A field emission display FED is manufactured by a method for manufacturing the FED comprising the steps of forming successively a conductive coating and first photoresist coating on a transparent insulating substrate; exposing the first photoresist coating to the light and removing it except a part where a microtip is formed; etching in a predetermined depth the conductive coating using the first photoresist pattern as a mask to form a plurality of columns; depositing an insulating coating on the etched and exposed conductive coating and removing the remaining first photoresist pattern by a lift off method; depositing and patterning a second photoresist coating on the exposed column and the insulating coating to form a second photoresist pattern in order that the thickness of the remaining second photoresist coating becomes smaller than that of the exposed column; etching the column through a selective isotropic or anisotropic etching process using the second photoresist pattern as the mask to form the sharp end of the microtip; and depositing a gate layer on the insulating coating and removing the remaining second photoresist pattern. As a result, the end of the microtip is formed under the surface of the gate so as to be less influenced by an ion bombardment thereby reducing the abrasion of the microtip.

Patent
   5277638
Priority
Apr 29 1992
Filed
Dec 15 1992
Issued
Jan 11 1994
Expiry
Dec 15 2012
Assg.orig
Entity
Large
57
3
all paid
1. A method for manufacturing a field emission display FED comprising the steps of:
forming successively a conductive coating and a first photoresist coating on a transport insulating substrate;
exposing the first photoresist coating to the light and removing the first photoresist coating except for a part where a microtip is formed;
etching a predetermined depth in the conductive coating by interposing the first photoresist pattern as a mask to form a plurality of columns;
depositing an insulating coating on the etched and exposed conductive coating and removing the remaining first photoresist pattern by a lift off method;
depositing and patterning a second photoresist coating on the exposed columns and the insulating coating to form a second photoresist pattern so that the thickness of the remaining second photoresist pattern become smaller than that of the exposed columns;
etching the columns through a selective isotropic or anisotropic etching process by interposing the second photoresist pattern as the mask to form the sharp end of a microtip; and
depositing a gate layer on the insulating coating and removing the remaining second photoresist pattern.
2. The method for manufacturing the FED as claimed in claim 1, wherein the conductive coating comprises Si or metal such as Ta and the like and is formed in the thickness of 10000 Å to 20000 Å.
3. The method for manufacturing the FED as claimed in claim 1, wherein the etching of the conductive coating for forming the column is performed by an anisotropic etching method.
4. The method for manufacturing the FED as claimed in claim 1, wherein the height of the column is 7000 Å to 15000 Å.
5. The method for manufacturing the FED as claimed in claim 1, wherein the peripheral inclined area of the microtip is inward rounded.
6. The method for manufacturing the FED as claimed in claim 1, wherein the gate layer comprises Mo, W, or Nb is formed in the thickness of 1000 Å to 4000 Å.

(1) Field of the Invention

The present invention relates to a method for manufacturing a field emission display (below FED) and, more specifically a method for manufacturing a field emission display which can obtain good light emission characteristics by forming cathodes simply and in the uniform height.

(2) Description of the Prior Art

A field emission display FED is a kind of flat display provided with tip-type or wedge-type, cathodes and anodes with a layered phosphor. An electron emitted from a certain cathode strikes the phosphor, so that the phosphor is excited to emit the light thereby displaying patterns, characters or signs. Also, despite minimum voltage consumption, color patterns with high resolution and brightness can be displayed.

A conventional FED of microtip-type disclosed in U.S. Pat. No. 4,908,539 and JP unexamined Publication No. Sho 61-221783 will be described in connection with FIG. 3.

Gates 3 of the rows of electrodes which are divided by cathode patterns 2 and insulating coatings 4 and have a plurality of holes 30 are disposed on a back glass substrate 1 in the cross shape. A plurality of cells 5 are formed on the cross parts. In the cell 5, the same number of microtips 6 as that of holes 30 are formed on the cathode pattern 2. Spacer 7 covering each cell 5 is disposed on the top side of the cell 5. In the meantime, an Indium Tin oxide ITO transparent conductive coating 9 forming an anode electrode and a phosphor coating 10 are formed on the bottom side of a front glass substrate 8.

FIG. 4 describes in an enlarged sectional view the above FED cell 5. As shown in this figure, the microtip 6 is a cathode of a cool cathode using a high electric field emission. Its end is pointed as a tip-type. Even though a lower voltage is applied to the tiny area, electrons are emitted from the end of the tip-type cathode thereby exciting the phosphor 10 facing the cathode.

Namely, electron emission is solicited from a plurality of microtips 6 formed on the cathode pattern 2 and electrons therefrom strike the phosphor 10 through the gates 3 converging the electric field. So, the phosphor 10 is stimulated so as for electrons to be excited. Using the light generated therefrom, the needed picture display can be performed.

