An exercise treadmill (10) includes a main frame (12) on which is mounted an endless belt (14) trained over a forward drive roller (16) and a rearward idler roller (18) both axled on the main frame. A deck (20) closely underlies and supports the upper run of the endless belt. A subframe (22) is pivotally mounted on the forward position of the main frame 12 adjacent the front of the deck (20) to pivot relative to the main frame about the same transverse axis (24) about which the drive roller is powered by an electric motor (28) mounted on the subframe (22). The orientation of subframe (22) relative to the main frame is selectively alterable through a linear actuator (26) which may be controlled while standing on the treadmill deck (20).

Patent
   5163885
Priority
Jul 30 1990
Filed
Jun 11 1991
Issued
Nov 17 1992
Expiry
Jul 30 2010
Assg.orig
Entity
Large
68
43
EXPIRED
1. An exercise apparatus comprising:
(a) a frame;
(b) an endless belt trained about a roller system mounted on the frame, wherein the roller system includes first and second roller assemblies engaged with the endless belt at the ends thereof, the first roller assembly including a drive roller for driving the endless belt, the drive roller rotating about a first axis;
(c) a deck disposed beneath and supporting the upper run of the endless belt;
(d) wherein the frame includes formed side rail members disposed along the side of the endless belt, the formed side rail members each having an upper portion wrapping the upper edge, side edge, and bottom edge of the deck whereby the formed side rails of the frame are integrally and securely connected together by the deck;
(e) means for mounting the first and second roller assemblies on the formed side rail members of the frame;
(f) a subframe connected to the main frame to pivot relative to the main frame about the first axis;
(g) means for selectively altering the orientation of the subframe relative to the main frame and then maintaining the orientation of the subframe relative to the main frame about the first axis;
(h) a motor for powering the endless belt;
(i) means for mounting the motor on the subframe; and
(j) drive train means for drivingly interconnecting the motor and the drive roller to power the drive roller.
2. The exercise apparatus according to claim 1, wherein the subframe is ground-engageable to elevate the exercise apparatus.

This is a divisional of the prior application Ser. No. 07/561,451 filed Jul. 30, 1990 now U.S. Pat. No. 5,085,426.

The present invention relates to exercise equipment, and, more particularly, to an integrated system for inclining, powering, and facilitating the assembly of exercise equipment, including exercise treadmills.

Exercise treadmills are now widely used in gymnasiums, spas, clinics, and in private homes for aerobic exercise, physical examinations, and physical therapy. An exercise treadmill in its simplest form includes an endless belt that is moved over an underlying support bed, either by the walker's or runner's feet, or by an electric motor. The bed, in turn, is mounted on a ground-engaging support frame. If utilized, the electric motor is typically mounted on a motor pan assembly located on the frame at the front of the treadmill beneath a hood that extends upwardly a considerable elevation above the endless belt. Also located on the frame within the hood at the front of the treadmill is the drive system for drivingly interconnecting the motor with the endless belt, typically through a drive roller at the front of the endless belt. A flywheel of significant mass is typically employed as part of the drive train to help maintain a substantially uniform speed of movement of the endless belt, especially when the runner's or walker's feet land on the belt. Also located on the motor pan are controls for the motor as well as other electronic components designed to augment the operation of the motor, including large capacitors and inductors. Due to the presence of the motor, flywheel, drive train and motor controls and other components, a significant amount of area must be reserved for these components, and these components typically are installed on the motor pan section of the frame of the treadmill during assembly thereof and then must be tested.

To render the exercise treadmill more versatile, it may be positioned at various inclinations to simulate running or walking up a grade. Various mechanisms have been employed to raise and lower the front end of the exercise treadmill relative to the floor or other support surface on which the unit is positioned. For instance, in one type of exercise treadmill, the forward end of the endless belt, associated bed and belt support frame must be manually lifted and engaged or clamped to upstanding posts. It may not be possible for elderly or physically infirm persons to lift the treadmill belt, deck and frame in this manner. Examples of such exercise treadmills are disclosed in U.S. Pat. Nos. 931,394 and 2,117,957.

In another type of treadmill lift mechanism, the elevation of the forward end of the treadmill is adjusted by manually rotating threaded leg members located at the front of the treadmill frame, using a wrench or similar hand tool. This type of method is often too slow and cumbersome for most treadmill users. Moreover, typically the walker/runner must leave the endless belt to adjust the height of the threaded legs. Examples of this type of exercise treadmill lift mechanism are disclosed in U.S. Pat. Nos. 4,151,988 and 4,602,799.

In a further type of exercise treadmill, gas springs are employed to carry substantially all of the weight of the forward end of the treadmill frame to provide an essentially "zero-bias" so that the treadmill may be readily raised and lowered to a desired operating position. However, a manually operable clamping mechanism typically is employed to lock the tilting/supporting means in a desired position. Thus, to change the angle of inclination of the treadmill, the user must dismount the treadmill and move to the front to manually operate the locking device. It may not be possible for an elderly or infirm person to loosen the locking device, lift or lower the treadmill frame and then sufficiently retighten the locking device to prevent it from shifting during use of the exercise treadmill. Moreover, the gas springs must be large enough to lift not only the forward end of the treadmill frame, but also the substantial weight of the drive motor and its associated flywheel, electrical components and drive train components. Examples of the foregoing type of treadmill elevating device are disclosed by U.S. Pat. Nos. 4,591,147 (assigned to the assignee of the present application) and 4,664,371.

