A connector assembly has a cylindrical inner contact member with a threaded outer surface to match the helical corrugations of the inner conductor of the coaxial cable so that the inner contact member can be threaded into the helically corrugated inner conductor. A flaring ring and a clamping member have opposed bevelled surfaces for engaging the respective inner and outer surfaces of the outer conductor of the cable. A body member draws and holds the bevelled surface of the flaring ring and the clamping member together against opposite surfaces of the outer conductor of the cable.

Patent
   5137470
Priority
Jun 04 1991
Filed
Jun 04 1991
Issued
Aug 11 1992
Expiry
Jun 04 2011
Assg.orig
Entity
Large
208
5
all paid
1. A connector assembly for a coaxial cable having an outer conductor and a helically corrugated inner conductor, the connector assembly comprising:
a cylindrical inner contact member having a threaded outer surface to match the helical corrugations of the inner conductor of the coaxial cable so that said contact member can be threaded into the helically corrugated inner conductor, the outside diameter of at least a portion of said inner contact member being slightly greater than the inside diameter of the mating portion of said inner conductor so that the threading of said inner contact member into said inner conductor forms a tight press-fit between said inner contact member and said inner conductor;
a flaring ring and a clamping member having opposed bevelled surfaces for engaging the respective inner and outer surfaces of the outer conductor of the cable; and
a body member having means for drawing and holding the bevelled surfaces of said flaring ring and said clamping member together against opposite surfaces of the outer conductor of the cable.
8. A connector assembly for a coaxial cable having an outer conductor and a helically corrugated inner conductor, the connector assembly comprising:
a cylindrical inner contact member having a threaded outer surface to match the helical corrugations of the inner conductor of the coaxial cable so that said contact member can be threaded into the helically corrugated inner conductor, the outside diameter of at least a portion of said inner contact member being slightly greater than the inside diameter of the mating portion of said inner conductor so that the threading of said inner contact member into said inner conductor forms a tight press-fit between said inner contact member and said inner conductor;
a flaring ring and a clamping member having opposed bevelled surfaces for engaging the respective inner and outer surfaces of the outer conductor of the cable, the end of said flaring ring opposite the bevelled surface of said ring being threaded into said body member; and
a body member having means for drawing and holding the bevelled surfaces of said flaring ring and said clamping member together against opposite surfaces of the outer conductor of the cable.
2. The connector assembly of claim 1 wherein said inner contact member has a head portion which forms diametrically opposed flat surfaces to facilitate the threading of said contact member into said inner conductor.
3. The connector assembly of claim 1 which includes and inner conductor and a dielectric spacer which encircles the inner conductor so as to center it respect to the outer conductor.
4. The connector assembly of claim 1 wherein the clamping and body members include integral telescoping sleeves with cooperating threaded surfaces which form said drawing and holding means.
5. The connector assembly of claim 1 wherein said outer conductor has a major inside diameter at the crests of the corrugations therein and a minor inside diameter at the roots of the corrugations, and said inside diameter of said flaring ring is smaller than the minor inside diameter of the helically corrugated outer conductor.
6. The connector assembly of claim 1 wherein said outer conductor has a major inside diameter at the crests of the corrugations therein and a minor inside diameter at the roots of the corrugations, and the inside diameter of the bevelled surface of said flaring ring is at least as small as the minor inside diameter of said outer conductor, and the inside diameter of a portion of the flaring ring is larger than the minor inside diameter of said outer conductor.
7. The connector assembly of claim 1 wherein the bevelled surface of said flaring ring is bevelled at a shallower angle at the end of the beveled surface which initially engages said outer conductor than along the remainder of the beveled surface.

The present invention relates generally to connectors for coaxial cables, and, more particularly, to connectors for coaxial cables having helically corrugated inner conductors.

Connectors for coaxial cable having corrugated conductors are generally used throughout the semi-flexible coaxial cable industry. For example, Juds et al. U.S. Pat. No. 4,046,451 describes a connector for coaxial cables having annularly corrugated outer conductors and plain cylindrical inner conductors. A connector for a coaxial cable having a helically corrugated outer conductor and a plain cylindrical inner conductor is described in Johnson et al. U.S. Pat. No. 3,199,061.

It is a primary object of the present invention to provide an improved connector for coaxial cables having helically corrugated inner conductors, which can be easily and quickly installed, or removed and re-installed, particularly under field conditions.

It is another object of this invention to provide such an improved connector which can be installed and removed without the use of any special tools.

A further object of this invention is to provide such an improved connector which has only a small number of parts.

Still another object of this invention is to provide such an improved connector which can be efficiently and economically manufactured.

A still further object of this invention is to provide an improved connector providing a superior junction between the helically corrugated inner conductor and the connector.

Other objects and advantages of the invention will be apparent from the following detailed description and the accompanying drawings.

