The present invention entails a tool holder adapted to be inserted within the tool slot of a lathe turret. The tool holder includes a detachable cutting unit and a clamping unit. Forming a part of the clamping unit is a pair of wedge blocks disposed within wedge cavities formed within the clamping unit. The wedge blocks are movable via screws from an inner relaxed or disengaged position to an outer position where the wedge blocks engage the tool slot and through a wedging action function to secure the tool holder within the tool slot of the lathe turret.

Patent
   5255582
Priority
Sep 07 1988
Filed
Jul 02 1992
Issued
Oct 26 1993
Expiry
Oct 26 2010

TERM.DISCL.
Assg.orig
Entity
Large
1
14
EXPIRED
16. A tool holder with an integral clamping mechanism for use in connection with a lathe turret formed with a tool holder slot having a bottom and parallel sidewalls, said tool holder comprising:
(a) a clamping unit having two parallel sidewalls receivable in the tool holder slot;
(b) means for mounting a cutting tool to the clamping unit independently of whether said clamping unit is removed from the tool holder slot;
(c) a wedge cavity formed in at least one parallel sidewall of the clamping unit and having a bearing wall inclined towards an adjacent sidewall of the tool holder slot;
(d) a wedge block having an inwardly facing surface abutting the bearing wall of the wedge cavity and a locking surface for engaging the sidewall of the tool holder slot, said wedge block being movable inwardly and outwardly with respect to the sidewalls of the clamping unit between a disengaged position and an engaged position with respect to the sidewall of the tool holder slot; and
(e) a screw extending through the clamping unit and operatively connected to the wedge block for vertically moving the wedge block within the wedge cavity from the disengaged position to the engaged position where the locking surface of the wedge block engages and locks against a sidewall of the tool holder slot so as to secure the clamping unit within the tool holder slot.
8. A tool holder with an integral clamping mechanism for use in connection with a lathe turret formed with a tool holder slot having a bottom and a pair of parallel sidewalls, said tool holder comprising:
(a) a clamping unit having a pair of sidewalls adapted to be inserted into the tool holder slot;
(b) a tool shank bore formed in the clamping unit;
(c) a cutting unit having a tool insert pocket for receiving a cutting tool and a rearwardly projecting shank adapted to be inserted into the tool shank bore of the clamping unit;
(d) means mounted within the clamping unit for engaging the shank of the cutting unit to secure the cutting unit to the clamping unit;
(e) a wedge block disposed within and carried by the clamping unit for securing the clamping unit in the tool holder slot, said wedge block having a locking surface disposed parallel to the sidewalls of the tool holder slot and being moveable inwardly and outwardly with respect to the clamping unit between a first disengaged position where the wedge block is withdrawn from an adjacent sidewall of the tool holder slot into the clamping unit and a second engaged position where the wedge block is urged outwardly from the clamping unit to frictionally engage the adjacent sidewall of the tool holder slot; and
(f) wedge block moving means for moving the wedge block between the disengaged position and the engaged position.
22. A tool holder assembly having an integral clamping wedge block for securing the same within a tool holder slot having a bottom and a pair of parallel sidewalls comprising:
(a) a clamping unit having a pair of parallel sidewalls insertable within the tool holder slot;
(b) means formed in the clamping unit for receiving and holding a cutting unit;
(c) wedge clamping means integral with the clamping unit for securing the clamping unit within the tool holder slot, and including:
(i) a wedge cavity formed in each of the pair of parallel sidewalls of the clamping unit and having a bearing wall inclined towards and adjacent sidewall of the tool holder slot;
(ii) a wedge block movably mounted within the wedge cavity for inward and outward movement with respect to the sidewall of the clamping unit between an inner-disengaged position and an outer-engaged position with respect to the adjacent sidewall of the tool holder slot;
(iii) the wedge including an inwardly facing surface engageable with the inclined bearing wall of the wedge cavity and slidable thereagainst as the wedge block moves from the disengaged position to the engaged position, and an outer locking surface disposed in a plane parallel to the adjacent sidewall of a tool holder slot for frictionally engaging the adjacent sidewall of the tool holder slot when the wedge block assumes the engaged position; and
(d) screw means engaged with both the clamping unit and the wedge block for moving the wedge from the disengaged position along the inclined bearing wall of the wedge cavity to the engaged position where the outer locking surface of the wedge block engages the adjacent sidewall of the tool holder slot and wedges the clamping unit between the parallel sidewalls of the tool holder slot.
1. A tool holder for use in a lathe turret formed with a tool holder slot including a bottom and a pair of parallel sidewalls, said tool holder comprising:
(a) a cutting unit for receiving and holding a cutting insert, said cutting unit including a rearwardly extending shank;
(b) a clamping unit insertable into the tool holder slot of said lathe turret for receiving and holding the cutting unit, said clamping unit including:
(i) a main body having a pair of parallel sidewalls disposed adjacent to respective sidewalls in the tool holder slot;
(ii) a tool shank bore formed in the main body of the clamping unit for receiving the shank of the cutting unit; and
(iii) means for securing the cutting unit to the clamping unit;