In the meantime, the above FED microtip is formed by a process comprising steps shown in FIGS. 5A to 5F.

As shown in FIG. 5A, on the back glass substrate 1, the cathode pattern 2, the insulating coating 4 and the gate 3 are successively formed. As shown in FIG. 5B, a certain portion of the gate 3 is etched by a dry etching to form a hole of the diameter of about 1.4 μm. As shown in FIG. 5C, the insulating coating 4 is etched by a silica etching to form a cavity 40 under the hole 30. As shown in FIG. 5D, with the rotation of the back glass substrate 1, the electron beams are deposited in the projecting angle of 5°-25° to form a nickel layer 11. As shown in FIG. 5E, as well as FIG. 5D, with the rotation of the back glass substrate 1, Mo is deposited on the inner surface of the cavity 40 of the insulating coating 4 to form the microtip 6. After that, as shown in FIG. 5F, Mo deposition 12 with the Ni layer 11 formed on the top of the gate 3 is removed.

Also, a spacer 7 is formed on the whole area of the gate 3 of the back glass substrate 1 except the cell part 5. On the top side of the spacer 7, the front glass 8 on which the transparent conductive film 9 and the phosphor coating 10 are formed are disposed, thereby completing the FED.

However, the microtip 6 formed therefrom, can be easily damaged due to an ion bombardment that, when the electron emitted from the tip excites the phosphor, the positive ion abrades the cathode. As a result, according to the abrasion, the efficiency of electron emission becomes reduced so as not to maintain the stable picture quality thereby shortening the useful life.

Also, when depositing the Ni layer 11 on the gate 3, because the projecting angle of a depositing device (not shown) is modulated with rotating the glass substrate 1, the projecting angle of the depositing device is changed according to the position on the substrate, resulting in the non-uniform tip shapes.

Accordingly, the electron emission force formed on the tip portion becomes non-uniform resulting in the non-uniform brightness. Also, this method has difficulties in forming a plurality of tips at the appropriate uniform height due to the necessary high technology during manufacturing process as well as performing the complicated process.

The above problems act as a big defect when manufacturing a large FED. The combining force of the cathode tip exciting the electron emission with the cathode electrode is weak because, during the manufacturing process of the FED, in each etching step, the etchant is penetrated into the contacting portion of the cathode tip and the cathode electrode, so that, at the time of driving, the cathode tip is dropped out resulting in the reduced manufacturing efficiency.

One object of the present invention is to provide a method for manufacturing a field emission display FED which can for many hours resist an ion bombardment by disposing cathodes of tip type where microtips are united with cathode electrodes into one and which have the uniform height under gates and forming the sharp end of the microtips.

Another object of the present invention is to provide a method for manufacturing the FED which can manufacture cathodes efficiently and uniformly in order to obtain the uniform and good light emission characteristic.

To achieve the above-mentioned objects, the present invention provides a method for manufacturing the FED including the following steps of:

forming successively a conductive coating and a first photoresist coating on a transparent insulating substrate;

exposing the first photoresist coating to the light and removing it except for a part where a microtip is formed;

etching in a predetermined depth the conductive coating by interposing the first photoresist pattern as a mask to form a plurality of columns;

depositing an insulating coating on the etched and exposed conductive coating and removing the remaining first photoresist pattern by a lift off method;

depositing and patterning a second photoresist coating on the exposed column and the insulating coating to form a second photoresist pattern in order that the thickness of the remaining second photoresist pattern is smaller than that of the exposed column;

etching the column through a selective isotropic or anisotropic etching process by interposing the second patterned photoresist as the mask to form the sharp end of the microtip; and

depositing a gate layer on the insulating coating and removing the remaining second photoresist pattern.

Other objects and further advantages of the present invention will be apparent from the following detailed description in connection with the accompanying drawings, in which:

FIG. 1 is a sectional view of a field emission display FED of the present invention;

FIGS. 2A to 2G illustrate the steps in the manufacture of the FED;

FIG. 3 is a perspective view of a general FED of microtip type;

FIG. 4 is a sectional view of a conventional FED; and

FIGS. 5A to 5F illustrate the steps in the manufacture of a conventional FED.

FIG. 1 describes in a sectional view a field emission display FED formed according to a manufacturing process shown in FIGS. 2A to 2G wherein the same reference numerals are applied to the same parts as those shown in FIGS. 3 and 4 in order to avoid repeated explanation of the drawings.

Description of the manufacturing process of the FED of the present invention follows that of the characteristics of the FED obtained from the present invention.

