A method is provided for refracturing a well which has previously been hydraulically fractured in a lower zone or in the same zone. A sealing material is injected and allowed to solidify, the well is reperforated and refractured.

Patent
   5273115
Priority
Jul 13 1992
Filed
Jul 13 1992
Issued
Dec 28 1993
Expiry
Jul 13 2012
Assg.orig
Entity
Large
86
10
EXPIRED
1. A method of refracturing a subterranean hydrocarbon-bearing zone, the zone being connected to a wellbore through perforations in casing of a well and separated from an underlying permeable zone, the underlying zone also being connected through perforations in casing of the well and having been previously hydraulically fractured from the well, comprising:
(a) placing means for preventing flow in the casing of the well below the zone to be refractured and above the underlying zone;
(b) injecting a sealing material through perforations into the zone to be refractured and allowing the sealing material to become solid;
(c) reperforating the zone to be refractured; and
(d) refracturing the zone through the perforations.
7. A method of refracturing a subterranean coal bed, the coal bed being connected to a wellbore through perforations in the casing of a well and separated from an underlying permeable zone, the underlying zone also being connected through perforations in the casing of the well and having been previously hydraulically fractured from the well, comprising:
(a) placing means for preventing flow in the wellbore of the well below the coal bed to be refractured and above the underlying zone;
(b) injecting a sealing material through perforations into the coal bed to be refractured and allowing the sealing material to solidify;
(c) reperforating the coal bed to be refractured; and
(d) refracturing the coal bed through the perforations.
2. The method of claim 1 wherein the means for preventing flow of step (a) is a bridge plug.
3. The method of claim 1 wherein the sealing material is a cement slurry.
4. The method of claim 1 wherein the sealing material is a solution of cross-linkable polymeric material.
5. The method of claim 4 additionally comprising the step of injecting a cement slurry after injection of the cross-linkable polymeric material and before step (c).
6. The method of claim 1 wherein the refracturing of step (d) is comprised of injection of fracturing fluid selected from the group of fracturing fluids consisting of foam, linear gels, crosslinked gels, emulsion, water and oil, the fracturing fluid containing a propping material.
8. The method of claim 7 wherein the means for preventing flow of step (a) is a bridge plug.
9. The method of claim 7 wherein the sealing material is a cement slurry.
10. The method of claim 7 wherein the sealing material is a solution of cross-linkable polymeric material.
11. The method of claim 10 additionally comprising the step of injecting a cement slurry after injection of the cross-linkable polymeric material and before step (c).
12. The method of claim 7 wherein the refracturing of step (d) is comprised of injection of a fracturing fluid selected from the group of fracturing fluids consisting of foam, linear gels, crosslinked gels, emulsion, water and oil, the fracturing fluid containing a propping material.

This invention pertains to a novel method of stimulating the production rate of hydrocarbons from wells. More particularly, a method is provided for refracturing a hydrocarbon-bearing zone when a lower zone or the same zone has been previously hydraulically fractured.

Hydraulic fracturing is commonly used to stimulate the production rate from subterranean wells. Fractures formed from fluid injection into the wells extend in a direction determined by stresses in the earth around the well. The fractures propagate in a direction normal to the minimum stress. At sufficient depth in the earth, the stress in the vertical direction is great enough to cause the fractures formed around wells by hydraulic pressure to be formed in a vertical direction in the earth.

The limit to vertical growth of such fractures is normally determined by an increase in horizontal stress or a change in mechanical properties in some strata in the earth. There is no known method to insure that a vertical fracture will not extend over a greater vertical interval than the subterranean zone which is to be stimulated in production rate by hydraulic fracturing, although some design variables can be selected to minimize the likelihood of "fracturing out of zone" in a hydraulic fracturing treatment. Models to predict the growth of vertical fractures are discussed at length in Recent Advances in Hydraulic Fracturing, SPE Monograph Vol. 12, Soc. of Pet. Engrs., Richardson, Tex., 1989, Chaps. 3, 4 and 5.