(c) wedge clamping means integral with the clamping unit for securing the clamping unit in the tool holder slot, said integral wedge clamping means including:
(i) a wedge cavity formed in at least one of the sidewalls in the clamping unit and including a bearing wall inclined toward the adjacent sidewall of the tool holder slot;
(ii) a wedge block mounted within said wedge cavity for movement between disengaged and engaged positions with respect to the adjacent sidewall of the tool holder slot, said wedge block including an inwardly facing surface slidably engaged with the bearing wall of the wedge cavity and a locking surface disposed in a plane parallel to the adjacent sidewall of the tool holder slot for engaging the adjacent sidewall of the tool holder slot when the wedge block is moved to the engaged position; and
(iii) screw means engaged with both the clamping unit and the wedge block for moving the wedge block along the bearing wall of the wedge cavity to the engaged position where the locking surface of the wedge block frictionally engages the adjacent sidewall of the tool holder slot and secures the clamping unit within the tool holder slot.
2. The tool holder of claim 1 wherein the screw means comprises a screw extending through the clamping unit and having at least one threaded end engaged with a threaded opening found in the wedge block.
3. The tool holder of claim 2 wherein the axis of the screw is disposed in a plane parallel to the bearing wall of the wedge cavity.
4. The tool holder of claim 3 wherein the screw had a second threaded end and wherein the clamping unit has a second threaded opening engaged with the second threaded end of the screw.
5. The tool holder of claim 1 including two said wedge clamping means disposed in opposite sidewalls of the clamping unit.
6. The tool holder of claim 1 wherein the bearing wall of the wedge cavity and the back surface of the wedge block are arcuately shaped.
7. The tool holder of claim 1 wherein the bearing wall inclines toward the adjacent sidewall of the tool holder slot as the bearing wall extends upwardly and wherein the wedge moves upwardly and outwardly along the bearing wall as it moves towards the engaged position.
9. The tool holder of claim 8 wherein the wedge block moving means comprises a screw extending through the clamping unit and having a first threaded end secured within a threaded opening formed in the wedge block.
10. The tool holder of claim 9 wherein the screw has a second threaded end and wherein the clamping unit has a second threaded opening engaged with the second threaded end of the screw.
11. The tool holder of claim 10 wherein the axis of the screw is disposed at an oblique angle relative to the adjacent sidewall of the tool holder slot.
12. The tool holder of claim 8 including two of said wedge blocks, each disposed in opposite sidewalls of the clamping unit.
13. The tool holder of claim 8 wherein the clamping unit includes a wedge cavity formed in at least one of said pair of side walls for accepting said wedge block, said wedge cavity including a bearing wall inclined toward an adjacent sidewall of the tool holder slot for contact with said wedge block.
14. The tool holder of claim 13 wherein the bearing wall inclines toward the adjacent sidewall of the tool holder slot as the bearing wall extends upwardly and wherein the wedge moves upwardly and outwardly along the bearing wall as it moves towards the engaged position.
15. The tool holder of claim 8 wherein a first one of the sidewalls in the clamping unit is parallel to said sidewalls in the toolholder slot, and where a second one of the sidewalls in the clamping unit includes a wedge cavity, said wedge block being disposed within the wedge cavity in said second one of the sidewalls in the clamping unit.
17. The tool holder of claim 16 wherein the axis of the screw is disposed parallel to the bearing wall of the wedge cavity.
18. The tool holder of claim 17 wherein the screw has first and second threaded ends engaged respectively with the clamping unit and the wedge block.
19. The tool holder of claim 16 including a second wedge block disposed in an opposite sidewall of the clamping unit and a second screw engaged with the second wedge block for moving the second wedge block between a disengaged position and an engaged position with respect to an adjacent sidewall of the tool holder slot.
20. The tool holder of claim 16 wherein the bearing wall of the wedge cavity and the back surface of the wedge block are arcuately shaped.
21. The tool holder of claim 16 wherein the bearing wall inclines toward the adjacent sidewall of the tool holder slot as the bearing wall extends upwardly and wherein the wedge moves upwardly and outwardly along the bearing wall as it moves towards the engaged position.
23. The tool holder of claim 22 wherein the screw means comprises a screw extending through the clamping unit and having at least one threaded end secured within a threaded opening formed in the wedge block and wherein in moving the wedge block between the disengaged position and the engaged position the screw moves the wedge block vertically and outwardly with respect to the clamping unit.
24. The tool holder of claim 23 wherein the axis of the screw is disposed such that the same extends generally parallel to the inclined bearing wall of the wedge cavity.
25. The tool holder assembly of claim 23 wherein the screw has a second threaded end secured within a second threaded opening formed in the clamping unit such that a differential screw arrangement is formed where the screw is capable of positively driving the wedge block back and forth between the engaged and disengaged positions.
26. The tool holder of claim 22 wherein the bearing wall inclines toward the adjacent sidewall of the tool holder slot as the bearing wall extends upwardly and wherein the wedge moves upwardly and outwardly along the bearing wall as it moves towards the engaged position.