In accordance with the present invention, the foregoing objectives are realized by providing a connector assembly having a cylindrical inner contact member with a threaded outer surface to match the helical corrugations of the inner conductor of the coaxial cable so that the inner contact member can be threaded into the helically corrugated inner conductor; a flaring ring and a clamping member having opposed bevelled surfaces for engaging the respective inner and outer surfaces of the outer conductor of the cable; and a body member having means for drawing and holding the bevelled surfaces of said flaring ring and said clamping member together against opposite surfaces of the outer conductor of the cable.

FIG. 1 is a perspective view of a connector embodying the present invention;

FIG. 2 is a longitudinal sectional view of the connector shown in FIG. 1 with only two of the parts attached to the coaxial cable; and

FIG. 3 is a longitudinal sectional view of the connector shown in FIG. 1 with the connector fully assembled.

While the invention is susceptible to various modifications and alternative forms, a specific embodiment thereof has been shown by way of example in the drawings and will be described in detail. It should be understood, however, that it is not intended to limit the invention to the particular form described, but, on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

Turning now to the drawings, there is shown a connector assembly for a coaxial cable 10 having a helically corrugated outer conductor 11 concentrically spaced from a helically corrugated inner conductor 12 by a dielectric spacer (not shown). As is well known to those familiar with this art, a helically corrugated conductor is distinguished from an annularly corrugated conductor in that the helical corrugations form a continuous pattern of corrugation crests and roots along the length of the cable such that each crest is opposite a root along the circumference of the conductor. Consequently, any transverse cross-section taken through the conductor perpendicular to its axis is radially asymmetrical, which is not true of annularly corrugated conductors.

To prepare the cable 10 for attachment of the connector assembly, the end of the cable is cut along a plane extending perpendicular to the axis of the cable and through the apex of one of the crests of the corrugated outer conductor 11. This exposes the clean and somewhat flared internal surface of the outer conductor 11. Any burrs or rough edges on the cut ends of the metal conductors 11 and 12 are preferably removed to avoid interference with the connector. The outer surface of the outer conductor 11 is normally covered with a plastic jacket 13 which is trimmed away from the end of the outer conductor 11 along a sufficient length to accommodate the connector assembly. 15 A stepped cylindrical body member 20 extends around the cut end of the coaxial cable 10. The reduced-diameter end portion of the body member 20 carries a conventional coupling nut 21. This coupling nut 21 is secured to the body member 20 by a spring retaining ring 22 which holds the nut 21 captive on the body member 20 while permitting free rotation of the nut 21 on the member 20. As will be apparent from the ensuing description, this coupling nut 21 serves as a part of the electrical connection to the outer conductor 11 of the cable 10, and is insulated from the inner conductor 12.

A clamping member 30 has a threaded inner surface 31 to match the helical corrugations of the outer conductor 11. Thus, the member 30 can be threaded onto the outer conductor 11 until at least a major portion of a conically bevelled surface 32 on the end of the clamping member 30 overlaps the outer conductor 11. The conically bevelled surface 32 slopes inwardly toward the threaded inner surface 31 of the clamping member 30.

To make electrical connection with the inner surface of the outer conductor 11 of the coaxial cable 10, a flaring ring 40 is threaded into the body member 20. The forward end of the ring 40 forms a conically bevelled surface 41 which matches the bevelled surface 32 on the clamping member 30. The inside diameter of the forward end of the flaring ring 40 is at least as small as the minor inside diameter of the outer conductor 11, so that the bevelled surface 41 will engage the inner surface of the end portion of the outer conductor 11 around the entire circumference of the cut end. As illustrated in FIG. 3, the bevelled surface 41 acts to flare the end of the outer conductor 11 outwardly as the flaring ring is forced into the outer conductor during assembly of the connector, i.e., as the clamping member 30 and the body member 20 are threaded together. Consequently, the connector is self-flaring, and there is no need to manually flare the end of the outer conductor with a pliers or other tool. In the illustrative embodiment, the surface 41 is bevelled at an angle of about 30° at the forward end and about 45° at the rear end, so that the initial flaring action is more gradual than the final flaring action. The optimum angle of the bevelled surface 41 for any given application is dependent on the size of the coaxial cable 10.

Because the inside diameter of the forward end of the flaring ring 40 is smaller than the minor inside diameter of the outer conductor 11 of the coaxial cable, the flaring ring tends to cause a slight increase in the VSWR of the transmission line. To minimize this effect caused by the forward end of the flaring ring, the inside diameter of the rear portion of the flaring ring is slightly larger than the minor inside diameter of the outer conductor 11. Moreover, the transition between the two different inside diameters of the flaring ring 40 is located close to the forward end of the flaring ring.

