A vapor phase corrosion inhibitor-desiccant formulation comprising silica gel granules coated with a finely divided anhydrous molybdate selected from the group consisting of anhydrous sodium molybdate, anhydrous ammonium dimolybdate, and anhydrous amine molybdates having the structural formula: ##STR1## wherein R1 is an aliphatic hydrocarbon having up to 7 carbon atoms, and wherein R2 is either hydrogen or an aliphatic hydrocarbon having up to 7 carbon atoms with these anhydrous molybdates being provided in admixture with sodium nitrite and benzotriazole. The composite formulations of the present invention have been found to be particularly desirable as a vapor phase corrosion inhibitor when in contact with the environs of metals susceptible to corrosion including, for example, iron, aluminum, copper, and alloys such as alloys of iron, copper, and the like. The vapor phase corrosion inhibitors appear to exhibit improved properties when utilized as a powdered coating upon granular silica gel. In a preferred embodiment, the amine-molybdate compounds are those amine-molybdates derived from dicyclohexylamine, 2-ethylhexylamine, and cyclohexylamine. When incorporated as a powdered coating upon silica gel granules, the amine-molybdates have vapor pressures which contribute to enhanced protection against corrosion, as well as a continued or ongoing availability of that protection. When provided in admixture with sodium nitrite and benzotriazole, these composite materials find particular applicability for extrusion with polyolefin films such as polyethylene and polypropylene, and with such films being capable of forming laminates with metallized second film layers.

Patent
   5209869
Priority
Aug 23 1988
Filed
Jun 29 1992
Issued
May 11 1993
Expiry
May 11 2010
Assg.orig
Entity
Small
48
44
EXPIRED
1. A vapor phase corrosion inhibitor-desiccant formulation comprising a mixture of the following composition:
(a) the vapor phase corrosion inhibitor constituent comprising the following:
______________________________________
Component Percent by Weight Range
______________________________________
Sodium nitrite 22%-27%
Benzotriazole 4%-6%
An anhydrous molybdate selected
65%-75%; and
from the group consisting of
sodium molybdate, ammonium
dimolybdate, amine molybdates
and mixtures thereof
______________________________________
(b) the desiccant constituent consisting essentially of granular silica gel.
3. A vapor phase corrosion inhibitor-desiccant comprising a substantially anhydrous amine molybdate powder deposited upon the surface of granular silica gel, and wherein the said anhydrous amine molybdate powder has the structural formula: ##STR6## wherein R1 is an aliphatic hydrocarbon having up to 7 carbon atoms, and wherein R2 is either hydrogen or an aliphatic hydrocarbon having up to 7 carbon atoms.
2. A vapor phase corrosion inhibitor as defined in claim 1 being particularly characterized in that the vapor phase corrosion inhibitor constituent has the following formulation:
______________________________________
Component Percent by Weight
______________________________________
Sodium nitrite 25%
Benzotriazole 5%
An anhydrous molybdate selected
70%
from the group consisting of
sodium molybdate, ammonium
dimolybdate, amine molybdates
and mixtures thereof
______________________________________
and wherein the vapor phase corrosion inhibitor constituent is a dry powder having a particle size less than about 0.1 micron, and being deposited upon granules of silica gel having a particle size between about 8 μm and 8 μm.
4. The vapor phase corrosion inhibitor-desiccant as defined in claim 3 being particularly characterized in that R1 is a cyclohexyl radical.
5. The vapor phase corrosion inhibitor-desiccant as defined in claim 3 being particularly characterized in that R2 is a cyclohexyl radical.
6. The vapor phase corrosion inhibitor-desiccant as defined in claim 4 being particularly characterized in that R2 is hydrogen.
7. The vapor phase corrosion inhibitor-desiccant as defined in claim 3 being particularly characterized in that R1 is a 2-ethylhexyl radical.
8. The vapor phase corrosion inhibitor-desiccant as defined in claim 3 being particularly characterized in that R2 is hydrogen.

This is a Continuation-in-Part of our co-pending application Ser. No. 07/594,357, now U.S. Pat. No. 5,139,700 filed Sep. 27, 1990, allowed Apr. 3, 1992 and entitled "VAPOR PHASE CORROSION INHIBITOR MATERIAL", which in turn, was a Continuation-in-Part of our co-pending application Ser. No. 07/417,238, filed Oct. 5, 1989, entitled "VAPOR PHASE CORROSION INHIBITOR MATERIAL", now abandoned, which in turn was a Continuation-in-Part of application Ser. No. 07/235,120 filed Aug. 23, 1988, entitled "VAPOR PHASE CORROSION INHIBITOR MATERIAL", now abandoned.