It is not unusual for multiple zones or beds penetrated by one well to be hydraulically fractured. The separate zones may be fractured simultaneously by having access from the wellbore, or they may be fractured sequentially by "stages," each stage isolating one segment of the wellbore and injecting fluids in the normal method. The separate stages are normally applied sequentially from the deeper to the shallower depths in a well. There is a question in such wells as to the vertical extent of the fracture formed in each stage. If the fracture from a stage applied deeper in the well influences a fracture formed in a shallower stage, the length of the fracture formed in the shallower stage is likely to be much shorter than expected. This may be caused by the much larger area for leak-off of fluid from the fracture and the possibility that zones having lower earth stress are contacted by the existing fracture.

Techniques have been developed in recent years to recover coal bed hydrocarbon gas from coal deposits. The gas, primarily methane, is produced by drilling wells and decreasing pressure in the coal to cause the methane to flow from the coal. Hydraulic fracturing has proven very helpful in increasing the production rate of the coal bed gas. Special techniques have been disclosed for forming and propping the fractures. U.S. Pat. No. 4,993,491 pertains to a method of injecting a range of sizes of proppant particles in a fracture in a coal bed. U.S. Pat. No. 4,665,990 discloses a method of alternating injection of fracturing fluid containing fine proppants and acidizing solution to fracture a subsurface coal formation.

There is a need for a method to increase the effectiveness of fractures when the initial fracture in a zone is improperly placed. Improper placement could be caused by stress not accounted for in the initial design or the influence of stimulations in other zones in the wellbore.

In one embodiment, there is provided a method to refracture a zone containing hydrocarbons which has an underlying zone which has also been previously fractured by setting a plugging means in the casing below the zone to be refractured, injecting a sealing material through perforations into the upper zone and allowing solidification, reperforating the upper zone and refracturing. In another embodiment, the zone to be refractured is a coal bed containing coal bed methane which is to be recovered through a well. In yet another embodiment, a single zone containing hydrocarbons which has been previously fractured is refractured after injecting a sealing material through perforations into the zone, allowing solidification, reperforating the zone and refracturing.

FIG. 1 is a cross-section of two zones separated in a cased wellbore, both zones having been hydraulically fractured.

FIG. 2 is a cross-section of the two zones and the wellbore equipped for injecting a sealing material into the upper perforations.

FIG. 3 is a cross-section of the two zones after a sealing material has been injected into the upper perforations.

FIG. 4 is a cross-section of the two zones after the upper zone has been refractured in accord with this invention.

Referring to FIG. 1, casing 10 in a well is shown. Casing 10 will normally be cemented in a wellbore (not shown). Casing 10 has been perforated into two zones 20 and 30. Perforations 22 have been formed into zone 20 and perforations 32 have been formed into zone 30. Zone 20 has been hydraulically fractured, the limits of the hydraulic fracture extending out of zone 20 to the zone enclosed within 24. Likewise, a hydraulic fracturing treatment has been applied to zone 30, but the extent of this fracture has been limited to the line 34 because the previous fracture influenced the new fracture by some means, for example, either because it intersected pre-existing line 24 or changes in stress caused by the fracture within line 24 limited fracture growth. Fracturing fluid from the zone within the line 34 may have entered the previously existing fracture, which prevents growth of the fracture in zone 30, where fracturing is designed to increase the production rate of the upper zone. A much shorter fracture is obtained in zone 30, which is well-known to result in a lower production rate from zone 30.

In accord with one embodiment of this invention, zone 30 is to be refractured to form a more effective stimulation of production from this zone. Referring to FIG. 2, preventing flow within the casing between zone 20 and zone 30 is first placed. This means may normally be a conventional bridge plug, 14 which can be set by wire line or tubing below zone 30 and above zone 20. Other means of isolating flow, such as cement plugs or gel plugs may also be employed. A bridge plug will preferably be retrievable. Tubing 16 having packer 18 attached thereto is placed in the well. Then packer 18, such as an "EZSV" packer, which is shear-set and drillable, is set above the upper perforations with tubing extending to the wellhead (not shown). Injection of fluid is established down the tubing and through perforations 32 and a sealing solution is then injected. In one embodiment, a water soluble or dispersible solution such as a sodium silicate solution which cross-links to solidify is injected. An example of such solution is "INJECTROL-G", available from Halliburton Company. This solution is used to penetrate any fracture channels which are too narrow for cement penetration. Volumes from 100 gallons to 10,000 gallons may be employed, but preferably volumes from 500 gallons to 2,000 gallons are injected at a pressure below fracturing pressure of the well. Other sealing solutions may be used which contain water soluble polymers which cross-link with a delayed action to become extremely high viscosity fluids or solid materials. Preferably, the sealing solution has a density greater than water. Sufficient time is allowed for the injected solution to solidify. In the preferred embodiment, a cement slurry to act as a second sealing solution is injected after the initial sealing solution is injected. A small fresh-water spacer may be used between the two fluids. Any cement slurry may be used, but the cement slurry is preferably made of a fine-grained cement designed small fractures, such as Halliburton's "MICROMATRIX" cement. The cement slurry should have a density greater than water. Then sufficient time is allowed for the cement to set. Care is taken to avoid over-flushing of the cement through the perforation when it is displaced down the wellbore with water. It will then be necessary normally to drill the cement from the wellbore and allow access to the zone to be refractured. Zone 30 then is perforated again using conventional perforating means. The new perforations can be in the same zone, above the zone or in the same interval as the original perforations.