Another common disadvantage of known exercise treadmills, including many of those noted above, is that a substantial number of components and assembly steps are required, both during the initial preassembly of the machine at the manufacturing location, and also during the final assembly by the ultimate user of the equipment. This is not only time-consuming and expensive, but also oftentimes requires special skills and tools, which many persons do not possess.

The present invention addresses the disadvantages of prior art exercise treadmills discussed above, by providing an exercise treadmill composed of a main frame and a ground-engageable subframe at the forward end of the main frame. An endless belt is trained about a forward drive roller and a rear idler roller. A forward axle assembly rotatably mounts the forward drive roller about a drive axis disposed transversely to the length of the frame. The subframe is connected to the main frame to permit the subframe to pivot relative to the main frame about the same drive axis of the forward drive roller. The angular orientation of the subframe relative to the main frame, and thus the inclination of the main frame, may be altered as desired. A motor for driving the endless belt is mounted on the subframe, and a drive train drivingly interconnects the motor with the forward drive roller. It is possible to locate the motor on the pivoting subframe in that the drive roller for the endless belt and the subframe both pivot about the same transverse axis.

In accordance with a particular aspect of the present invention, the drive train includes a drive pulley driven by the motor and a driven pulley mounted on the drive roller. A belt or similar power transmission member is trained about the drive pulley and the driven pulley to transmit power therebetween.

In a further aspect of the present invention, an actuator is interconnected between the subframe and the main frame to pivot the subframe relative to the main frame. A control system for the actuator is provided which may be manually operable when standing on the main frame so that the treadmill need not be dismounted when changing the angle of inclination of the apparatus.

In accordance with another aspect of the present invention, the main frame of the treadmill includes a deck located beneath and supporting the upper run of the endless belt. The main frame also includes formed side rail members that extend along the side edges and forwardly of the deck. The ends of the forward axle, on which the drive roller is mounted, are mounted onto the formed side rails.

In accordance with a further particular aspect of the present invention, the side rail members include an upper section having an upper lip portion wrapping the upper side edge of the deck, a side edge portion wrapping the side edge of the deck, and a lower lip portion wrapping the bottom edge portion of the deck. The formed side rail members also include a lower section that extends downwardly from the upper section to engage the ground. in accordance with a further aspect of the present invention, the integrated drive and elevation system summarized above may be utilized in conjunction with other types of exercise equipment in addition to exercise treadmills, and further may be used in other types of apparatus or machinery. Such other exercise equipment or machinery is characterized by having a main frame in a powered roller or other rotational component associated with a function of the apparatus, with the powered roller rotatably mounted on the main frame about a first axis. The integral drive and elevation system includes a subframe connected to the main frame to pivot about the first axis and then maintain its orientation relative to the main frame. A motor is mounted on the subframe, and a drive train is provided for interconnecting the motor with the powered roller or other rotational component.

One embodiment of the present invention is illustrated in the accompanying drawings, in which:

FIG. 1 is an isometric view of an exercise treadmill incorporating the present invention, as viewed from the forward end of the unit;

FIG. 2 is an enlarged isometric view of the forward portion of an exercise treadmill illustrating the present invention, with portions removed for clarity; and,

FIG. 3 is an enlarged, fragmentary isometric view of a rearward portion of an exercise treadmill illustrating the present invention, with portions broken away for clarity.

Initially referring to FIGS. 1 and 2, a powered apparatus in the form of an exercise treadmill 10 is illustrated as including a main frame structure 12 on which is mounted an endless belt 14 trained over a forward drive roller 16 and the rearward driven or idler roller 18, both axled on the main frame. A platform or deck 20 closely underlies and supports the upper run of the endless belt. A subframe 22 is pivotally mounted on a forward portion of the main frame 12 adjacent the front of the deck 20 to pivot or shift relative to the main frame about the same transverse axis 24 about which the drive roller 16 is powered. The orientation of the subframe 22 relative to the main frame is alterable through a linear actuator 26 which may be controlled while standing on the treadmill deck 20 to raise and lower the forward end of the main frame 12 to simulate an incline or hill. An electric motor 28 is mounted on the subframe 22 to power the forward drive roller 16. The electric motor and other components are covered by a hood 29. A display assembly 30 is mounted on a forward post 32 extending upwardly from the front of the treadmill 10. A microprocessor, not shown, is housed within the display assembly 30 to calculate and display various workout parameters, including, for instance, elapsed time, speed, distance traveled and the angle or percent of incline of the treadmill. A hand rail structure 34 extends upwardly from both sides of the main frame 12, longitudinally forwardly and then laterally across the front portion of the treadmill adjacent the top of the post 32 and beneath the display assembly 30, FIG. 1.