The present invention relates to a formulation which is particularly adapted for use as a vapor phase corrosion inhibitor-desiccant, the material being useful for either inhibiting the corrosion of the metallic items and/or passivating the surfaces thereof, the formulation being particularly adapted for direct incorporation within synthetic resinous films through extrusion or deposition into a film, such as into an olefinic film, polyethylene, or the like. Film products prepared in accordance with the present invention find particular application in the formation of enclosures about metallic articles susceptible to corrosion, and provide a relatively dry corrosion inhibiting atmosphere therewithin. Specifically, the compositions of the present invention comprise a vapor phase corrosion inhibitor-desiccant wherein the vapor phase corrosion inhibitor component is selected from the group consisting of anhydrous sodium molybdate and mixtures of such molybdates with sodium nitrite and benzotriazole, and mixtures of benzoates of amine salts with benzotriazole and nitrates of amine salts. The desiccant component of the composition is a solid-phase granular particle consisting essentially of silica gel onto which the vapor phase corrosion inhibitor component, in powdered form, has been deposited thereon. These compositions provide a vapor phase corrosion inhibitor-desiccant which may be extruded along with a film material and with the film thereafter being utilized to form an enclosure housing the item or items being protected. Alternatively, the materials may be placed within enclosures or packages containing items which are to be protected from corrosion. For most-purposes, anhydrous powdered or finely divided mixtures of certain molybdates including anhydrous sodium molybdate, ammonium dimolybdate and amine molybdates along with mixtures of such molybdates with sodium nitrite and benzotriazole and mixtures of amine benzoates with amine nitrates and benzotriazole are preferred. These materials are then deposited upon the larger silica gel granules, with such vapor phase corrosion inhibitor components being preferred for such deposition applications. This composite mixture is preferably extruded into polyethylene film at a rate of from between about 2 percent and 3 percent by weight. Preferably, the silica gel particulate material has an average particle size ranging from between about 2 μm and 8 μm, with the vapor phase corrosion inhibitor component deposited on the surface of the granules having a size ranging from between about 0.001 micron and 0.1 micron.

As an added feature of the invention, film materials extruded, with the formulations of the present invention may, in turn, be laminated to a second metallized film, such as, for example, metallized polyethylene terephthalate. The combined laminate provides a means to reduce and/or eliminate static build-up in or along the film, and accordingly improves the properties of the film when employed as an enclosure.

In commerce and industry today, the useful life of corrodible items may be extended and/or preserved by providing corrosion inhibitors which protect the corrodible item from the adverse effects of its ambient environment. Corrosion inhibitors, particularly vapor phase corrosion inhibitors, have been found useful in protecting certain corrodible items against reaction with elements or compounds which may be found within their environment, and thereby losing their effectiveness, reducing their useful life, or otherwise diminishing their value. Such protection is typically needed during times of packaging, handling, shipment, or during end use. Elements or compounds which are normally of primary concern are gases such as oxygen, water vapor, sulfides, carbon dioxide, and the like. The vapor phase corrosion inhibitor-desiccant formulations of the present invention find particular application in the preparation of packaging material, particularly through in-situ extrusion of the material with such films, with the films thereafter being utilized to form an envelope or other enclosure about the article being protected. These films may also be employed as a member of a multi-layer laminate including a metallized film having good tear resistant properties such as stress-oriented polyethylene terephthalate containing a vapor deposited film or layer of metallic aluminum on a surface thereof. Such films are commercially available and are commonly designated as "aluminized" films.

Among the common indications of corrosion manifested in useful metallic articles are oxidation, pitting, tarnishing, mottling, or discoloration of the surfaces of these items. These manifestations occur in the articles, particularly when exposed to oxygen and in either gaseous or liquid phase. Additionally, sulfides may present corrosion or tarnishing problems as well. Inasmuch as both oxygen and water, including water vapor, occur normally and are available in nature, it is normally necessary to take precautions against corrosion when packaging metallic items for shipment, or when subjecting such items to normal use. Metals which are frequently found to be susceptible to corrosion under normal atmospheric and ambient conditions are iron, copper, brass, aluminum, silver, and alloys of these metals. The formulations of the present invention are particularly useful in providing protection to both ferrous and non-ferrous metals, including such non-ferrous metals as aluminum, copper and brass. Care must frequently be taken to protect articles fabricated from such metals, even when their surfaces have been treated so as to be provided with sacrificial or aesthetic coatings of zinc or cadmium on their surfaces. Such sacrificial or aesthetic coatings are, of course, in wide use, but restrictions of use of these materials may appear from time to time due to their potential contribution to pollution or the like. Accordingly, means must be provided to find alternate techniques for the protection and/or preservation of metallic articles.