For the purpose of drawing the flaring ring 40 and the clamping member 30 firmly against opposite sides of the flared end portion of the outer conductor 11, the body member 20 and the clamping member 30 include respective telescoping sleeve portions 23 and 33 with cooperating threaded surfaces. Thus, when the body member 20 is threaded onto the clamping member 30, the two members are advanced toward each other in the axial direction so as to draw the flaring ring 40 and the clamping member 30 into electrically conductive engagement with the outer conductor 11. When the flared end portion of the outer conductor 11 is clamped between the bevelled surface 41 of the flaring ring 40 and the bevelled surface 32 of the clamping member 30, it is also at least partially flattened to conform with the planar clamping surfaces. To disengage the connector assembly, the body member 20 is simply threaded off the clamping member 30 to retract the two members away from each other until their threaded surfaces are disengaged.

To provide a moisture barrier between the inner surface of the clamping member 30 and the outer surface of the outer conductor 11, a gasket 50 is positioned within the cylindrical portion of the clamping member behind the threaded inner surface 31. The gasket 50 has a threaded inner surface 51 to match the helical corrugations of the outer conductor 11. When the clamping member 30 is threaded onto the outer conductor 11, the gasket 50 compresses slightly so that the gasket bears firmly against both the outer surface of the conductor 11 and the inner surface of the clamping member 30. The adjacent end portion of the clamping member 30 forms a slightly enlarged recess 52 so that it can fit over the end of the polymeric jacket 13 on the coaxial cable 10. A moisture barrier is also provided by a O-ring 53 positioned between the opposed surfaces of the sleeve portions 23 and 33 of the members 20 and 30, respectively.

Electrical contact with the inner conductor 12 of the cable 10 is effected by an inner connector element 60 forming a threaded outer surface to make electrical contact with the inside surface of the hollow inner conductor 12. The connector element 60 includes a head 61 and a threaded shank 62 which threads into a conductive sleeve 63. It is the outer surface of the sleeve 63 which is threaded to mesh with the inner surface of the corrugated inner conductor 12. The base of the head 61 forms an enlarged collar 64 which limits the penetration of the sleeve 63 into the inner conductor 12 by engaging the cut end of the inner conductor.

An insulating sleeve 65 centers the inner connector element 60 within the main body member 20 of the connector assembly and electrically isolates the inner and outer connector elements from each other. It will be noted that the interior of the body member 20 includes a stepped recess 66 for receiving the insulator 65.

To ensure intimate contact between the inside surface of the inner conductor 12 and the outside surface of the sleeve 63, at least a portion of the outside diameter of the sleeve 63 is at least as great as the inside diameter of the mating portion of the inner conductor 12. For example, the minor outside diameter of the sleeve 63 is slightly greater than the minor inside diameter of the inner conductor 12. Then when the sleeve 63 is threaded into the corrugated conductor 12, the minor outside diameter of the sleeve 63 presses against the minor inside diameter of the conductor 12. This causes a slight disruption of the conductor 12 at its minor diameter, and produces a tight press-fit between the sleeve 63 and the conductor 12. Such a press-fit ensures reliable electrical and mechanical contact between the inner connector element 60 and the conductor 12 during temperature cycling and vibration, for example.

To facilitate threading of the connector element 60 into the corrugated inner conductor 12, flats 67 are preferably formed on the collar 64 of the head 61 of the element 60. These flats 67 permit the collar 64 to be easily engaged by a wrench for rotating the element 60 and thereby threading it into the inner conductor 12, even when the threaded surface of the sleeve 63 and the conductor 12 are in tight engagement with each other.

The small portion of the head 61 of the connector 60 is electrically connected to a pin 70 by means of multiple spring fingers 71 formed as integral parts of the base of the pin 70. These spring fingers 71 fit over and snugly against the outer surface of the head 61. The head 72 of the pin 70 forms the male portion of a conventional connector.

As can be seen most clearly in FIG. 3, the pin 70 is held in place within the connector assembly by the insulating sleeve 65 whose inner surface is complementary with the outer surface of the pin 70. An O-ring 73 forms an air seal between the sleeve 65 and the body member 20.

As can be seen from the foregoing detailed description of the illustrative embodiments of the invention, the improved connector assembly is easy to install or re-install even under adverse field conditions. The connector assembly has a minimum number of parts to minimize the possibility of loss of parts during installation. Moreover, the connector assembly is self-flaring and does not require any preliminary manual flaring operations prior to the installation of the connector assembly. The connector provides positive electrical contact, particularly with the helically corrugated outer conductor, to ensure reliable electrical performance. Furthermore, the connector assembly can be efficiently and economically manufactured.

Doles, Connie S.