This is a divisional of copending application Ser. No. 07/430,550 filed on Nov. 1, 1989, abandoned, which was a divisional of application Ser. No. 07/241,521, filed on Sep. 7, 1988, now U.S. Pat. No. 4,951,536, issued Aug. 28, 1990.

The present invention relates to tool holders, and more particularly to tool holders and clamping mechanisms for securing the tool holder within a lathe turret tool slot.

Conventional lathe turrets are designed with a plurality of tool holder slots capable of receiving tool holders needed to perform a variety of metal working operations such as turning, shaping, grooving and threading. When the lathe is set up with proper tools, it can be programmed to perform a variety of metal working operations in a predefined sequence without human intervention between metal working operations to change tools.

The tool holders used in connection with a lathe turret generally include a support bar which is mounted in the tool holder slot in side-by-side relationship with a large external wedge. The wedge includes an inclined surface that engages one corner of the support bar. A screw extends through the wedge into a threaded opening in the bottom of the tool holder slot. When the screw is tightened, the inclined surface of the wedge exerts a downward and sideward force to the support bar effectively wedging the tool holder into the tool holder slot.

Prior art tool holders and the clamping mechanisms used with lathe turrets have numerous disadvantages. Because the prior art tool holder is assymmetrically disposed in the tool holder slot, the tool holder is capable of receiving only right-handed or left-handed cutting units, but not both. Further, the external wedge used for clamping the tool holder into the tool holder slot consumes so much space that it has not previously been possible to incorporate quick-change receptacles into tool holders used in connection with lathe turrets.

An additional problem encountered with prior art lathe turret tool holders is that in some instances the critical x-dimension programming point was not consistent with the original tooling. Thus, there was always a need to reprogram current productions parts when converting from the original tooling to replacement tooling.