In the past, it has been known to provide a package or other enclosure which includes one or more inhibiting compounds along with the corrodible item or items to be protected. Additionally, articles have been protected by means of utilization of protective coatings in the form of solids, liquids, greases, or pastes, however such coatings tend to be temporary in nature and further present certain disadvantages to normal handling and packaging. Furthermore, removal of such protective coatings may present problems either due to incomplete removal, or the costs of such removal. The composite vapor phase corrosion inhibitor-desiccant materials of the present invention finds application as a solid phase composite which may be co-extruded with the film which is to form the enclosure about the article being protected.

Solid phase and liquid phase compounds have been used in the past to provide a source of vapor phase corrosion inhibitors. These materials typically undergo either evaporation or sublimation so as to provide the substantially constant availability of the inhibitors. In other words, vapor phase corrosion inhibitors typically emit vapors which protect corrodible surfaces through the deposition or condensation of a protective film or coating upon the surface. In order to be assured that a constant supply of inhibitor be present, adequate quantities of the solid phase or liquid phase corrosion inhibiting compounds must be provided, with the corrosion inhibiting compounds being released at or adjacent the location where needed.

Granular silica gel is widely available for use as a desiccant. Frequently, granular silica gel is placed within a woven or knit pouch and placed within the confines of a package or enclosure for enveloping a corrosion-susceptible article. The granular material, when maintained at a particle size of below about 8 μm may be utilized as a solid-phase substrate upon which powdered vapor phase corrosion inhibitor materials may be deposited.

When a laminate is formed in which one layer comprises a heat sealable film such as polyethylene with composite compositions of the present invention extruded in-situ, and with a second film layer being a material such as metallized stress-oriented polyethylene terephthalate films with desirable combinations of properties are achieved. Specifically, the polyethylene film layer retains its conventional heat sealing properties, while the stress-oriented polyethylene terephthalate provides a tear-resistant property. The metallized layer is utilized to reduce and/or eliminate static build-up, thereby further enhancing the properties and qualities of the laminate. Stress-oriented polyethylene terephthalate is normally biaxially oriented, and is, of course, commercially available. The composite vapor phase corrosion inhibiting/desiccant materials of the present invention enhance the protective qualities of films which incorporate or otherwise include the composite materials.

In accordance with the present invention, a solid phase material has been found which provides a source of vapor phase corrosion inhibiting material along with a substrate of granular silica gel. The vapor pressure of the composite material is balanced with the quantities normally required to be emitted for effective and long term protection of the metallic surfaces being exposed for treatment. The formulations of the present invention provide for emission of vapors in a concentration which is appropriate for strong protection of the metallic surfaces, and yet at a rate sufficiently low so as to provide for relatively long-lasting and long-term effective economic treatment. The presence of granular silica gel as a substrate for the vapor phase corrosion inhibiting component has been found to enhance the protective qualities of the product. The formulations of the present invention are compatible with and may be extruded or otherwise deposited with synthetic resinous films, such as aliphatic hydrocarbon or olefinic films such as polyethylene and polypropylene. Such films may be incorporated with other films in a laminate, and in particular may be combined with a metallized film so as to enhance the static elimination and mechanical properties of the composite.

Additionally, the vapor phase corrosion inhibitor-desiccant composites of the present invention have been found to produce little, if any, visible residue. The lack of residue enhances the utility of the materials, inasmuch as little, if any, mechanical or electrical problems result from the continuous use of these materials.

Typical corrosion inhibiting articles and materials used in the past are disclosed in Miksic et al U.S. Pat. No. 4,051,066 and Miksic et al U.S. Pat. No. 4,275,835.

The composite formulations of the present invention have been found to be particularly well adapted to be employed as an extrudate with films fabricated from aliphatic hydrocarbon such as polyethylene and polypropylene. For facilitating such extrusion operations, composites consisting of powdered anhydrous molybdates such as ammonium dimolybdate, sodium molybdate and amine molybdates mixed with benzotriazole and sodium nitrate or amine benzoates mixed with amine nitrates and benzotriazole are deposited upon granular silica gel particles. These composites are, in turn, co-extruded with appropriate film-forming materials. Generally speaking, the formulations of the present invention are utilized for retention and/or packaging within modestly porous envelopes or other enclosures formed of plastic film or plastic foam. Typically, those certain enclosures disclosed and claimed in the Miksic et al U.S. Pat. Nos. 4,051,066 and 4,275,835, as identified hereinabove, are well adapted for use with the formulations or compounds of the present invention. Also, when extruded with a heat sealable film such as polyethylene, a metallized (aluminized) layer such as biaxially stress-oriented polyethylene terephthalate may be employed to enhance the mechanical properties of the overall film arrangement. Techniques for laminating these films together are, of course, well known in the art.