FIG. 3 illustrates the distribution of the sealing solution or sealing solutions 41 after the solutions have solidified in pre-existing fractures and zone 30 has been reperforated. New perforations 36 now exist which may be in the same interval as previous perforations 32, now plugged with sealing material.

The restimulation of zone 30 is of conventional design normally, but particular design considerations may be important depending upon the characteristics of zone 30. If zone 30 is a coal bed which has been depleted, foam will be particularly advantageous as a fracturing fluid to re-pressure the formation and reduce the risk of water-block damage by minimizing the volume of water re-introduced into the coal bed. If the coal bed contains natural fractures, which is common, the low leak-off characteristics of foam maximize proper placement in the coal bed. Non-damaging aspects of foam and water soluble polymers which leave little residue in the fracture are also advantageous. Other fracturing fluids such as linear gels, (gels which are not crosslinked) crosslinked gels, water, oil or emulsion can also be used.

FIG. 4 illustrates the fracture which is formed in zone 30 after the refracturing treatment. The fracture now extends to the line 38, which makes possible much greater stimulation of production from the zone than was possible with the shorter fracture shown in FIG. 3. Sealing material 41 present in the original fractures has prevented influencing the new fracture from the lower zone and has allowed growth of the fracture in the lateral direction to the line 38.

The method described above by reference to FIGS. 3 an 4 is also applicable to refracturing a single zone. Referring to FIG. 2, if the lower fracture within line 24 does not exist or zone 20 does not exist and a fracture has been created as within line 34, such fracture being of insufficient length to have the desired effectiveness, the invention provides a method to increase the effectiveness of the hydraulic fracture in the single zone. The sealing solution or solutions are injected through the perforations into the zone and allowed to solidify, the zone is reperforated and then refractured. Sealing of existing induced or natural fractures and change in the stress field around the well can allow a more effective fracture to be formed during refracturing.

A well was drilled in the Black Warrior Basin in Alabama to penetrate the multiple coal seams containing methane. The well was cased and perforated in zones of the Blue Creek Group and the underlying Black Creek Group, with six coal seams perforated in the Black Creek Group and one in the Blue Creek Group. A three-stage fracturing treatment was applied to six zones of the Black Creek Group, all of which underlie the Blue Creek zones. Then a separate treatment was applied to an upper Blue Creek Zone, which lies about 150 feet above the nearest underlying Black Creek zone. When production from the well was lower than expected from comparison to offset well production, tests were performed by setting a packer between the upper and lower groups of coal beds. The tests indicated that communication existed in the reservoir between these zones. It was suspected that the fracture from the upper Blue Creek zones was not effective because it had been influenced by the fracture from the lower zones which had grown upward during fracturing treatments of the lower zones.

The treatment to refracture the well began with removal of rods, pump and tubing from the well. A retrievable bridge plug was set below the Blue Creek perforations. A packer (EZSV) with a tubing stinger was set 30 feet above the Blue Creek perforations, with the tubing extending to the surface. A two-barrel fresh-water spear head was injected through the tubing into the Blue Creek perforations to clean the tubing and flow path. Then "INJECTROL-G" (sodium silicate) with "MF-1" activator was injected to penetrate fracture channels This fluid had a viscosity of 1.5 cp and a density of 9.1 ppg. One thousand gallons was injected at 0.5 barrels per minute down the tubing. After 90 minutes, tests showed that the activator causes the viscosity to increase to 500,000 cp. Brine also causes the fluid to set or become extremely viscous. Then a two-barrel fresh-water spacer was injected at 0.5 barrels per minute. This was followed by 422 gallons of Halliburton's "MICROMATRIX" cement with a 2% KCL accelerator. The density of this fluid was 11.5 pounds per gallon. It was injected at 0.5 barrels per minute. This cement was displaced with water to the perforations, but over-flushing was avoided. Forty-eight hours was allowed for the cement to set and it was then drilled out to the top of the bridge plug. The upper Blue Creek seam was reperforated.

