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrophysiology/ablation catheter having lariat configuration of variable radius
8768433, Jun 16 2009 CLEARPOINT NEURO, INC MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
8777929, Jun 28 2005 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Auto lock for catheter handle
8825133, Jun 16 2009 CLEARPOINT NEURO, INC MRI-guided catheters
8886288, Jun 16 2009 CLEARPOINT NEURO, INC MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
8979740, Apr 26 2005 St. Jude Medical, Atrial Fibrillation Division, Inc. Bi-directional handle for a catheter
9132258, Dec 28 2004 St. Jude Medical, Atrial Fibrillation Division, Inc. Fixed dimensional and bi-directional steerable catheter control handle
9259290, Jun 08 2009 CLEARPOINT NEURO, INC MRI-guided surgical systems with proximity alerts
9289147, May 11 2010 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Multi-directional flexible wire harness for medical devices
9439735, Jun 08 2009 CLEARPOINT NEURO, INC MRI-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time
9675782, Oct 10 2013 Medtronic Vascular, Inc.; Medtronic Vascular, Inc Catheter pull wire actuation mechanism
9694159, Jun 28 2005 St. Jude Medical, Atrial Fibrillation Division, Inc. Auto lock for catheter handle
9764115, May 11 2010 St. Jude Medical, Atrial Fibrillation Division, Inc. Multi-directional catheter control handle
9861787, Dec 31 2008 St. Jude Medical, Atrial Fibrillation Division, Inc. Shaft and handle for a catheter with independently-deflectable segments
D381076, May 02 1995 Cardiac Pacemakers, Inc Manipulation handle
D726905, May 11 2011 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Control handle for a medical device
D762851, May 11 2011 St. Jude Medical, Atrial Fibrillation Division, Inc. Control handle for a medical device
RE42856, May 29 2002 LANDMARK COMMUNITY BANK Magnetic resonance probes
RE44736, May 29 2002 LANDMARK COMMUNITY BANK Magnetic resonance probes
Patent Priority Assignee Title
3521620,
3552384,
3749086,
3773034,
3906938,
4748986, Dec 12 1983 Advanced Cardiovascular Systems, Inc. Floppy guide wire with opaque tip
4920980, Sep 14 1987 Cordis Corporation Catheter with controllable tip
4960134, Nov 18 1988 WEBSTER LABORATORIES, INC Steerable catheter
4960411, Sep 18 1984 PLUNKETT, DIANNE M F Low profile sterrable soft-tip catheter
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 10 1990C. R. Bard, Inc.(assignment on the face of the patent)
Oct 30 1990HOJEIBANE, HIKMAT J C R BARD, INC ASSIGNMENT OF ASSIGNORS INTEREST 0055310483 pdf
Nov 01 2013C R BARD, INC Boston Scientific Scimed, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0318970242 pdf
Date Maintenance Fee Events
Apr 28 1995ASPN: Payor Number Assigned.
Jun 28 1995ASPN: Payor Number Assigned.
Jun 28 1995RMPN: Payer Number De-assigned.
Dec 18 1995M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 27 1999M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Dec 03 2003M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jun 30 19954 years fee payment window open
Dec 30 19956 months grace period start (w surcharge)
Jun 30 1996patent expiry (for year 4)
Jun 30 19982 years to revive unintentionally abandoned end. (for year 4)
Jun 30 19998 years fee payment window open
Dec 30 19996 months grace period start (w surcharge)
Jun 30 2000patent expiry (for year 8)
Jun 30 20022 years to revive unintentionally abandoned end. (for year 8)
Jun 30 200312 years fee payment window open
Dec 30 20036 months grace period start (w surcharge)
Jun 30 2004patent expiry (for year 12)
Jun 30 20062 years to revive unintentionally abandoned end. (for year 12)