Patent Priority Assignee Title
10033122, Feb 20 2015 PPC BROADBAND, INC Cable or conduit connector with jacket retention feature
10038284, Nov 24 2004 PPC Broadband, Inc. Connector having a grounding member
10116099, Nov 02 2011 PPC Broadband, Inc. Devices for biasingly maintaining a port ground path
10148053, Jan 24 2013 CommScope Technologies LLC Method of attaching a connector to a coaxial cable
10186790, Mar 30 2011 PPC Broadband, Inc. Connector producing a biasing force
10211547, Sep 03 2015 PPC BROADBAND, INC Coaxial cable connector
10236636, Oct 16 2012 PPC BROADBAND, INC Coaxial cable connector with integral RFI protection
10290958, Apr 29 2013 PPC BROADBAND, INC Coaxial cable connector with integral RFI protection and biasing ring
10312629, Apr 13 2010 PPC BROADBAND, INC Coaxial connector with inhibited ingress and improved grounding
10396508, May 20 2013 PPC BROADBAND, INC Coaxial cable connector with integral RFI protection
10446983, Nov 24 2004 PPC Broadband, Inc. Connector having a grounding member
10559898, Mar 30 2011 PPC Broadband, Inc. Connector producing a biasing force
10686264, Nov 11 2010 PPC Broadband, Inc. Coaxial cable connector having a grounding bridge portion
10700475, Nov 02 2011 PPC Broadband, Inc. Devices for biasingly maintaining a port ground path
10707629, May 26 2011 PPC Broadband, Inc. Grounding member for coaxial cable connector
10749281, Sep 04 2018 Genesis Technology USA, Inc. Shear and torque resistant F-connector assembly
10756455, Jan 25 2005 PPC BROADBAND, INC Electrical connector with grounding member
10862251, May 22 2009 PPC Broadband, Inc. Coaxial cable connector having an electrical grounding portion
10931068, May 22 2009 PPC Broadband, Inc. Connector having a grounding member operable in a radial direction
10965063, Nov 24 2004 PPC Broadband, Inc. Connector having a grounding member
11233362, Nov 02 2011 PPC Broadband, Inc. Devices for biasingly maintaining a port ground path
11283226, May 26 2011 PPC Broadband, Inc. Grounding member for coaxial cable connector
11437766, Nov 22 2010 CommScope Technologies LLC Connector and coaxial cable with molecular bond interconnection
11437767, Nov 22 2010 CommScope Technologies LLC Connector and coaxial cable with molecular bond interconnection
11462843, Nov 22 2010 CommScope Technologies LLC Ultrasonic weld interconnection coaxial connector and interconnection with coaxial cable
11557854, Apr 09 2021 WEBASTO CHARGING SYSTEMS, INC.; WEBASTO CHARGING SYSTEMS, INC Electric cable assembly
11735874, Nov 22 2010 CommScope Technologies LLC Connector and coaxial cable with molecular bond interconnection
11757212, Nov 22 2010 CommScope Technologies LLC Ultrasonic weld interconnection coaxial connector and interconnection with coaxial cable
11811184, Mar 30 2011 PPC Broadband, Inc. Connector producing a biasing force
5284449, May 13 1993 Amphenol Corporation Connector for a conduit with an annularly corrugated outer casing
5334051, Jun 17 1993 Andrew LLC Connector for coaxial cable having corrugated outer conductor and method of attachment
5354217, Jun 10 1993 Andrew LLC Lightweight connector for a coaxial cable
5389012, Mar 02 1994 Coaxial conductor and a coax connector thereof
5454735, Apr 19 1994 Radio Frequency Systems, Inc. Severable radio frequency coaxial cable connectors having minimal signal degradation
5518420, Jun 01 1993 SPINNER GmbH Electrical connector for a corrugated coaxial cable
5545059, Mar 30 1995 Radio Frequency Systems, Inc Connector for a hollow center conductor of a radio frequency cable
5561900, May 14 1993 The Whitaker Corporation Method of attaching coaxial connector to coaxial cable
5562482, Jan 03 1995 OSRAM SYLVANIA Inc Coaxial cable connector and method of assembling
5722856, May 02 1995 Huber + Suhner AG Apparatus for electrical connection of a coaxial cable and a connector
5766037, Oct 11 1996 Radio Frequency Systems, Inc Connector for a radio frequency cable
5795188, Mar 28 1996 CommScope Technologies LLC Connector kit for a coaxial cable, method of attachment and the resulting assembly
5802710, Oct 24 1996 CommScope Technologies LLC Method of attaching a connector to a coaxial cable and the resulting assembly
5938474, Dec 10 1997 WSOU Investments, LLC Connector assembly for a coaxial cable
5944556, Apr 07 1997 CommScope Technologies LLC Connector for coaxial cable
6024609, Nov 03 1997 Andrew Corporation Outer contact spring
6102746, Apr 30 1999 SMITHS INTERCONNECT AMERICAS, INC Coaxial electrical connector with resilient conductive wires
6109964, Apr 06 1998 CommScope Technologies LLC One piece connector for a coaxial cable with an annularly corrugated outer conductor
6133532, Feb 17 1998 Teracom Components AB Contact device