Next describing the foregoing major subassemblies of the treadmill 10 in greater detail, the main frame 12 is of uniframe construction composed essentially of the deck 20 and left and right formed side rails 36L and 36R extending along the sides of the deck and forwardly thereof. Ideally, the side rails 36L and 36R are constructed as mirror images of each other, and thus side rail 36L will be described with the understanding that the side rail 36R is essentially the same, but a mirror image of the side rail 36L.

As most clearly shown in FIGS. 1 and 3, the side rail 36L includes an upper section composed of a top flange portion 38 overlying the upper edge of the deck 20, a vertical side web 40 overlying the side edge 42 of the deck and an intermediate flange 44 underlying the bottom side edge of the deck. It will be appreciated that the top flange 38, side web 40 and intermediate flange 44 snugly receive the side edge of the deck 20 therebetween. Hardware members, such as screws 46, extend upwardly through close-fitting clearance holes formed in the intermediate flange 38 to threadably engage with the deck 20 thereby to assist in retaining the deck engaged with the side rail 36L. The side rail 36L also includes a lower section composed of a lower vertical web 48 and an inwardly turned bottom flange 50. As shown in FIG. 1, for a majority of the length of the side rail 36L, the lower web 48 is relatively deep compared to the thickness of the deck 20; however, at the rearward portion 52 the web 48 does not extend downwardly nearly to the depth as in the remainder of the length of the side wall.

A generally triangularly-shaped molded foot 54L underlies the side edge of the bed 20 and also extends downwardly along the inside of the side rail 36L to an elevation just below the bottom flange 50. At the top of the foot 54L, screws, not shown, may be utilized to attach the foot to the underside of the bed. A resilient pad 58 is affixed to the bottom of the foot 54L to engage the floor, ground or other structure on which the treadmill 10 rests. Preferably, the resilient pad 58 is constructed from "nonskid" material to help prevent the treadmill from "walking" across the floor during use. The pad 58 is held in place by a threaded hardware member 56 that extends upwardly through a counterbored clearance hole formed in the pad and through an aligned clearance hole formed in the side rail flange 50 to engage into the foot 54L, thereby to also secure the foot to the side rail 36L.

It will be appreciated that by the foregoing construction, the deck 20 forms an integral part of the main frame 12. This eliminates the need for welding a series of cross members to the frame side rails 36L and 36R in the manner of typical prior art treadmills. However, a forward cross member 59 is employed to interconnect the forward ends of the side rails 36L and 36R in that the side rails do extend forwardly a considerable distance from the forward end of the deck 20. Of course, if desired or required to provide adequate structural integrity, additional cross members could be used to interconnect the side rails 36L and 36R. However, applicant has found after extensive testing that such additional cross members are not needed. With the use of the deck 20 as an integral structural portion of the main frame 12, the main frame is of "uniframe" construction. Utilization of the deck 20 in this manner enables the main frame to be constructed from a minimum number of components and assembled with fewer steps than typically required in prior art treadmills.

Next referring specifically to FIGS. 1 and 2, an elongate post 32 extends upwardly and diagonally rearwardly from the forward cross member 58 to intersect with a transverse central section 60 of the hand rail structure 34. The post 32 is illustrated as formed from rectangular tubular material; however, it is to be understood that a tubular material of other cross-sectional shapes may be utilized as well as other types of structural materials. The post 32 provides substantial support for the hand rail structure 34 even though the post is offset to the right-hand side of the treadmill when standing on the treadmill and facing forwardly. The post 32 also supports the display assembly 30 which may be mounted to the top of the post by any convenient means.

In addition to the central transverse section 60, the hand rail structure 34 includes upper side sections 62L and 62R that extend laterally outwardly from the ends of the center section and then rearwardly and slightly diagonally downwardly and parallel to the sides of the treadmill 10. Generally upright leg sections 64L and 64R extend downwardly and slightly rearwardly from the corresponding side sections 62L and 62R. Mounting brackets 66 receive the lower ends of the leg sections 64L and 64R, which mounting brackets are secured to the lower web sections 48 of the formed side rails 36L and 36R by any convenient means, such as by bolts, not shown. Preferably the entire lengths of the side sections 62L and 62R of the hand rail structure are covered with a resilient, nonskid grip 68 constructed from any appropriate material, such as expanded foam. It will be appreciated that by the foregoing construction the hand rail structure is capable of withstanding substantial downward, fore and aft and side loads which may be imparted thereon by the exerciser when walking or running on the treadmill.

Also for safety, resilient strips 70 extend over the top flanges 38 of the side rails 36L and 36R, adjacent the side edges of the endless belt 14. Ideally, the strips 70 are formed from skid-resistant material so that if the walker or runner accidentally steps on one of the strips 70 while the belt 14 is moving, the likelihood of falling or stumbling is reduced.