The refracturing was performed using nitrogen foam as the fluid. The aqueous phase of the foam contained 30 pounds per 1,000 gallons of HEC polymer. A pad volume of 40,000 gallons of foam was pumped at 35 barrels per minute, then increasing proppant concentrations were added to the foam until 100,000 gallons of foam was injected along with 186,000 pounds of proppant. The proppant was 16/30 mesh sand. Proppant concentrations increased in stages from 1 pound per gallon to 5 pounds per gallon.

Before the restimulation, the well was producing at rates of 65,000 cubic feet per day and 21 barrels of water per day from the combined Blue Creek and Black Creek groups. Testing of individual zones indicated that the upper Blue Creek Group was contributing about 50,000 cubic feet per day of this total. After restimulation, gas production from the well peaked at 380,000 cubic feet per day with water production of 48 barrels per day. Several months after restimulation, the well was still producing over 350,000 cubic feet per day and the water rate had declined to 39 barrels per day.

This invention has been described with reference to its preferred embodiment. Those of ordinary skill in the art may, upon reading this disclosure, appreciate changes or modifications which do not depart from the scope and spirit of the invention as described above or claimed hereafter.

Spafford, Stephen D.

Patent Priority Assignee Title
10316636, Jun 21 2012 Shell Oil Company Method of treating a subterranean formation with a mortar slurry designed to form a permearle mortar
10337309, Apr 28 2017 NewWell Tech, LLC Method for refracturing a wellbore and low molecular weight compositions for use therein
10738231, Apr 22 2015 Halliburton Energy Services, Inc Syneresis reducing compositions for conformance applications using metal cross-linked gels
10941638, Jun 13 2016 Halliburton Energy Services, Inc. Treatment isolation in restimulations with inner wellbore casing
11098567, Mar 18 2019 GEODYNAMICS, INC Well completion method
11753919, Dec 19 2019 Schlumberger Technology Corporation Method to improve hydraulic fracturing in the near wellbore region
5372195, Sep 13 1993 The United States of America as represented by the Secretary of the Method for directional hydraulic fracturing
5474129, Nov 07 1994 Atlantic Richfield Company Cavity induced stimulation of coal degasification wells using foam
5875843, Jul 12 1996 Method for vertically extending a well
5964289, Jan 14 1997 Multiple zone well completion method and apparatus
6257335, Mar 02 2000 Halliburton Energy Services, Inc Stimulating fluid production from unconsolidated formations
6367566, Feb 20 1998 Down hole, hydrodynamic well control, blowout prevention
6978836, May 23 2003 Halliburton Energy Services, Inc. Methods for controlling water and particulate production
7013976, Jun 25 2003 Halliburton Energy Services, Inc. Compositions and methods for consolidating unconsolidated subterranean formations
7017665, Aug 26 2003 Halliburton Energy Services, Inc. Strengthening near well bore subterranean formations
7021379, Jul 07 2003 Halliburton Energy Services, Inc. Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures
7028774, May 23 2003 Halliburton Energy Services, Inc. Methods for controlling water and particulate production
7032667, Sep 10 2003 Halliburtonn Energy Services, Inc. Methods for enhancing the consolidation strength of resin coated particulates
7059406, Aug 26 2003 Halliburton Energy Services, Inc. Production-enhancing completion methods
7063150, Nov 25 2003 Halliburton Energy Services, Inc.; Halliburton Energy Services, Inc Methods for preparing slurries of coated particulates
7063151, Mar 05 2004 Halliburton Energy Services, Inc. Methods of preparing and using coated particulates
7066258, Jul 08 2003 Halliburton Energy Services, Inc. Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
7073581, Jun 15 2004 Halliburton Energy Services, Inc. Electroconductive proppant compositions and related methods
7114560, Jun 23 2003 Halliburton Energy Services, Inc. Methods for enhancing treatment fluid placement in a subterranean formation
7114570, Apr 07 2003 Halliburton Energy Services, Inc. Methods and compositions for stabilizing unconsolidated subterranean formations