6148513, Dec 21 1996 Alcatel Method of applying a connecting element to a high-frequency cable in a moisture-proof manner
6154963, Apr 12 1999 CommScope Technologies LLC Saw guide for annularly corrugated cables
6220902, May 13 1999 Unit Electrical Engineering Ltd.; UNIT ELECTRICAL ENGINEERING LTD , RR1, S1, C80 Method and apparatus for connecting an object to a device
6413103, Nov 28 2000 Apple Inc Method and apparatus for grounding microcoaxial cables inside a portable computing device
6422900, Sep 15 1999 HH Tower Group Coaxial cable coupling device
6439924, Oct 11 2001 AMPHENOL CABELCON APS Solder-on connector for coaxial cable
6471545, May 14 1993 The Whitaker Corporation Coaxial connector for coaxial cable having a corrugated outer conductor
6607398, Dec 21 2001 AMPHENOL CABELCON APS Connector for a coaxial cable with corrugated outer conductor
6692300, Dec 16 1999 Mitsubishi Cable Industries, Ltd. Coaxial cable connector
6824415, Nov 01 2001 Andrew LLC Coaxial connector with spring loaded coupling mechanism
6939169, Jul 28 2003 Andrew LLC Axial compression electrical connector
6955562, Jun 15 2004 CORNING GILBERT, INC Coaxial connector with center conductor seizure
7044785, Jan 16 2004 Andrew LLC Connector and coaxial cable with outer conductor cylindrical section axial compression connection
7070447, Oct 27 2005 John Mezzalingua Associates, Inc. Compact compression connector for spiral corrugated coaxial cable
7077699, Jul 28 2003 Andrew Corporation Axial compression electrical connector
7077700, Dec 20 2004 AMPHENOL CABELCON APS Coaxial connector with back nut clamping ring
7104839, Jun 15 2004 AMPHENOL CABELCON APS Coaxial connector with center conductor seizure
7126064, Aug 22 2005 STEEL COMPONENTS, INC ; ATKORE STEEL COMPONENTS, INC Connector for affixing cables within junction boxes
7249969, May 15 2006 CommScope Technologies LLC Connector with corrugated cable interface insert
7261581, Dec 01 2003 AMPHENOL CABELCON APS Coaxial connector and method
7351101, Aug 17 2006 John Mezzalingua Associates, Inc. Compact compression connector for annular corrugated coaxial cable
7448906, Aug 22 2007 Andrew LLC Hollow inner conductor contact for coaxial cable connector
7458851, Feb 22 2007 John Mezzalingua Associates, Inc. Coaxial cable connector with independently actuated engagement of inner and outer conductors
7632143, Nov 24 2008 CommScope Technologies LLC Connector with positive stop and compressible ring for coaxial cable and associated methods
7635283, Nov 24 2008 CommScope Technologies LLC Connector with retaining ring for coaxial cable and associated methods
7690945, Nov 21 2007 AMPHENOL CABELCON APS Coaxial cable connector for corrugated cable
7731529, Nov 24 2008 CommScope Technologies LLC Connector including compressible ring for clamping a conductor of a coaxial cable and associated methods
7785144, Nov 24 2008 CommScope Technologies LLC Connector with positive stop for coaxial cable and associated methods
7803018, Mar 10 2009 CommScope Technologies LLC Inner conductor end contacting coaxial connector and inner conductor adapter kit
7819698, Aug 22 2007 Andrew LLC Sealed inner conductor contact for coaxial cable connector
7824215, Nov 05 2008 CommScope Technologies LLC Axial compression coaxial connector with grip surfaces
7824216, Apr 02 2009 PPC BROADBAND, INC Coaxial cable continuity connector
7837502, Aug 14 2008 Andrew LLC Multi-shot coaxial connector and method of manufacture
7854063, Oct 19 2005 Andrew LLC Method of manufacture a connector with outer conductor axial compression connection
7892005, May 19 2009 PPC BROADBAND, INC Click-tight coaxial cable continuity connector
7931499, Jan 28 2009 CommScope Technologies LLC Connector including flexible fingers and associated methods
8029315, Apr 01 2009 PPC BROADBAND, INC Coaxial cable connector with improved physical and RF sealing
8047870, Jan 09 2009 AMPHENOL CABELCON APS Coaxial connector for corrugated cable
8075338, Oct 18 2010 PPC BROADBAND, INC Connector having a constant contact post
8079860, Jul 22 2010 PPC BROADBAND, INC Cable connector having threaded locking collet and nut
8113878, Apr 24 2009 AMPHENOL CABELCON APS Coaxial connector for corrugated cable with corrugated sealing
8113879, Jul 27 2010 PPC BROADBAND, INC One-piece compression connector body for coaxial cable connector
8136234, Nov 24 2008 CommScope Technologies LLC Flaring coaxial cable end preparation tool and associated methods
8152551, Jul 22 2010 PPC BROADBAND, INC Port seizing cable connector nut and assembly
8157589, Nov 24 2004 PPC BROADBAND, INC Connector having a conductively coated member and method of use thereof