Next referring specifically to FIG. 3, the rear idler roller 18 is mounted on the main frame 12 by a pair of brackets 74 mounted on the rear ends of the formed side rails 36L and 36R. The brackets 74 are inserted within the siderails, between the upper and intermediate flanges 38 and 44 to abut against the rear of the deck 20. In a typical manner, the idler roller 19 is antifrictionally mounted on a through axle 76 by roller bearings, not shown, or other similar, standard antifriction devices. The axle 76 extends outwardly beyond the ends of the idler roller 18 into the interior of the brackets 74. A threaded cross hole is formed in each end of the axle 76 for engagement with an adjusting screw 80 which spans across the mounting bracket 74 in a direction lengthwise to the formed side rails 36L and 36R to bear against a dimple or depression 81 formed in the forward wall of the bracket. By rotating the screws 80, the tension on the endless belt 14 may be adjusted to an appropriate and desired level. The bracket 74 and the adjacent end of the roller 18 are protectively covered by a formed cap 81A that snaps over the bracket.

Next referring specifically to FIG. 2, the forward drive roller 16 is mounted on the main frame 12 just forwardly of the deck 20 by an axle 82 which extends through the hollow interior of the roller. Roller bearings, not shown, or other standard antifriction devices are used to mount the drive roller 16 on the axle 82. The ends of the axle 82 extend outwardly beyond the ends of the roller 16 to engage within forwardly open slots 86 formed in the vertical web sections 88 of mounting brackets 90. The mounting brackets 90 also include upper and lower flange sections 92 and 94 that closely underlie the top flange 38 and overlie the bottom flange 50 of the frame formed side rails 36L and 36R, respectively. The upper and lower flanges 92 and 94 of the mounting bracket 90 may be attached to the side rails 36L and 36R by any appropriate method, including by the use of hardware members or weldments. Ideally, the distal ends of the axle 82 are of reduced diameter to closely be receivable within the slots 86 and also to form shoulders which bear against the mounting bracket web sections 88, thereby to substantially eliminate movement of the axle 82 relative to the main frame 12 in the direction lengthwise of the axle. It will be appreciated that the tension of the endless belt 14 is sufficient to maintain the axle 82 engaged within the slots 86, and no other accommodation in this regard is required.

Continuing to refer specifically to FIG. 2, the subframe 22 is constructed from a pair of side members 100 disposed in spaced parallel relationship by a cross member 102. The side members 100 are illustrated as formed of flat bars, whereas the cross member 102 is illustrated as being formed from tubular material. It is to be understood that these members may be constructed from other types of materials without departing from the spirit and scope of the present invention. Rearwardly open slots 104 are formed in the rear ends of the side members 100 for closely engaging over the portions of axle 82 extending beyond the drive roller 16. A rod 106 extends across the front of the subframe 22, with the ends of the rod engaging within forwardly open slots 108 formed in the forward ends of the side members 100. Rollers 110 are mounted on the outward ends of the rod 106 adjacent the inside faces of the subframe side members 100. It will be appreciated that the rollers facilitate the moving of the treadmill 10 which is accomplished by simply lifting up the rear of the main frame 12, which is relativey light in comparison to the front of the main frame, since the front of the main frame carries the subframe 22, the motor 28 and associated components.

The motor 28 is mounted on the subframe 22 by an L-shaped rear mounting bracket 112 having a rearward web portion 114 which overlies the subframe cross tube 102. Slots 116 are formed in the web 114 for receiving threaded hardware members 118 that extend downwardly through the slots to threadably engage with nuts, not shown, or other types of hardware members disposed beneath the cross member 102. Appropriate clearance holes are formed in the cross member for reception of the hardware members 118. The motor mounting bracket 112 also includes an upward flange section 122 that is fastened to the outer casing or housing of the motor 28. Screws 124 or other types of hardware members extend through close-fitting clearance holes formed in the flange section 122 to engage within tapped holes formed in the motor casing thereby to securely attach the motor 28 to the mounting bracket 112.

A second, forward motor mounting bracket 125, illustrated as being in the form of a rectangular plate, is used to mount the forward side of the motor 28 to the subframe 22. The bracket 125 is bolted to the casing of the motor by bolts 126 so that the bracket extends generally tangentially downwardly from the motor casing. A pair of screws 127 extend rearwardly through diametric clearance holes formed in the rod 106 to engage within tapped holes formed in the lower section of the motor mount bracket 125.

As shown in FIG. 2, flywheel 128 is mounted on the output shaft of the motor 28 in typical fashion to rotate therewith. The flywheel facilitates the rotation of the motor at a constant speed in spite of the impulse loads imposed on the motor as the walker or runner's foot lands on the endless belt 14. Preferably, the flywheel 28 has an annular section 130 that closely surrounds the casing of the motor 28 so as to provide sufficient mass while taking up a minimum of space within the motor compartment of the treadmill, i.e., the portion of the treadmill disposed beneath the hood 29.