7131493, Jan 16 2004 Halliburton Energy Services, Inc. Methods of using sealants in multilateral junctions
7156194, Aug 26 2003 Halliburton Energy Services, Inc. Methods of drilling and consolidating subterranean formation particulate
7211547, Mar 03 2004 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
7216711, Jan 08 2002 Halliburton Eenrgy Services, Inc. Methods of coating resin and blending resin-coated proppant
7237609, Aug 26 2003 Halliburton Energy Services, Inc. Methods for producing fluids from acidized and consolidated portions of subterranean formations
7252146, Nov 25 2003 Halliburton Energy Services, Inc. Methods for preparing slurries of coated particulates
7255169, Sep 09 2004 Halliburton Energy Services, Inc. Methods of creating high porosity propped fractures
7261156, Mar 05 2004 Halliburton Energy Services, Inc. Methods using particulates coated with treatment chemical partitioning agents
7264051, Mar 05 2004 Halliburton Energy Services, Inc. Methods of using partitioned, coated particulates
7264052, Mar 06 2003 Halliburton Energy Services, Inc. Methods and compositions for consolidating proppant in fractures
7267171, Jan 08 2002 Halliburton Energy Services, Inc. Methods and compositions for stabilizing the surface of a subterranean formation
7273099, Dec 03 2004 Halliburton Energy Services, Inc. Methods of stimulating a subterranean formation comprising multiple production intervals
7281580, Sep 09 2004 Halliburton Energy Services, Inc. High porosity fractures and methods of creating high porosity fractures
7281581, Dec 01 2004 Halliburton Energy Services, Inc. Methods of hydraulic fracturing and of propping fractures in subterranean formations
7299875, Jun 08 2004 Halliburton Energy Services, Inc. Methods for controlling particulate migration
7306037, Apr 07 2003 Halliburton Energy Services, Inc. Compositions and methods for particulate consolidation
7318473, Mar 07 2005 Halliburton Energy Services, Inc. Methods relating to maintaining the structural integrity of deviated well bores
7318474, Jul 11 2005 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
7334635, Jan 14 2005 Halliburton Energy Services, Inc. Methods for fracturing subterranean wells
7334636, Feb 08 2005 Halliburton Energy Services, Inc. Methods of creating high-porosity propped fractures using reticulated foam
7343973, Jan 08 2002 Halliburton Energy Services, Inc.; Halliburton Energy Services, Inc Methods of stabilizing surfaces of subterranean formations
7345011, Oct 14 2003 Halliburton Energy Services, Inc. Methods for mitigating the production of water from subterranean formations
7350571, Mar 05 2004 Halliburton Energy Services, Inc. Methods of preparing and using coated particulates
7398825, Dec 03 2004 Halliburton Energy Services, Inc Methods of controlling sand and water production in subterranean zones
7407010, Mar 16 2006 Halliburton Energy Services, Inc. Methods of coating particulates
7413010, Jun 23 2003 Halliburton Energy Services, Inc. Remediation of subterranean formations using vibrational waves and consolidating agents
7448451, Mar 29 2005 Halliburton Energy Services, Inc. Methods for controlling migration of particulates in a subterranean formation
7500521, Jul 06 2006 Halliburton Energy Services, Inc. Methods of enhancing uniform placement of a resin in a subterranean formation
7541318, May 26 2004 Halliburton Energy Services, Inc. On-the-fly preparation of proppant and its use in subterranean operations
7571767, Sep 09 2004 Halliburton Energy Services, Inc High porosity fractures and methods of creating high porosity fractures
7665517, Feb 15 2006 Halliburton Energy Services, Inc. Methods of cleaning sand control screens and gravel packs
7673686, Mar 29 2005 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
7712531, Jun 08 2004 Halliburton Energy Services, Inc. Methods for controlling particulate migration
7757768, Oct 08 2004 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
7762329, Jan 27 2009 Halliburton Energy Services, Inc Methods for servicing well bores with hardenable resin compositions
7819192, Feb 10 2006 Halliburton Energy Services, Inc Consolidating agent emulsions and associated methods