In accordance with the present invention, the vapor phase corrosion inhibitor components which have been found particularly desirable for use in combination with metallic surfaces susceptible to corrosion comprise anhydrous sodium molybdate [Na2 Mo O4 ], anhydrous ammonium dimolybdate [(NH4)2 Mo O4 ], or an anhydrous amine-molybdate having the general structural formula: ##STR2## wherein R1 is an aliphatic hydrocarbon having up to 7 carbon atoms, and wherein R2 is either hydrogen or an aliphatic hydrocarbon having up to 7 carbon atoms. The preferred amine molybdates of this component of the composites of the present invention are amine-molybdates derived from the group consisting of dicyclohexylamine, 2-ethylhexylamine, and cyclohexylamine. Such molybdates are readily synthesized and can be prepared in anhydrous form without requiring unusual processing or handling problems. As indicated above, these molybdates are utilized in anhydrous form when extruded with the film, and are employed in a mixture in combination with sodium nitrite and benzotriazole. Alternatively, anhydrous sodium molybdate and ammonium dimolybdate may be utilized in combination with sodium nitrite and benzotriazole. Another alternative is to use a mixture of amine benzoates with amine nitrates and benzotriazole. In use, these materials provide a highly desirable balance between continuous emission from the solid phase, with this emission being at a rate sufficiently low so as to provide for relatively effective long-term and economic protection and treatment.

The granular silica gel component of the present invention preferably has a particle size range of less than about 8 μm. Such granular silica gel is, of course, widely commercially available and as indicated above, provides a solid phase substrate for the vapor phase corrosion inhibitor component.

It is therefore a primary object of the present invention to provide an improved vapor phase corrosion inhibitor-desiccant which is particularly adapted for use in the protection of metallic surfaces exposed to environments which are corrosive to the exposed surfaces.

It is a further object of the present invention to provide an improved vapor phase corrosion inhibitor-desiccant which is formulated so as to possess a vapor pressure or other property which allows transport of the inhibitor to the metal surface appropriate for transport of appropriate quantities of the inhibitor from solid phase in the film to the metal surface, with the balance of the inhibitor being retained in the film, to provide a continuous supply of emitted corrosion inhibiting material.

It is yet a further object of the present invention to provide an improved vapor phase corrosion inhibitor-desiccant composite which is formulated so as to be capable of extrusion with conventional aliphatic hydrocarbon resinous films such as polyethylene, polypropylene, and the like.

It is still a further object of the present invention to provide an improved vapor phase corrosion inhibitor-desiccant composite which is formulated so as to be capable of extrusion with conventional heat sealable films such as polyethylene, with such polyethylene films being, in turn, laminated to a metallized second film so as to enhance mechanical properties as well as static elimination properties of the composite laminate.

Other and further objects of the present invention will become apparent to those skilled in the art upon a study of the following specification, appended claims, and accompanying drawing.

The FIGURE is a cross-sectional view of a typical laminate prepared in accordance with the present invention, with the center or metallized layer being shown in somewhat exaggerated form due to limitations of draftsmanship.

In accordance with the preferred embodiment of the present invention, a particularly useful vapor phase corrosion inhibitor component for the composite material to be incorporated with extruded polyethylene film includes a mixture of either anhydrous sodium molybdate, anhydrous ammonium dimolybdate, or amine molybdates, together with sodium nitrite and benzotriazole. Specifically, in a particularly preferred embodiment, a mixture is provided in the following formulation:

______________________________________
Component Percent by Weight
______________________________________
Anhydrous sodium molybdate
70%
Sodium nitrite 25%
Benzotriazole 5%
______________________________________

This mixture is particularly effective when prepared in powdered form having a particle size below about 1 micron, and deposited upon granular silica gel. The relative weight ratios are preferably from between about 45% vapor phase corrosion inhibitor component, balance silica gel, although ratios of from between about 30% and 50% vapor phase corrosion inhibitor component, balance silica gel may be employed. The composite material is extruded into polyethylene film at a rate of 2% by weight. Effective mixtures have been found when extruded into polyethylene film at a rate of up to 3% by weight.

In the formulation provided above, the useful range of the components present in the vapor phase corrosion inhibiting constituent may be set forth as follows:

______________________________________
Component Percent by Weight
______________________________________
Anhydrous sodium molybdate
65%-75%
Sodium nitrite 22%-28%
Benzotriazole 4%-6%
______________________________________

These ranges may be found useful for certain applications.