8167635, Oct 18 2010 PPC BROADBAND, INC Dielectric sealing member and method of use thereof
8167636, Oct 15 2010 PPC BROADBAND, INC Connector having a continuity member
8167646, Oct 18 2010 PPC BROADBAND, INC Connector having electrical continuity about an inner dielectric and method of use thereof
8172612, Jan 25 2005 PPC BROADBAND, INC Electrical connector with grounding member
8192237, May 22 2009 PPC BROADBAND, INC Coaxial cable connector having electrical continuity member
8206176, Feb 16 2010 CommScope Technologies LLC Connector for coaxial cable having rotational joint between insulator member and connector housing and associated methods
8272893, Nov 16 2009 PPC BROADBAND, INC Integrally conductive and shielded coaxial cable connector
8287310, Feb 24 2009 PPC BROADBAND, INC Coaxial connector with dual-grip nut
8287320, May 22 2009 PPC BROADBAND, INC Coaxial cable connector having electrical continuity member
8298006, Oct 08 2010 John Mezzalingua Associates, Inc Connector contact for tubular center conductor
8313345, Apr 02 2009 PPC BROADBAND, INC Coaxial cable continuity connector
8313353, May 22 2009 PPC BROADBAND, INC Coaxial cable connector having electrical continuity member
8323053, Oct 18 2010 PPC BROADBAND, INC Connector having a constant contact nut
8323060, May 22 2009 PPC BROADBAND, INC Coaxial cable connector having electrical continuity member
8337229, Nov 11 2010 PPC BROADBAND, INC Connector having a nut-body continuity element and method of use thereof
8342879, Mar 25 2011 PPC BROADBAND, INC Coaxial cable connector
8348697, Apr 22 2011 PPC BROADBAND, INC Coaxial cable connector having slotted post member
8366481, Mar 30 2011 PPC BROADBAND, INC Continuity maintaining biasing member
8382517, Oct 18 2010 PPC BROADBAND, INC Dielectric sealing member and method of use thereof
8388377, Apr 01 2011 PPC BROADBAND, INC Slide actuated coaxial cable connector
8398421, Feb 01 2011 PPC BROADBAND, INC Connector having a dielectric seal and method of use thereof
8414322, Dec 14 2010 PPC BROADBAND, INC Push-on CATV port terminator
8430688, Oct 08 2010 John Mezzalingua Associates, Inc Connector assembly having deformable clamping surface
8435073, Oct 08 2010 John Mezzalingua Associates, Inc Connector assembly for corrugated coaxial cable
8439703, Oct 08 2010 John Mezzalingua Associates, LLC; John Mezzalingua Associates, Inc Connector assembly for corrugated coaxial cable
8444445, May 22 2009 PPC BROADBAND, INC Coaxial cable connector having electrical continuity member
8449325, Oct 08 2010 John Mezzalingua Associates, Inc Connector assembly for corrugated coaxial cable
8458898, Oct 28 2010 John Mezzalingua Associates, Inc Method of preparing a terminal end of a corrugated coaxial cable for termination
8460031, Nov 05 2008 CommScope Technologies LLC Coaxial connector with cable diameter adapting seal assembly and interconnection method
8465322, Mar 25 2011 PPC BROADBAND, INC Coaxial cable connector
8469739, Feb 08 2011 BELDEN INC. Cable connector with biasing element
8469740, Mar 30 2011 PPC BROADBAND, INC Continuity maintaining biasing member
8475205, Mar 30 2011 PPC BROADBAND, INC Continuity maintaining biasing member
8480430, Mar 30 2011 PPC BROADBAND, INC Continuity maintaining biasing member
8480431, Mar 30 2011 PPC BROADBAND, INC Continuity maintaining biasing member
8485845, Mar 30 2011 PPC BROADBAND, INC Continuity maintaining biasing member
8506325, Sep 30 2008 PPC BROADBAND, INC Cable connector having a biasing element
8506326, Apr 02 2009 PPC BROADBAND, INC Coaxial cable continuity connector
8517763, Nov 06 2009 PPC BROADBAND, INC Integrally conductive locking coaxial connector
8529279, Nov 11 2010 PPC BROADBAND, INC Connector having a nut-body continuity element and method of use thereof
8550835, Nov 11 2010 PPC Broadband, Inc. Connector having a nut-body continuity element and method of use thereof
8562366, May 22 2009 PPC BROADBAND, INC Coaxial cable connector having electrical continuity member
8563861, Nov 22 2010 CommScope Technologies LLC Friction weld inner conductor cap and interconnection method
8573996, May 22 2009 PPC BROADBAND, INC Coaxial cable connector having electrical continuity member
8579652, Jun 16 2011 Leoni Studer AG Fastening device for an electric cable
8591244, Jul 08 2011 PPC BROADBAND, INC Cable connector
8597041, May 22 2009 PPC BROADBAND, INC Coaxial cable connector having electrical continuity member
8628352, Jul 07 2011 John Mezzalingua Associates, LLC Coaxial cable connector assembly
8647136, May 22 2009 PPC BROADBAND, INC Coaxial cable connector having electrical continuity member
8690603, Jan 25 2005 PPC BROADBAND, INC Electrical connector with grounding member