As shown in FIG. 1, the FED of the present invention has a cathode 22 formed by uniting a cathode electrode 20 constituting a column electrode with a microtip into one; a back glass substrate 1 in which a gate 3 forming a row electrode is divided by an insulating coating 4 and cells are formed on the crossing part of the cathode 22 and the gate 3 by a matrix method; spacer 7 which is formed on the whole part except the cells; and a front glass substrate 8 on which an ITO transparent conductive layer 9 and a phosphor coating 10 are deposited. The microtips 21 which are of uniform height are disposed under the gate 3 to the extent of the thick height of the gate 3. The peripheral inclined area of the tip is concavely rounded to form the sharp end thereof. The end of microtip 21 is disposed under gate 3 and the sharp end thereof is longer than that of a conventional one, resulting in not only the possible lower voltage driving but also the longer useful life against the abrasion caused by an ion bombardment.

Also, the cathode 22 is formed by uniting the microtip 21 with the cathode electrode 20 into one whereby, during the manufacturing process, the microtip 21 can not be dropped out from the cathode electrode 20.

FIGS. 2A to 2G show a method for manufacturing the FED of the present invention.

As shown in FIG. 2A, a conductive layer 20 is deposited on the top side of the back glass substrate 1. The conductive layer 20 is made of Si or metal such as Ta and the like. A first photoresist coating 14 is coated thereon. And then, interposing a photo mask M, a predetermined part is exposed to the light and etched to make a pattern for the first photoresist coating.

As shown in FIG. 2B, interposing the first photoresist pattern 14 as a mask, the exposed conductive coating 20 is etched at a predetermined depth and removed. At that time, the non-etched conductive coating 20 forms a column.

As shown in FIG. 2C, after the insulating coating 4 formed by SiO2 is formed in the above etched space using an electron beam depositing device or a sputter device, the remaining first photoresist pattern on the conductive layer 20 is remove lift off method.

As shown in FIGS. 2D and 2E, a second photoresist coating 15 is deposited on the column conductive coating 20 and the insulating coating 4. Interposing the mask M', the second photoresist coating 15 is exposed to the light to form a second photoresist pattern having a smaller area than that of the projected conductive coating 20. A non-exposed part of the second photoresist pattern is etched.

And then, as shown in FIG. 2F, the projected conductive coating 20 is etched by an isotropic etching process which etches in the same ratio (50:50) of the vertical direction to the horizontal directional and an anisotropic etching process which etches in the different ratio thereof to form the microtip 21. At that time, the non-projected conductive coating corresponds to the cathode electrode.

As shown in FIG. 2G, Mo, W or Nb is deposited on the insulating coating 4 to form the gate 3. The second photoresist pattern 15 is removed by the lift off method to form the cathode of one body.

The spacer 7 is formed on whole area except the cell where the cathode 22 is placed on the back glass substrate 1.

The front glass 8 on which the transparent conductive coating 9 and the phosphor coating 10 are formed is placed on the spacer 7. And then, the above elements are united into one to complete the FED.

As described above, the cathode is formed according to the simple photoresist method, so that, since the high technology in the embodiment of the process is not needed, the manufacturing process is simple. Also, the heights of the microtips are uniform, so that the gate voltages applied to the microtips are uniform so as to obtain the good light emission characteristic.

Thus, according to the FED of the present invention, the microtips of the cathode emitting the electrons are disposed in the uniform height under the gate and sharply formed by being united with the cathode so as to resist the ion bombardment for hours and obtain the good and uniform light emission characteristic. Also, the present invention has advantage of simply and efficiently manufacturing the above cathode.