While there are various techniques that may be employed for providing the appropriate extrudate including, for example, polyethylene and a vapor phase corrosion inhibitor-desiccant of the type described herein, one particular technique has been found to be particularly useful. Specifically, the composite formulation is formed and rendered as uniform in particle size and configuration as possible. This composite is then combined with a relatively limited quantity of polyethylene with the mixture then being passed through the barrel of a conventional extruder to form a master batch. The resultant master batch is then chopped and rendered into pellet form. These pellets are, in turn, combined with additional polyethylene and then extruded as the film containing a vapor phase corrosion inhibitor-desiccant of the type described.

In order to describe alternate materials useful in connection with the present invention, the synthesis of three amine-molybdate compounds will be described hereinbelow, it being understood that each resultant compound possesses appropriate physical and chemical properties in its anhydrous form so as to be highly useful in connection with the various aspects of the present invention.

The aliphatic amines employed are from the group consisting of dicyclohexylamine, 2-ethylhexylamine, and cyclohexylamine, it being understood that other aliphatic amines within this general category may be found useful as well.

Pursuant to this embodiment, dicyclohexylamine having a molecular weight of 181.36 and the empirical formula C12 H23 N is employed. The method and procedure set forth in Example I hereinbelow is followed.

A formulation is prepared with the following components:

______________________________________
Component Percent by Weight
______________________________________
Dicyclohexylamine 10%
Phosphoric acid 4%
Water 36%
Aqueous solution of ammonium
50%.
molybdate (20%)
______________________________________

The 20% ammonium molybdate solution is prepared by adding pure molybdenum trioxide to a 5% aqueous solution of ammonium hydroxide. The pH of the resulting solution is normally in the range of 7.5 to 8.5. The dicyclohexylamine, phosphoric acid and water are mixed together to form a neutral to slightly alkaline solution, the pH being in the range of 7.5 to 8.5. The 20% aqueous solution of ammonium molybdate is then added. The reaction that occurs is a simple displacement reaction in which a white powdery precipitate is formed upon addition of the ammonium molybdate solution. Following the completion of the reaction, the mixture is cooled to approximately 60° F., after which the precipitate is filtered, washed, and dried until the anhydrous form is obtained. The anhydrous finished product is a fine white powder having the following structural formula: ##STR3## wherein R1 and R2 are cyclohexyl radicals.

Pursuant to this embodiment, 2-ethylhexylamine having a molecular weight of 129.2 and the empirical formula C8 H19 N is employed. The method and procedure set forth in Example II hereinbelow is followed.

A formulation is prepared with the following components:

______________________________________
Component Percent by Weight
______________________________________
2-ethylhexylamine 5%
Phosphoric acid 2.5%
Water 67.5%
Aqueous solution of ammonium
25%.
molybdate (20%)
______________________________________

The 20% ammonium molybdate solution is prepared as set forth in Example I hereinabove. The 2-ethylhexylamine, phosphoric acid and water are mixed together to form a neutral to slightly alkaline solution, the pH being in the range of 7.5 to 8.5. The 20% aqueous solution of ammonium molybdate is then added. The reaction that occurs is a simple displacement reaction in which a white powdery precipitate is formed upon addition of the ammonium molybdate solution. Following the completion of the reaction, the mixture is cooled to approximately 60° F., after which the precipitate is filtered, washed, and dried until the anhydrous form is obtained. The anhydrous finished product is a fine white powder having the following structural formula: ##STR4## wherein R1 is a 2-ethylhexyl radical and R2 is hydrogen.

Pursuant to this embodiment, cyclohexylamine is employed in the preparation of cyclohexylamine-molybdate. Cyclohexylamine having a molecular weight of 99.17 and the empirical formula C6 H11 NH2 is employed. The method and procedure set forth in Example III hereinbelow is followed.

A formulation is prepared with the following components:

______________________________________
Component Percent by Weight
______________________________________
Cyclohexylamine 20%
Molybdenum trioxide (pure)
13%
Water 67%.
______________________________________

The water, molybdenum trioxide and cyclohexylamine are mixed together all at once. While mixing, the solution is heated to approximately 175° F. When the solution becomes clear, the mixture is cooled to 60°-70° F., whereupon a grey-white precipitate forms. The precipitate is filtered, washed and dried until the anhydrous form is obtained. The anhydrous finished product is a white crystalline powder with the following structural formula: ##STR5## wherein R1 is a cyclohexyl radical and wherein R2 is hydrogen.