A drive sheave 132 is mounted on the distal end of the motor drive shaft (outwardly of the flywheel 28) to rotate therewith. A driven sheave 134 is mounted on the roller 16 adjacent the corresponding end of the axle 82 in alignment with the drive sheave 132. An endless drive belt 136 is trained around the drive and driven sheaves to transmit torque from the electric motor 28 to the drive roller 16. The tension of the belt 136 is adjusted by rotation of the screws 126 utilized to attach the motor mounting bracket 125 to the forward cross rod 106 of the subframe 22. While this adjustment is taking place, the hardware members 118 at the rear mounting bracket 112 are loosened to allow the web 114 to slide over the subframe cross member 102. It will also be appreciated that as the screws 126 are tightened, the cross rod 106 is retained or held captive within the slots 108 formed in the forward ends of the subframe side members 100. Further, it will be appreciated that the tensioned belt 136 forces the rearward slot 104 of the adjacent subframe side member 100 into engagement against the axle 82 to prevent the subframe from becoming disengaged from the axle while permitting the subframe to rotate about the longitudinal axis 24 of the axle 82. At the end of the axle 82 opposite from the driven sheave 134, a retaining strap 140 is utilized to prevent the subframe side member 100 from disengaging from the axle when the forward end of the treadmill is lifted. The strap 140 includes a hole in one end portion to engage over the axle 82 and a second clearance hole in the opposite end portion of the strap to receive a bolt 141 which extends therethrough to threadably engage within a tapped hole formed in the corresponding side member 100.

As most shown in FIG. 2, other components of the present invention are mounted on the subframe 22. These components include a capacitor 142 and an inductor 144, as well as an integrated circuit board, not shown, all utilized in conjunction with the drive motor 28. As will be appreciated by those skilled in the art to which the present invention is addressed, by being mounted on the subframe 100, the drive motor 28 and the foregoing associated components occupy less space than if mounted stationarily above the subframe. Moreover, the motor 28 and associated components may be subassembled and tested on the subframe 22, thereby facilitating the subsequent assembly of the treadmill 10.

Again referring to FIG. 2, the front end portion of the treadmill 10 is raised and lowered through a linear actuator 26 operably interconnected between the forward end of the main frame 12 and the subframe 22 to pivot the subframe about the same transverse axis 24 about which the driven sheave 134 and the drive roller 16 of the endless belt rotate. As a consequence, the spacing between the centers of the drive and driven sheaves 132 and 134 remains constant regardless of the angular orientation of the subframe 22. This allows the drive motor 28 to be successfully mounted on the movable subframe 22.

In an illustrative but nonrestrictive example of the present invention, the linear actuator 26 may be in the form of a gas spring, which is a standard article of commerce. Such gas springs may be obtained from Gas Spring Company of Colmer, Pa., part No. 392,650. Gas springs of this nature are designed to impart a damping force in the manner of a typical hydraulic shock absorber. In addition, such gas springs may be nominally increased or decreased in length as desired by operation of a valving mechanism within the interior of the gas spring. Thus in the present situation, as discussed more fully below, the gas spring may be employed to both nominally tilt the treadmill 10 to a desired orientation and also absorb a certain amount of shock load imposed on the deck 20 during the foot plant of the exerciser running on the treadmill.

As illustrated in the drawings, the linear actuator includes a lower cylinder section having a standard downwardly projecting mounting ear rotatably pinned to an upwardly opened U-shaped bracket 150 depending downwardly from the underside of the cross member 102 of the subframe 22. As shown, the bracket 150 extends somewhat forwardly of the cross member 102. The upper end of a piston rod 152 of the linear actuator extends through a clearance hole formed in the top of an upper bracket 158 and is secured to a base member 154 of a switch assembly 156. The switch assembly is located above the downwardly opened U-shaped bracket 158 which extends rearwardly and diagonally upwardly from the cross member 58 spanning between the forward ends of the side rails 36L and 36R of the main frame 12. The upper end of the piston rod 152 may be secured to the switch base 154 by any appropriate method. A collar 160 is secured to the piston rod 132 to bear against the underside of the bracket 158 when the linear actuator 26 is extended, thereby lowering the subframe which causes the front of the treadmill to be tilted upwardly.

Gas springs of the type illustrated typically have an actuating pin extending nominally beyond the free end of the piston rod. In the present situation, an actuating pin 162 nominally extends beyond the end of the rod 152 to an elevation above the base 154 of the switch assembly 156 to closely underlie the upper arm 164 of the switch assembly 156, which arm is hinged to the switch assembly base 154 in a standard fashion. Switch assemblies of the type of assembly 156 are standard articles of commerce. For instance, such switch assemblies may be obtained from Cable Manufacturing and Assembly of Fairfield, N.J.

The end of the internal cable 165 of a push-pull cable assembly 166 is secured to the end of the switch assembly upper arm 164 opposite the location at which the upper arm is hinged to the base 154. As is typical, the outer sheath 168 of the push-pull cable assembly 166 stops short of the end of the cable 165 and bears against the underside of the switch assembly base, which has a small hole formed therethrough to allow passage of the cable 165. The opposite end of the push-pull cable assembly 166 is connected to a hand lever assembly 170 mounted on the leg 64R of the hand rail structure 34, see FIG. 1.