8753147, Jun 10 2011 PPC Broadband, Inc. Connector having a coupling member for locking onto a port and maintaining electrical continuity
8758050, Jun 10 2011 PPC BROADBAND, INC Connector having a coupling member for locking onto a port and maintaining electrical continuity
8794500, Apr 11 2011 Nexans Arrangement with a metal pipe and a connecting element, as well as method of mounting the connecting element
8801448, May 22 2009 PPC Broadband, Inc. Coaxial cable connector having electrical continuity structure
8858251, Nov 11 2010 PPC Broadband, Inc. Connector having a coupler-body continuity member
8876549, Nov 22 2010 CommScope Technologies LLC Capacitively coupled flat conductor connector
8887388, Nov 22 2010 CommScope Technologies LLC Method for interconnecting a coaxial connector with a solid outer conductor coaxial cable
8888526, Aug 10 2010 PPC BROADBAND, INC Coaxial cable connector with radio frequency interference and grounding shield
8915754, Nov 11 2010 PPC Broadband, Inc. Connector having a coupler-body continuity member
8920182, Nov 11 2010 PPC Broadband, Inc. Connector having a coupler-body continuity member
8920192, Nov 11 2010 PPC BROADBAND, INC Connector having a coupler-body continuity member
8984745, Jan 24 2013 CommScope Technologies LLC Soldered connector and cable interconnection method
9017101, Mar 30 2011 PPC BROADBAND, INC Continuity maintaining biasing member
9017102, Feb 06 2012 John Mezzalingua Associates, LLC; John Mezzalingua Associates, Inc Port assembly connector for engaging a coaxial cable and an outer conductor
9048599, Oct 28 2013 PPC BROADBAND, INC Coaxial cable connector having a gripping member with a notch and disposed inside a shell
9071019, Oct 27 2010 PPC BROADBAND, INC Push-on cable connector with a coupler and retention and release mechanism
9083113, Jan 11 2012 John Mezzalingua Associates, Inc Compression connector for clamping/seizing a coaxial cable and an outer conductor
9099825, Jan 12 2012 John Mezzalingua Associates, Inc Center conductor engagement mechanism
9130281, Apr 17 2013 PPC Broadband, Inc. Post assembly for coaxial cable connectors
9136654, Jan 05 2012 PPC BROADBAND, INC Quick mount connector for a coaxial cable
9147955, Nov 02 2011 PPC BROADBAND, INC Continuity providing port
9147963, Nov 29 2012 PPC BROADBAND, INC Hardline coaxial connector with a locking ferrule
9153911, Feb 19 2013 PPC BROADBAND, INC Coaxial cable continuity connector
9153917, Mar 25 2011 PPC Broadband, Inc. Coaxial cable connector
9166348, Apr 13 2010 PPC BROADBAND, INC Coaxial connector with inhibited ingress and improved grounding
9172154, Mar 15 2013 PPC BROADBAND, INC Coaxial cable connector with integral RFI protection
9172155, Nov 24 2004 PPC Broadband, Inc. Connector having a conductively coated member and method of use thereof
9172156, Oct 08 2010 John Mezzalingua Associates, LLC Connector assembly having deformable surface
9190744, Sep 14 2011 PPC BROADBAND, INC Coaxial cable connector with radio frequency interference and grounding shield
9203167, May 26 2011 PPC BROADBAND, INC Coaxial cable connector with conductive seal
9214771, Jul 07 2011 John Mezzalingua Associates, LLC Connector for a cable
9276363, Oct 08 2010 John Mezzalingua Associates, LLC Connector assembly for corrugated coaxial cable
9287659, Oct 16 2012 PPC BROADBAND, INC Coaxial cable connector with integral RFI protection
9296074, Apr 11 2011 Nexans Arrangement with a metal pipe and a connecting element, as well as method of mounting the connecting element
9312611, Nov 24 2004 PPC BROADBAND, INC Connector having a conductively coated member and method of use thereof
9385497, Jan 24 2013 CommScope Technologies LLC Method for attaching a connector to a coaxial cable
9407016, Feb 22 2012 PPC BROADBAND, INC Coaxial cable connector with integral continuity contacting portion
9419389, May 22 2009 PPC Broadband, Inc. Coaxial cable connector having electrical continuity member
9484645, Jan 05 2012 PPC BROADBAND, INC Quick mount connector for a coaxial cable
9496661, May 22 2009 PPC Broadband, Inc. Coaxial cable connector having electrical continuity member
9515444, Apr 11 2011 CommScope Technologies LLC Corrugated solder pre-form and method of use
9525220, Nov 25 2015 PPC BROADBAND, INC Coaxial cable connector
9537232, Nov 02 2011 PPC Broadband, Inc. Continuity providing port
9548557, Jun 26 2013 Corning Optical Communications LLC Connector assemblies and methods of manufacture
9548572, Nov 03 2014 PPC BROADBAND, INC Coaxial cable connector having a coupler and a post with a contacting portion and a shoulder
9553375, Sep 08 2014 PCT INTERNATIONAL, INC Tool-less coaxial cable connector
9570845, May 22 2009 PPC Broadband, Inc. Connector having a continuity member operable in a radial direction