The present invention entails an integral tool holder and clamping mechanism for a lathe turret that overcomes the disadvantages of prior art designs. Wedge blocks including exposed locking surfaces are reciprocally movable within wedge cavities formed in a clamping unit. First and second threaded openings are formed in the wedge blocks and clamping unit respectively in axial alignment with one another. A differential screw is threaded into the first and second threaded openings. When the differential screw is rotated in a first direction, each wedge block moves from a relaxed or disengaged position towards an engaged position. At the same time, due to the angular disposition of the axis of the differential screw with respect to the wall of the tool holder slot, the exposed locking surface of the wedge block moves progressively outwardly into engagement with the wall of the tool holder slot to secure the clamping unit.

By eliminating external wedges associated with the prior art devices, it is possible to center the cutting unit in the tool holder slot. The result is a neutral clamping unit capable of accepting both right-handed and left-handed cutting units. This greatly reduces the time needed to set up the lathe turret when a new production part is ordered.

Another aspect of the invention is that more efficient use of the tool holder slot is obtained. Space once occupied by the external wedge in prior art devices is used in the present invention to incorporate a quick-change systems for mounting the cutting unit on the clamping unit.

Accordingly, it is a primary object of the present invention to provide a clamping mechanism for lathe turret tool holders which will allow incorporation of quick change systems into turret lathe tool holder slots.

Another object of the present invention is to provide a clamping mechanism of the type described above which will eliminate the need for external wedges to secure the tool holder within the tool holder slot.

Still another object of the present invention is to provide a clamping mechanism for lathe turret tool holders which are symmetrically arranged within the tool holder slot so as to accept both right-handed and left-handed cutting units.

Another object of the present invention is to provide an integral tool holder and clamping mechanism for insertion into a tool slot of a lathe turret wherein the tool holder includes an integral movable wedge structure that is movable form an inner disengaged position to an outer engaged position where the wedge structure engages an adjacent wall of the tool slot and effectively "wedges" the tool holder between opposed side walls of the tool slot.

Other objects and advantages of the present invention will become apparent and obvious from a study of the following description and the accompanying drawings which are merely illustrative of such invention.

FIG. 1 is an exploded perspective view showing the tool holder of the present invention overlying a tool slot of a lathe turret.

FIG. 2 is a top plan view of the clamping unit which forms a part of the tool holder of the present invention.

FIG. 3 is a cross sectional view of the clamping unit taken along the lines 3--3 of FIG. 2.

FIG. 4 is a partial cross sectional view of the clamping unit taken along the lines 4--4 of FIG. 2.

Referring now to the drawings, the tool holder of the present invention is shown therein and indicated generally by the numeral 10 (FIG. 1). Tool holder 10 is designed to be used in connection with a lathe turret 12 adapted to hold a plurality of diverse tools. Lathe turret 12 includes one or more tool holder slots 14 which include a bottom 14a and parallel side walls 14b. One or more threaded openings 16 are provided in bottom 14a of the tool holder slot for securing tool holder 10 therein.

Tool holder 10 includes a clamping unit 18 and a cutting unit 20. Clamping unit 18 is made from 4340 steel or an equivalent which is heat treated to obtain a hardness of between 44 and 48 on the Rockwell C scale. The clamping unit 18 is generally symmetrical about its longitudinal axis X--X. A tool shank bore 22 adapted to mount the cutting unit 20 is formed in a forwardly facing surface 24 of the clamping unit 18 and is also disposed symmetrically about longitudinal axis X--X.

Cutting unit 20 includes a forward portion 28 formed with a tool receiving pocket 30. A conventional shim, indexable tool insert, and locking pin (not shown) can be received within pocket 30. A rearwardly facing surface 32 is designed for abutment with the forwardly facing surface 24 of the clamping unit 18 on which the cutting unit 20 is to be mounted. A cylindrical shank 26 having two diametrically opposed apertures 26a extends rearwardly from the rearwardly facing surface 32 and is adapted to be received in the tool shank bore 22 of the clamping unit 18.