The amine-molybdates as set forth above are, of course, employed in anhydrous form with the silica gel substrate. It has been found that such molybdates, when employed in anhydrous form and deposited onto granular silica gel will be readily incorporated into olefinic films such as polyethylene and polypropylene. Effective mixtures of the amine-molybdate components are normally formulated utilizing 70% by weight anhydrous amine-molybdate of the type shown in Examples A, B and C above, 25% sodium nitrite and 5% benzotriazole. As indicated in connection with such formulations discussed above utilizing anhydrous sodium molybdate, these formulations incorporate amine-molybdates A, B or C, are extruded into polyethylene film at a rate of between 2% and 3% by weight.

In accordance with the examples, the aliphatic amine may be present in an amount ranging from between about 5% and 20%. In the interests of completeness of the reaction involved, it has been found that approximately 10% by weight of the aliphatic amine produces a desirable end product. The reactions involved occur quite rapidly and have been found to go substantially to completion at room temperature.

While dicyclohexylamine, 2-ethylhexylamine, and cyclohexylamine have been indicated as the most desirable materials, it will, of course, be appreciated that certain conditions of end use along with certain other considerations and parameters may dictate that somewhat smaller aliphatic chain lengths be employed. For example, use of the material in somewhat cooler environments may render it desirable to utilize materials having a somewhat shorter chain length in order to achieve an appropriate degree of sublimation while exposed to ambience. Other considerations may indicate utilization of such shorter chain lengths, as well.

As has been indicated hereinabove, and with attention being directed to the figure of the drawing, the vapor phase corrosion inhibitor-desiccant composite materials of the present invention are well adapted for extrusion with resinous film material typically employed in the packaging industry. When employed as a member or layer of a laminate, and with continued attention being directed to the drawing, the film generally designated 10 includes a first layer of plastic film 11 having a metallic or metallizing layer 12 deposited thereon. Layer 13 of laminate 10 is impregnated with the composite compositions of the present invention, with the solid particles being introduced into the film through co-extrusion techniques. For example, the amine-molybdate of Example I is prepared, and deposited as a fine white powder onto silica gel to form a composite. The composite is introduced into conventional polyethylene film. This impregnated film is, in turn, laminated to the metallized layer 12 of film 11 so as to form the ultimate composite. Laminating techniques for such films are, of course, well known in the art. Metallized films of biaxially oriented polyethylene terephthalate are readily bonded to and laminated with polyethylene films of the type shown at 13.

Vapor phase corrosion inhibitor-desiccant compounds of the present invention are also well adapted for retention and/or packaging within modestly porous envelopes or other enclosures. These envelopes may be formed of plastic film or plastic foam, or alternatively, may be fabricated from cellulosic products such as paper or the like. In addition to being retained and/or packaged within envelopes or enclosures, the material may be placed upon or within an appropriate substrate formed of either synthetic resin or cellulosic materials. Typical examples of useful material include polyethylene, polypropylene, paper, and the like. When paper is employed, it is preferred that the drying operation be undertaken so as to provide reasonably anhydrous amine-molybdate materials. As a still further alternative, the vapor phase corrosion inhibitor-desiccants of the present invention may be extruded or co-extruded with synthetic resin materials such as, for example, polyethylene, polypropylene, or the like. Conventional extrusion or co-extrusion techniques may be employed in this regard.

It will be appreciated, therefore, that examples provided herein are for purposes of illustration only and are not to be regarded as a restriction upon the scope of the claims, inasmuch as those skilled in the art may depart from these specific examples without actually departing from the spirit and scope of the present invention.

Miksic, Boris A., Tzou, Tsi-Zong, Foley, Joseph M.