9583847, Nov 22 2010 CommScope Technologies LLC Coaxial connector and coaxial cable interconnected via molecular bond
9590287, Feb 20 2015 PPC BROADBAND, INC Surge protected coaxial termination
9595776, Mar 30 2011 PPC Broadband, Inc. Connector producing a biasing force
9608345, Mar 30 2011 PPC BROADBAND, INC Continuity maintaining biasing member
9660360, Mar 30 2011 PPC Broadband, Inc. Connector producing a biasing force
9660398, May 22 2009 PPC Broadband, Inc. Coaxial cable connector having electrical continuity member
9692150, Sep 08 2014 PCT INTERNATIONAL, INC Tool-less coaxial cable connector
9711917, May 26 2011 PPC BROADBAND, INC Band spring continuity member for coaxial cable connector
9722363, Oct 16 2012 PPC BROADBAND, INC Coaxial cable connector with integral RFI protection
9762008, May 20 2013 PPC BROADBAND, INC Coaxial cable connector with integral RFI protection
9768565, Jan 05 2012 PPC BROADBAND, INC Quick mount connector for a coaxial cable
9853408, Apr 11 2011 CommScope Technologies LLC Corrugated solder pre-form and method of use
9859631, Sep 15 2011 PPC BROADBAND, INC Coaxial cable connector with integral radio frequency interference and grounding shield
9882320, Nov 25 2015 PPC BROADBAND, INC Coaxial cable connector
9905959, Apr 13 2010 PPC BROADBAND, INC Coaxial connector with inhibited ingress and improved grounding
9912105, Oct 16 2012 PPC BROADBAND, INC Coaxial cable connector with integral RFI protection
9991651, Nov 03 2014 PPC BROADBAND, INC Coaxial cable connector with post including radially expanding tabs
D371342, Dec 07 1994 Teracom Components AB Coaxial coupling for radio, television and cordless telephone transmitters
Patent Priority Assignee Title
3199061,
3291895,
3320575,
3678446,
4046451, Jul 08 1976 Andrew Corporation Connector for coaxial cable with annularly corrugated outer conductor
/////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 30 1991DOLES, CONNIE S ANDREW CORPORATION, A DE CORP ASSIGNMENT OF ASSIGNORS INTEREST 0057570569 pdf
Jun 04 1991Andrew Corporation(assignment on the face of the patent)
Dec 27 2007Andrew CorporationBANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0203620241 pdf
Dec 27 2007ALLEN TELECOM, LLCBANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0203620241 pdf
Dec 27 2007COMMSCOPE, INC OF NORTH CAROLINABANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0203620241 pdf
Aug 27 2008Andrew CorporationAndrew LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0218050044 pdf
Jan 14 2011COMMSCOPE, INC OF NORTH CAROLINA, A NORTH CAROLINA CORPORATIONJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0262720543 pdf
Jan 14 2011ANDREW LLC, A DELAWARE LLCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0262720543 pdf
Jan 14 2011ALLEN TELECOM LLC, A DELAWARE LLCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0262720543 pdf
Jan 14 2011BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTANDREW LLC F K A ANDREW CORPORATION PATENT RELEASE0260390005 pdf
Jan 14 2011BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTAllen Telecom LLCPATENT RELEASE0260390005 pdf
Jan 14 2011BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTCOMMSCOPE, INC OF NORTH CAROLINAPATENT RELEASE0260390005 pdf
Apr 04 2019JPMORGAN CHASE BANK, N A REDWOOD SYSTEMS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0488400001 pdf
Apr 04 2019JPMORGAN CHASE BANK, N A Allen Telecom LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0488400001 pdf
Apr 04 2019JPMORGAN CHASE BANK, N A Andrew LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0488400001 pdf
Apr 04 2019JPMORGAN CHASE BANK, N A COMMSCOPE, INC OF NORTH CAROLINARELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0488400001 pdf
Apr 04 2019JPMORGAN CHASE BANK, N A CommScope Technologies LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0488400001 pdf
Date Maintenance Fee Events
Jan 29 1996M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Feb 01 2000M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 08 2004M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Aug 11 19954 years fee payment window open
Feb 11 19966 months grace period start (w surcharge)
Aug 11 1996patent expiry (for year 4)
Aug 11 19982 years to revive unintentionally abandoned end. (for year 4)
Aug 11 19998 years fee payment window open
Feb 11 20006 months grace period start (w surcharge)
Aug 11 2000patent expiry (for year 8)
Aug 11 20022 years to revive unintentionally abandoned end. (for year 8)
Aug 11 200312 years fee payment window open
Feb 11 20046 months grace period start (w surcharge)
Aug 11 2004patent expiry (for year 12)
Aug 11 20062 years to revive unintentionally abandoned end. (for year 12)