Contained within tool shank bore 22 is a ball lock clamping mechanism 34 for locking the cutting unit 20 within bore 22 (See FIG. 3). The ball lock clamping mechanism 34 includes a stub member 36 symmetrically disposed about the longitudinal axis X--X. A passage way 38 is formed in the stub member 36 which extends transversely to the longitudinal axis X--X along the vertical axis Y-Y. Intersecting the passage way 38 are two diametrically opposed apertures 40 in the stub member 36 which also extend transversely to the longitudinal axis X--X along the transverse axis Z--Z.

A detent ball 48 is contained in each aperture and is driven into engagement with the shank of the cutting unit 20 by a reciprocally movable actuating member 42. Actuating member 42 includes spherical depressions 46 for permitting the detent balls 42 to withdraw into the stub member 36. The actuating member 42 is moved linearly along the vertical axis Y--Y by a connecting member 52 which is threaded into a threaded opening 50 in the clamping unit 18. On one end of the connecting member 52 there is an internal hexagon 54 designed to receive an Allen key wrench for turning the connecting member 52.

When the connecting member 52 is rotated in a first direction, the detent balls 48 are forced out of the spherical depressions 46 and onto the concave ramps 44. Once the locking elements are moved onto the ramps 44, further rotation of the connecting member 52 will urge the detent balls 48 radially outwardly along the transverse axis Z--Z through apertures 40 and into engagement with the shank 26 of the cutting unit 20. The detent balls 48 are released by rotating the connecting member 52 in a second direction until the spherical depressions 46 are brought into alignment with the diametrically opposed apertures 40.

The design and construction of ball lock clamping mechanisms are well known to those skilled in the art. Therefore, a more detailed discussion of the same has been omitted for the sake of brevity. A more complete description of the ball lock clamping mechanism is contained in U.S. Pat. Nos. 4,736,659 and 4,723,877 which are incorporated herein by reference.

Clamping unit 18 is itself secured within the tool holder slot 14 of the lathe turret 12 by means of an integral wedge clamp mechanism indicated generally at 60 (FIGS. 1 & 4). The integral wedge clamp mechanism comprises in part two wedge cavities 62 symmetrically disposed about longitudinal axis X--X. In the preferred embodiment of the invention, each wedge cavity 62 is semicircular in form. A rear arcuate bearing wall 64 forms a part of the wedge cavity 62 and tapers outwardly as it extends upwardly from the bottom of the clamping unit 18. A top wall 66 also forms a part of the wedge cavity 62 and extends perpendicularly from the rear arcuate bearing wall 64 to respective side walls of the clamping unit 18.

A pair of screw recesses 68 are formed in the clamping unit directly above respective wedge cavities 62. A threaded bore 72 extends through the clamping unit 18 from the bottom wall 70 of the recess 68 to the top wall 66 of the wedge cavity 62. The axis of the threaded bore 72 is disposed at an angle with respect to the vertical axis Y--Y and is parallel to the rear arcuate wall 64 of the wedge cavity 62. Preferably, the angle is between two and ten degrees and more preferably between five and seven degrees.

Disposed within each wedge cavity 62 there is a semicircular wedge block 80 made of a 4140 or 4340 steel which is heat treated to obtain a hardness of between 40 and 45 on the Rockwell C scale. The wedge block 80 includes an inwardly facing surface 82 for abutting the rear arcuate bearing wall 64 of the wedge cavity 62 and an exposed, outwardly facing locking surface 84 for engaging the side wall of the tool slot 14 (FIG. 1). A threaded opening 86 extends through the wedge block 80 from the top 88 of the wedge block 80 to its bottom 90. Threaded opening 86 is in axial alignment with the threaded bore 72 in the clamping unit 18.

One end 94 of a differential wedge screw 92 is threaded into the threaded bore 72 formed in the clamping unit 18, while the opposite end 96 thereof is threaded into the wedge block 80. An internal hexagon adapted to receive an Allen key wrench is formed in the ends 94 and 96 of the differential wedge screw 92. When the differential screw 92 is rotated in one direction, the wedge block 80 is drawn upwardly into the narrow portion of the wedge cavity 62 as the screw 92 threads itself into openings 72 and 86. At the same time this is occurring, the locking surface 84 of the wedge block 80 is moved progressively outwardly into engagement with the side wall 14b of the tool holder slot 14 due to the angular disposition of the screw axis. The resulting compression of the wedge block 80 generates frictional locking forces which firmly secure the clamping unit 18 into the tool holder slot 14.