In a standard manner, when the hand-graspable lever 172 of the assembly 170 is squeezed, the opposite end of the cable 165 adjacent the switch assembly 156 is drawn into the sheath 168, thereby to rotate the actuator upper arm 164 downwardly which in turn depresses the actuating pin 162 of the linear actuator 26. When the pin 162 is depressed, the linear actuator may be increased or decreased in length depending on whether the force being exerted on the ends of the linear actuator tend to elongate or shorten the length of the actuator. It will be appreciated that if the user is standing toward the front of the endless belt 14, the weight of the user will cause the subframe 22 to pivot upwardly about axis 24 relative to the main frame 12, thereby to lower the forward end of the treadmill. However, if the user is standing close to the "balance point" of the treadmill, the linear actuator will neither be lengthened nor shortened. Further, if the user shifts rearwardly from the balance or equilibrium point, the weight of the user tends to force the subframe to pivot about axis 24 thereby to raise the front of the main frame relative to ground thus increasing the distance separating the brackets 150 and 158 used to correct the gas spring to the main frame and subframe, respectively. As a result, the nominal length of the gas spring is increased. During the lowering or raising of the forward end of the treadmill, the main frame pivots about the feet 54L and 54R of the frame. It will be appreciated that in the foregoing manner, the linear actuator may be utilized to raise and lower the forward end of the treadmill 10 without having to disembark from the treadmill as required when adjusting the tilt of many prior art treadmills.

It will also be appreciated that other types of actuators may be utilized in lieu of the gas spring shown in FIG. 2. Such other types of linear actuators include electrically operable lead screws as discussed in U.S. Pat. No. 3,870,297, powered rack-and-pinion assemblies as disclosed in U.S. Pat. No. 4,844,449, fluid shock absorbers as disclosed in U.S. Pat. No. 4,423,846, and standard electromagnetic solenoids.

The inclination or tilt of the treadmill 10 is measured by utilizing a potentiometer 180 mounted on a sub-bracket 182 depending downwardly from the upper bracket 158 of the linear actuator 26. A rotating wheel 184 is operably connected to the potentiometer and positioned to rotate against the cylinder portion of the linear actuator 26 as the actuator extends and retracts, thereby changing the output signal generated by the potentiometer. The output signal from the potentiometer 180 is transmitted to the microprocessor, discussed above, for use in calculating and displaying the various workout parameters.

In addition to the foregoing advantages of the present invention, it will be appreciated that by locating the motor 28, flywheel 128, capacitor 142, inductor 144, and other motor and drive train components on the subframe 22, a motor pan assembly has been eliminated. A typical treadmill, as discussed above, includes a frame, a separate motor pan assembly, and a separate lift system. Through the construction of the present invention and as described above, treadmill 10 requires only two major assemblies, first assembly associated with the main frame 12 and a second assembly associated with the subframe 22. Moreover, by placing the motor, flywheel, capacitor, inductor, and other components of the motor and drive systems on the subframe 22, rather than on the main frame 12 as is typical, it is not necessary for the tilting system to raise and lower these components when tilting the forward end of the bed. As such, the linear actuator 26 and associated mounting brackets and other components may be of significantly smaller capacity than if all of the typical motor and drive system components were carried by the front end of the main frame 12.

Although the present invention has been disclosed with respect to a preferred embodiment and several modifications thereto, further modifications will be apparent to those skilled in the art. Accordingly, it is not intended that the invention be limited by the disclosure or by such modifications, but instead that its scope be determined by reference to the claims which follow herein below.

Williams, Wes, Wanzer, Rick, Dalton, Cole J.