Patent Priority Assignee Title
10655086, Jun 20 2014 Ecolab USA Inc. Catalyzed non-staining high alkaline CIP cleaner
10753000, Sep 27 2017 EXCOR Korrosionsforschung GmbH Compositions of vapor phase corrosion inhibitors and their use as well as methods for their manufacture
11001716, Mar 16 2016 Sika Technology AG Surface applied corrosion inhibitor
11718076, Jan 27 2021 Cortec Corporation Biodegradable tensioning film and fabrication processes for making same
11827806, Jan 04 2019 EXCOR Korrosionsforschung GmbH Compositions and methods for pretreating substrates for the subsequent fixing of vapor phase corrosion inhibitors
5593624, May 24 1995 POLAR INDUSTRIES, INC Method for making cellular packaging board with inhibitor
5715945, Mar 18 1996 Cortec Corporation Vapor phase corrosion inhibitor package utilizing plastic packaging envelopes
5855975, Nov 09 1993 Cortec Corporation Anti-corrosion plastic film containing recycled resin
5863642, Jul 26 1996 Fabrene, Inc. Water resistant and vapor phase corrosion inhibitor composite material
5889639, Feb 07 1997 Imation Corp. Plain carbon steel shutter for removable data storage cartridges
5928770, Jan 08 1998 Tear/puncture resistant material
5937618, Mar 18 1996 SAMSUNG ELECTRONICS CO , LTD , A KOREA CORP Vapor phase corrosion inhibitor package utilizing plastic packaging envelopes
5958115, Feb 28 1997 EXCOR KORROSIONSSCHUTZ-TECHNOLOGIEN UND PRODUKTE Corrosion-inhibiting composite material
5976415, Oct 30 1997 H B FULLER COMPANY Corrosion-inhibiting polysulfide sealants
6027767, Oct 30 1997 H.B. Fuller Licensing Financing Inc. Corrosion-inhibiting polysulfide sealants
6146730, May 21 1998 Polar Industries, Inc. Corrosion inhibiting spacers
6183825, Jun 24 1996 THE DUCTILE IRON PIPE RESEARCH ASSOCIATION Protective material for preventing microbiologically-influenced corrosion in buried conduits
6224957, Jun 24 1996 THE DUCTILE IRON PIPE RESEARCH ASSOCIATION Anti-corrosive material
6382418, Dec 23 1999 SOUTHPAC TRUST INTERNATIONAL, INC NOT INDIVIDUALLY, BUT AS TRUSTEE OF THE FAMILY TRUST U T A DATED DECEMBER 8, 1995 CHARLES A CODDING, AUTHORIZED SIGNATORY Floral wrapper utilizing a breathable packaging material
6488998, Jun 24 1996 THE DUCTILE IRON PIPE RESEARCH ASSOCIATION Pipe wrap for preventing microbiologically influenced corrosion in buried conduits
6533962, Nov 13 1998 Vojensky Technicky Ustav Ochrany; Polymer Institute Brno, Spol.S. R.O. Anticorrosive plastic packaging materials
6540959, Jul 29 1998 EXCOR Korrosionsforschung GmbH Vapor-phase corrosion inhibitors and methods for their production
6551552, Sep 27 2000 Northern Technologies International Corporation Systems and methods for preventing and/or reducing corrosion in various articles
6752934, Jul 30 2001 EXCOR Korrosionsforschung GmbH Vapor-phase corrosion inhibitors and method of preparing same
7261839, Jan 22 2002 Northern Technologies International Corporation Tarnish inhibiting composition and article containing it
7270775, Jan 22 2002 Northern Technologies International Corporation Corrosion inhibiting composition and article containing it
7361391, Oct 02 2002 MILPRINT, INC Metalized film laminates with anticorrosion agents
7485177, Jul 20 2007 SKS Industries Volatile corrosion inhibiting mixture with tracing agent
7588820, Feb 17 2005 Cortec Corporation Nano-particle corrosion inhibiting films
7763213, Dec 21 2005 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Volatile corrosion inhibitor packages
7794583, Apr 05 2007 Northern Technologies International Corporation Synergistic corrosion management systems for controlling, eliminating and/or managing corrosion
7824482, Dec 12 2007 EXCOR Korrosionsforschung GmbH Vapor phase corrosion inhibitors and method for their production
7867531, Apr 04 2005 CURWOOD, INC Myoglobin blooming agent containing shrink films, packages and methods for packaging
8008373, Jan 22 2002 Northern Technologies International Corp. Biodegradable polymer masterbatch, and a composition derived therefrom having improved physical properties
8029893, Apr 02 2004 CURWOOD, INC Myoglobin blooming agent, films, packages and methods for packaging
8053047, Apr 02 2004 BEMIS COMPANY, INC Packaging method that causes and maintains the preferred red color of fresh meat
8110259, Apr 02 2004 BEMIS COMPANY, INC Packaging articles, films and methods that promote or preserve the desirable color of meat
8470417, Apr 02 2004 BEMIS COMPANY, INC Packaging inserts with myoglobin blooming agents, packages and methods for packaging
8530012, Apr 02 2004 Curwood, Inc. Packaging articles, films and methods that promote or preserve the desirable color of meat