In the preferred embodiment of the invention, the wedge block 80 will be harder than the lathe turret 12 but not as hard as the clamping unit 18. As a result, the wedge block 80 will effectively "lock" itself to the side wall of the tool holder slot 14 while relative movement between the wedge block 80 and the clamping unit 18 is still obtainable. Any further tightening of the differential screw 92 beyond this point will cause the entire clamping unit 18 to be pulled downwardly into the tool holder slot 14.

To release the clamping unit 18, the differential screw 92 is simply rotated in the opposite direction to force the wedge block 80 into the broader region of the wedge cavity 62. For this reason, the differential screw 92 is preferred over conventional screws which are incapable of exerting a downward force on the wedge block 80.

To further secure the clamping unit 18 in the tool holder slot 14, one or more screws 98 having threaded ends 100 may be provided. Screws 98 extend through corresponding bores 102 in the clamping unit 18 and are threaded into openings 16 formed in the bottom tool holder slot 14.

From the foregoing specification and discussion, it is appreciated that the tool holder and integral clamping mechanism offer significant advantages over prior art designs. By integrally forming the wedging mechanism into the tool holder itself, it enables one to center the cutting unit in the tool holder slot. This enables the cutting unit to accept both right hand and left hand cutting units and greatly increases efficiency because it minimizes reprogramming and set up time when a new production run is instigated. Beyond that, the tool holder and integral clamping mechanism of the present invention entails a neat and compact design that can be easily and quickly installed into the tool slot of the lathe turret. This allows for applications of quick change cutting units in most conventional lathe turrets.

The present invention may, of course, be carried out in other specific ways than those herein set forth without parting from the spirit and essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended Claims are intended to be embraced therein.

Robertson, Robert J.

Patent Priority Assignee Title
9702385, May 15 2014 Iscar, Ltd.; Iscar, Ltd Machine tool assembly configured for swift disassembly
Patent Priority Assignee Title
1552577,
2547789,
3138847,
3489042,
3930529, May 09 1974 Kennametal Inc. Method and apparatus for removing tread from tires
3957381, Sep 14 1974 Ringfeder GmbH Coaxial, double-cone, frictional hub-to-shaft connector
4009659, Aug 08 1974 Koenig & Bauer Aktiengesellschaft Mechanism for securing printing plate clamping devices on forme cylinders
4057294, Aug 01 1975 The Cincinnati Mine Machinery Company Wedge arrangement for removably affixing a work tool or work tool holder to a base member on mining, road working or earth moving machinery, and the like
4078868, Apr 06 1977 Ingersoll Cutting Tool Company Cutter having inserts clamped with wedges
4951536, Sep 07 1988 Kennametal Inc. Tool holder having integral wedge clamping mechanism
GB2154479,
JP287902,
20722,
SU1225701,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 02 1992Kennametal Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Mar 21 1997M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 29 2001M184: Payment of Maintenance Fee, 8th Year, Large Entity.
May 12 2005REM: Maintenance Fee Reminder Mailed.
Oct 26 2005EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 26 19964 years fee payment window open
Apr 26 19976 months grace period start (w surcharge)
Oct 26 1997patent expiry (for year 4)
Oct 26 19992 years to revive unintentionally abandoned end. (for year 4)
Oct 26 20008 years fee payment window open
Apr 26 20016 months grace period start (w surcharge)
Oct 26 2001patent expiry (for year 8)
Oct 26 20032 years to revive unintentionally abandoned end. (for year 8)
Oct 26 200412 years fee payment window open
Apr 26 20056 months grace period start (w surcharge)
Oct 26 2005patent expiry (for year 12)
Oct 26 20072 years to revive unintentionally abandoned end. (for year 12)