Patent Priority Assignee Title
10188890, Dec 26 2013 ICON PREFERRED HOLDINGS, L P Magnetic resistance mechanism in a cable machine
10252109, May 13 2016 ICON PREFERRED HOLDINGS, L P Weight platform treadmill
10258828, Jan 16 2015 ICON PREFERRED HOLDINGS, L P Controls for an exercise device
10272317, Mar 18 2016 ICON PREFERRED HOLDINGS, L P Lighted pace feature in a treadmill
10279212, Mar 14 2013 ICON PREFERRED HOLDINGS, L P Strength training apparatus with flywheel and related methods
10293211, Mar 18 2016 ICON PREFERRED HOLDINGS, L P Coordinated weight selection
10343017, Nov 01 2016 ICON PREFERRED HOLDINGS, L P Distance sensor for console positioning
10376736, Oct 16 2016 ICON PREFERRED HOLDINGS, L P Cooling an exercise device during a dive motor runway condition
10426989, Jun 09 2014 ICON PREFERRED HOLDINGS, L P Cable system incorporated into a treadmill
10433612, Mar 10 2014 ICON PREFERRED HOLDINGS, L P Pressure sensor to quantify work
10441844, Jul 01 2016 ICON PREFERRED HOLDINGS, L P Cooling systems and methods for exercise equipment
10471299, Jul 01 2016 ICON PREFERRED HOLDINGS, L P Systems and methods for cooling internal exercise equipment components
10493349, Mar 18 2016 ICON PREFERRED HOLDINGS, L P Display on exercise device
10500473, Oct 10 2016 ICON PREFERRED HOLDINGS, L P Console positioning
10561894, Mar 18 2016 ICON PREFERRED HOLDINGS, L P Treadmill with removable supports
10569123, Dec 05 2016 ICON PREFERRED HOLDINGS, L P Deck adjustment interface
10625137, Mar 18 2016 ICON PREFERRED HOLDINGS, L P Coordinated displays in an exercise device
10661114, Nov 01 2016 ICON PREFERRED HOLDINGS, L P Body weight lift mechanism on treadmill
10729965, Dec 22 2017 ICON PREFERRED HOLDINGS, L P Audible belt guide in a treadmill
10953305, Aug 26 2015 ICON PREFERRED HOLDINGS, L P Strength exercise mechanisms
11451108, Aug 16 2017 ICON PREFERRED HOLDINGS, L P Systems and methods for axial impact resistance in electric motors
11883729, May 12 2021 TECHNOGYM S P A Devices and system for protecting users from a treadmill conveyor
5542892, Aug 15 1994 Core Industries, LLC Supporting chassis for a treadmill
5558604, Jun 02 1994 MCTAGGART HOLDINGS LLC Aquatic treadmill apparatus
5643143, Jan 31 1996 D&J Development Workshop, Inc. Wheelchair trainer
5649883, Feb 01 1996 D & J Development Workshop, Inc. Racer wheelchair trainer
5674156, Jan 30 1996 ICON HEALTH & FITNESS, INC Reorienting treadmill with covered base
5674453, Jan 30 1996 ICON HEALTH & FITNESS, INC Reorienting treadmill
5683332, Jan 30 1996 ICON HEALTH & FITNESS, INC Cabinet treadmill
5702325, Jan 30 1996 ICON HEALTH & FITNESS, INC Cabinet treadmill with handle
5704879, Jan 30 1996 ICON HEALTH & FITNESS, INC Cabinet treadmill with latch
5718657, Jan 30 1996 ICON HEALTH & FITNESS, INC Cabinet treadmill with repositioning assist
5743833, Jan 30 1996 ICON HEALTH & FITNESS, INC Cabinet treadmill with door
5830113, May 13 1996 BOWFLEX INC Foldable treadmill and bench apparatus and method
5830114, Nov 05 1996 BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT Variable incline folding exerciser
5833577, Sep 24 1996 SPIRIT MANUFACTURING, INC Fold-up exercise treadmill and method
5855537, Nov 12 1996 BOWFLEX INC Powered folding treadmill apparatus and method
5868648, May 13 1996 BOWFLEX INC Foldable treadmill apparatus and method
5899834, Oct 28 1997 ICON HEALTH & FITNESS, INC Fold-out treadmill
5913384, Jun 03 1996 Charles, Williams Treadmill lubricating devices and methods
5921892, Jun 30 1997 Essi-Ferno Underwater treadmill device
5921893, Sep 24 1996 Spirit Manufacturing, Inc. Fold-up exercise treadmill and method
6033346, Mar 10 1998 Greenmaster Industrial Corp. Adjustment mechanism for the rear supporting beam of a treadmill
6110076, Sep 24 1996 Spirit Manufacturing, Inc. Fold-up exercise treadmill and method
6193634, Sep 24 1996 Fold-up exercise treadmill and method
6241638, Sep 24 1996 SPIRIT MANUFACTURING, INC Fold-up exercise treadmill and method
6350218, Oct 28 1997 ICON HEALTH & FITNESS, INC Fold-out treadmill
6974404, Jan 30 1996 ICON HEALTH & FITNESS, INC Reorienting treadmill
7097593, Aug 11 2003 BOWFLEX INC Combination of treadmill and stair climbing machine
7192388, Oct 28 1997 ICON HEALTH & FITNESS, INC Fold-out treadmill
7285075, Dec 11 2003 ICON PREFERRED HOLDINGS, L P Incline trainer
7357758, Aug 08 2001 Treadmill
7367926, Aug 01 2005 FITNESS QUEST INC Exercise treadmill
7455626, Dec 31 2001 BOWFLEX INC Treadmill
7537549, Feb 02 2000 ICON HEALTH & FITNESS, INC Incline assembly with cam
7540828, Jan 30 1996 BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT Reorienting treadmill
7544153, Dec 31 2001 BOWFLEX INC Treadmill