8545950, Apr 02 2004 CURWOOD, INC Method for distributing a myoglobin-containing food product
8623479, Apr 02 2004 Curwood, Inc. Packaging articles, films and methods that promote or preserve the desirable color of meat
8668969, Apr 20 2005 BEMIS COMPANY, INC Myoglobin blooming agent containing shrink films, packages and methods for packaging
8709595, Apr 02 2004 BEMIS COMPANY, INC Myoglobin blooming agents, films, packages and methods for packaging
8741402, Apr 02 2004 BEMIS COMPANY, INC Webs with synergists that promote or preserve the desirable color of meat
8795589, Apr 29 2011 Cortec Corporation Bio-based volatile corrosion inhibitors
8802204, Apr 02 2004 BEMIS COMPANY, INC Packaging inserts with myoglobin blooming agents, packages and methods of packaging
8906267, Jan 28 2010 EXCOR Korrosionsforschung GmbH Compositions of vapour phase corrosion inhibitors, method for the production thereof and use thereof for temporary protection against corrosion
9677031, Jun 20 2014 Ecolab USA Inc.; Ecolab USA Inc Catalyzed non-staining high alkaline CIP cleaner
Patent Priority Assignee Title
1995615,
2078488,
2156357,
2294525,
2607744,
2629649,
2848298,
2898026,
2914424,
3169116,
3282835,
3356280,
3397215,
3425954,
3433577,
3539605,
3573225,
3749598,
3887481,
3936560, Feb 22 1974 L&CP CORPORATION Self-sealable corrosion protectable packaging material and method of making
3967926, Nov 09 1973 Method for inhibiting the corrosion of metals with vapor phase inhibitors disposed in a zeolite carrier
3990872, Nov 06 1974 MULTIFORM DESICCANTS, INC , Adsorbent package
4040798, Jul 16 1973 Rohm and Haas Company Hydrocarbon compositions containing rust inhibitors
4051066, Jan 13 1975 Northern Instruments Corporation Corrosion-inhibiting rubber and methods of preparation
4053455, Feb 14 1977 The B. F. Goodrich Company Smoke retardant vinyl chloride and vinylidene chloride polymer compositions
4116701, Mar 08 1977 Metal corrosion inhibitor
4124549, Aug 22 1974 Aicello Chemical Co., Ltd. Corrosion-inhibiting plastic films
4218385, Nov 07 1978 SOLUTIA INC Tri-substituted, hydrocarbon soluble, chromium compound synthesis
4275835, Jul 17 1978 Sealed Air Corporation Corrosion inhibiting articles
4308168, Sep 30 1978 Idemitsu Kosan Co., Ltd. Vapor phase corrosion inhibitor compositions and method of inhibiting corrosion using said compositions
4321060, Nov 14 1980 Texaco Inc. Novel process and product
4321297, Jul 07 1980 CROWELL CORPORATION THE, NEWPORT, DE A CORP OF DE Sheet packaging material
4338209, Oct 01 1977 Otsuka Chemical Co., Ltd. Metal corrosion inhibitor
4370388, Mar 14 1979 Mitsui Chemicals, Inc Laminated multilayer structure
4406837, Jul 28 1982 Cymetech, LLC Methyltricapryl ammonium molybdates
4419105, Mar 18 1982 Texaco Inc. Maleic anhydride-amine reaction product corrosion inhibitor for alcohols
4453786, Sep 20 1982 Woodstream Corporation Mounting arrangement for tablet-like rust inhibitor
4668774, May 03 1984 BASF Aktiengesellschaft 2-ethylhexylamine salts of anionic monoazo dyes
4671933, Jun 24 1985 Wacker Silicones Corporation Method for inhibiting corrosion of metal surfaces
4939014, Dec 16 1987 University of Michigan Composite polymer/desiccant coatings for IC encapsulation
4973448, Nov 18 1986 Cortec Corporation Vapor phase corrosion inhibitor product and method containing a desiccant
5139700, Aug 23 1988 Cortec Corporation Vapor phase corrosion inhibitor material
AU131971,
DE1800001,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 23 1992MIKSIC, BORIS A CORTEC CORPORATION A CORP OF MINNESOTAASSIGNMENT OF ASSIGNORS INTEREST 0061810962 pdf
Jun 23 1992FOLEY, JOSEPH M CORTEC CORPORATION A CORP OF MINNESOTAASSIGNMENT OF ASSIGNORS INTEREST 0061810962 pdf
Jun 23 1992TZOU, TSI-ZONGCORTEC CORPORATION A CORP OF MINNESOTAASSIGNMENT OF ASSIGNORS INTEREST 0061810962 pdf
Jun 29 1992Cortec Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
May 21 1996M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Dec 05 2000REM: Maintenance Fee Reminder Mailed.
May 13 2001EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
May 11 19964 years fee payment window open
Nov 11 19966 months grace period start (w surcharge)
May 11 1997patent expiry (for year 4)
May 11 19992 years to revive unintentionally abandoned end. (for year 4)
May 11 20008 years fee payment window open
Nov 11 20006 months grace period start (w surcharge)
May 11 2001patent expiry (for year 8)
May 11 20032 years to revive unintentionally abandoned end. (for year 8)
May 11 200412 years fee payment window open
Nov 11 20046 months grace period start (w surcharge)
May 11 2005patent expiry (for year 12)
May 11 20072 years to revive unintentionally abandoned end. (for year 12)