7883740, Dec 12 2004 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
7926591, Feb 10 2006 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
7934557, Feb 15 2007 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
7938181, Oct 08 2004 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
7963330, Feb 10 2004 Halliburton Energy Services, Inc. Resin compositions and methods of using resin compositions to control proppant flow-back
8017561, Mar 03 2004 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
8141638, Mar 02 2007 Trican Well Services Ltd. Fracturing method and apparatus utilizing gelled isolation fluid
8354279, Apr 18 2002 Halliburton Energy Services, Inc. Methods of tracking fluids produced from various zones in a subterranean well
8443885, Feb 10 2006 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
8528643, Jun 29 2009 Halliburton Energy Services, Inc. Wellbore laser operations
8534357, Jun 29 2009 Halliburton Energy Services, Inc. Wellbore laser operations
8540026, Jun 29 2009 Halliburton Energy Services, Inc. Wellbore laser operations
8613320, Feb 10 2006 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
8678087, Jun 29 2009 Halliburton Energy Services, Inc. Wellbore laser operations
8689872, Jul 11 2005 KENT, ROBERT A Methods and compositions for controlling formation fines and reducing proppant flow-back
8857513, Jan 20 2012 BAKER HUGHES HOLDINGS LLC Refracturing method for plug and perforate wells
9366124, Nov 27 2013 BAKER HUGHES HOLDINGS LLC System and method for re-fracturing multizone horizontal wellbores
9394775, Mar 14 2011 TOTAL S A Electrical fracturing of a reservoir
9567839, Mar 14 2011 Centre National de la Recherche Scientifique Electrical and static fracturing of a reservoir
9719339, Jun 06 2014 BAKER HUGHES HOLDINGS LLC Refracturing an already fractured borehole
9739129, Jan 21 2014 BIOSQUEEZE, INC Methods for increased hydrocarbon recovery through mineralization sealing of hydraulically fractured rock followed by refracturing
9879492, Apr 22 2015 BAKER HUGHES HOLDINGS LLC Disintegrating expand in place barrier assembly
9885229, Apr 22 2015 BAKER HUGHES HOLDINGS LLC Disappearing expandable cladding
9896903, May 21 2014 SHELL USA, INC Methods of making and using cement coated substrate
9945218, Aug 23 2012 ExxonMobil Upstream Research Company Sytems and methods for re-completing multi-zone wells
Patent Priority Assignee Title
3419070,
3431977,
3537529,
3830299,
3987850, Jun 13 1975 Mobil Oil Corporation Well completion method for controlling sand production
4665990, Jul 17 1984 Multiple-stage coal seam fracing method
4750562, Aug 30 1985 Mobil Oil Corporation Method to divert fractures induced by high impulse fracturing
4993491, Apr 24 1989 Amoco Corporation Fracture stimulation of coal degasification wells
5111881, Sep 07 1990 HALLIBURTON COMPANY, A DE CORP Method to control fracture orientation in underground formation
5181568, Sep 26 1991 HALLIBURTON COMPANY A DE CORPORATION Methods of selectively reducing the water permeabilities of subterranean formations
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 10 1992SPAFFORD, STEPHEN D GAS RESEARCH INSTITUTE, A CORP OF DEASSIGNMENT OF ASSIGNORS INTEREST 0061970438 pdf
Jul 13 1992Gas Research Institute(assignment on the face of the patent)
Date Maintenance Fee Events
Jun 12 1997ASPN: Payor Number Assigned.
Jun 27 1997M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Jun 27 2001M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Jul 13 2005REM: Maintenance Fee Reminder Mailed.
Dec 28 2005EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Dec 28 19964 years fee payment window open
Jun 28 19976 months grace period start (w surcharge)
Dec 28 1997patent expiry (for year 4)
Dec 28 19992 years to revive unintentionally abandoned end. (for year 4)
Dec 28 20008 years fee payment window open
Jun 28 20016 months grace period start (w surcharge)
Dec 28 2001patent expiry (for year 8)
Dec 28 20032 years to revive unintentionally abandoned end. (for year 8)
Dec 28 200412 years fee payment window open
Jun 28 20056 months grace period start (w surcharge)
Dec 28 2005patent expiry (for year 12)
Dec 28 20072 years to revive unintentionally abandoned end. (for year 12)