7780578, Mar 20 2007 Mid-deck hinged foldable treadmill deck
7862483, Feb 02 2000 ICON HEALTH & FITNESS, INC Inclining treadmill with magnetic braking system
8784278, May 28 2010 HydroWorx International, Inc. Underwater treadmill and integrated jet device and method for selectively controlling an underwater treadmill system
8876668, Feb 02 2000 ICON PREFERRED HOLDINGS, L P Exercise device with magnetic braking system
9623281, Feb 02 2000 ICON HEALTH & FITNESS, INC Exercise device with braking system
9898918, Mar 12 2014 PELOTON INTERACTIVE, INC Treadmill belt wear notification system
9922528, Mar 12 2014 PELOTON INTERACTIVE, INC Fitness equipment unit service condition notification system
D387402, May 13 1996 NAUTILUS, INC Foldable treadmill
D392351, May 13 1996 NAUTILUS, INC Foldable treadmill base
D527060, Mar 22 2004 BOWFLEX INC Exercise device with treadles
RE42698, Jul 25 2001 BOWFLEX INC Treadmill having dual treads for stepping exercises
Patent Priority Assignee Title
2425860,
3348678,
3643943,
3826491,
3870297,
3892404,
3963101, Jul 30 1975 Suspa Federungstechnik Fritz Bauer & Sohne oHG Lengthwise displaceable, pressure medium charged, hydraulically blockable adjustment assembly
3966182, Jul 30 1975 Suspa Federungstechnik Fritz Bauer & Sohne oHG Lengthwise-adjustable gas spring
4093196, Aug 26 1976 Suspa Federungstechnik Fritz Bauer & Sohne oHG Length-adjustable gas spring
4344616, Aug 05 1980 AJAY ENTERPRISES CORPORATION A CORP OF DE Exercise treadmill
4363480, Sep 30 1980 HENSON, GLEN E 3510 SOUTH COTTAGE INDEPENDENCE MISSOURI Exercise device
4364556, Oct 20 1980 FF ACQUISITION CORP Emergency shut-off switch and frame assemblies for exercise apparatus
4374587, Aug 05 1980 AJAY ENTERPRISES CORPORATION A CORP OF DE Exercise treadmill
4423864, Oct 13 1981 Angularly adjustable ski deck
4445683, Aug 05 1980 AJAY ENTERPRISES CORPORATION A CORP OF DE Exercise treadmill with rockable feet
4502679, Sep 21 1982 Motorized variable speed treadmill
4576352, Aug 05 1980 FOOTHILL CAPITAL CORPORATION Exercise treadmill
4591147, Sep 06 1984 Precor Incorporated System for elevating an exercise treadmill
4602779, Aug 06 1980 BOWFLEX INC Exercise treadmill
4616822, Aug 01 1984 TRUE FITNESS TECHNOLOGY, INC , A MISSOURI CORP Exercise treadmill
4635927, Mar 04 1985 Del Mar Avionics Low power treadmill
4635928, Apr 15 1985 AJAY ENTERPRISES CORPORATION A CORP OF DE Adjustable speed control arrangement for motorized exercise treadmills
4643418, Mar 04 1985 Battle Creek Equipment Company Exercise treadmill
4664371, May 16 1985 Tunturipyora Oy Exercise treadmill for walking or running exercises
4708337, Dec 26 1985 Industrial Technology Research Institute Automatic treadmill
4729558, Oct 11 1985 Running exerciser
4759540, Sep 05 1986 INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, NO 195 SEC 4 CHUNG-HSING RD , CHU TUNG, SHIN CHU HSION TAIWAN R O C Compact structure for a treadmill
4792134, Nov 16 1987 Treadmill with improved adjusting mechanism
4844449, Jun 03 1987 TRUE FITNESS TECHNOLOGY, INC Infinitely adjustable elevating system for treadmill
4886266, May 23 1988 TRUE FITNESS TECHNOLOGY, INC Exercise treadmill
4913396, Oct 12 1988 BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT Adjustable incline system for exercise equipment
4918766, Oct 16 1984 Hydrotherapy exercising device with scissor lift treadmill
4974831, Jan 10 1990 Precor Incorporated Exercise treadmill
AU233194,
D289668, Jan 29 1985 WEST BEND COMPANY, THE, A CORP OF DE Exercise treadmill
DE2225342,
DE2408052,
DE2408055,
EP225810,
GB1505702,
GB2212729A,
SU1265113,
WO8201138,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 11 1991Precor Incorporated(assignment on the face of the patent)
Date Maintenance Fee Events
Mar 21 1996M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Apr 12 1996ASPN: Payor Number Assigned.
May 08 2000M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 02 2004REM: Maintenance Fee Reminder Mailed.
Nov 17 2004EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Nov 17 19954 years fee payment window open
May 17 19966 months grace period start (w surcharge)
Nov 17 1996patent expiry (for year 4)
Nov 17 19982 years to revive unintentionally abandoned end. (for year 4)
Nov 17 19998 years fee payment window open
May 17 20006 months grace period start (w surcharge)
Nov 17 2000patent expiry (for year 8)
Nov 17 20022 years to revive unintentionally abandoned end. (for year 8)
Nov 17 200312 years fee payment window open
May 17 20046 months grace period start (w surcharge)
Nov 17 2004patent expiry (for year 12)
Nov 17 20062 years to revive unintentionally abandoned end. (for year 12)