Lee, Kangok

Patent Priority Assignee Title
5531880, Sep 13 1994 SI DIAMOND TECHNOLOGY, INC Method for producing thin, uniform powder phosphor for display screens
5536193, Nov 07 1991 SI DIAMOND TECHNOLOGY, INC Method of making wide band gap field emitter
5551903, Jun 20 1994 APPLIED NANOTECH HOLDINGS, INC Flat panel display based on diamond thin films
5562516, Nov 24 1993 Canon Kabushiki Kaisha Field-emitter fabrication using charged-particle tracks
5564959, Sep 08 1993 Canon Kabushiki Kaisha Use of charged-particle tracks in fabricating gated electron-emitting devices
5578185, Nov 24 1993 Canon Kabushiki Kaisha Method for creating gated filament structures for field emision displays
5600200, Jun 02 1993 APPLIED NANOTECH HOLDINGS, INC Wire-mesh cathode
5601966, Nov 04 1993 SI DIAMOND TECHNOLOGY, INC Methods for fabricating flat panel display systems and components
5607335, Jun 29 1994 Canon Kabushiki Kaisha Fabrication of electron-emitting structures using charged-particle tracks and removal of emitter material
5612712, Mar 16 1992 APPLIED NANOTECH HOLDINGS, INC Diode structure flat panel display
5614353, Nov 04 1993 SI DIAMOND TECHNOLOGY, INC Methods for fabricating flat panel display systems and components
5628659, Apr 24 1995 SI DIAMOND TECHNOLOGY, INC Method of making a field emission electron source with random micro-tip structures
5630741, May 08 1995 Advanced Vision Technologies, Inc Fabrication process for a field emission display cell structure
5644188, May 08 1995 Advanced Vision Technologies, Inc Field emission display cell structure
5652083, Nov 04 1993 SI DIAMOND TECHNOLOGY, INC Methods for fabricating flat panel display systems and components
5655940, Sep 28 1994 Texas Instruments Incorporated Creation of a large field emission device display through the use of multiple cathodes and a seamless anode
5675216, Mar 16 1992 APPLIED NANOTECH HOLDINGS, INC Amorphic diamond film flat field emission cathode
5679043, Mar 16 1992 APPLIED NANOTECH HOLDINGS, INC Method of making a field emitter
5686791, Jun 02 1993 APPLIED NANOTECH HOLDINGS, INC Amorphic diamond film flat field emission cathode
5703435, Jun 02 1993 APPLIED NANOTECH HOLDINGS, INC Diamond film flat field emission cathode
5753130, May 15 1992 Micron Technology, Inc. Method for forming a substantially uniform array of sharp tips
5755944, Jun 07 1996 Canon Kabushiki Kaisha Formation of layer having openings produced by utilizing particles deposited under influence of electric field
5763997, Mar 16 1992 APPLIED NANOTECH HOLDINGS, INC Field emission display device
5766446, Mar 05 1996 Canon Kabushiki Kaisha Electrochemical removal of material, particularly excess emitter material in electron-emitting device
5801477, Sep 08 1993 Canon Kabushiki Kaisha Gated filament structures for a field emission display
5811929, Jun 02 1995 Advanced Vision Technologies, Inc Lateral-emitter field-emission device with simplified anode
5813892, Sep 08 1993 Canon Kabushiki Kaisha Use of charged-particle tracks in fabricating electron-emitting device having resistive layer
5827099, Sep 08 1993 Canon Kabushiki Kaisha Use of early formed lift-off layer in fabricating gated electron-emitting devices
5851669, Sep 08 1993 Canon Kabushiki Kaisha Field-emission device that utilizes filamentary electron-emissive elements and typically has self-aligned gate
5861707, Nov 07 1991 SI DIAMOND TECHNOLOGY, INC Field emitter with wide band gap emission areas and method of using
5863232, Nov 20 1995 MagnaChip Semiconductor, Ltd Fabrication method of micro tip for field emission display device
5865657, Jun 07 1996 Canon Kabushiki Kaisha Fabrication of gated electron-emitting device utilizing distributed particles to form gate openings typically beveled and/or combined with lift-off or electrochemical removal of excess emitter material
5865659, Jun 07 1996 Canon Kabushiki Kaisha Fabrication of gated electron-emitting device utilizing distributed particles to define gate openings and utilizing spacer material to control spacing between gate layer and electron-emissive elements
5882845, Aug 17 1995 Commissariat a l'Energie Atomique Method and device for the formation of holes in a layer of photosensitive material, in particular for the manufacture of electron sources
5893967, Mar 05 1996 Canon Kabushiki Kaisha Impedance-assisted electrochemical removal of material, particularly excess emitter material in electron-emitting device
5913704, Sep 08 1993 Canon Kabushiki Kaisha Fabrication of electronic devices by method that involves ion tracking
5920148, May 08 1995 Advanced Vision Technologies, Inc. Field emission display cell structure
5965971, Jan 19 1993 Kypwee Display Corporation Edge emitter display device
6019658, Jun 07 1996 Canon Kabushiki Kaisha Fabrication of gated electron-emitting device utilizing distributed particles to define gate openings, typically in combination with spacer material to control spacing between gate layer and electron-emissive elements
6023126, Jan 19 1993 Kypwee Display Corporation Edge emitter with secondary emission display
6042444, May 27 1999 United Microelectronics Corp Method for fabricating field emission display cathode
6080325, May 15 1992 Micron Technology, Inc. Method of etching a substrate and method of forming a plurality of emitter tips
6120674, Jun 30 1997 Canon Kabushiki Kaisha Electrochemical removal of material in electron-emitting device
6126845, May 15 1992 Micron Technology, Inc. Method of forming an array of emmitter tips
6127773, Mar 16 1992 APPLIED NANOTECH HOLDINGS, INC Amorphic diamond film flat field emission cathode
6165374, May 15 1992 Micron Technology, Inc. Method of forming an array of emitter tips
6174449, May 14 1998 Micron Technology, Inc. Magnetically patterned etch mask
6187603, Jun 07 1996 Canon Kabushiki Kaisha Fabrication of gated electron-emitting devices utilizing distributed particles to define gate openings, typically in combination with lift-off of excess emitter material
6204596, Sep 08 1993 Canon Kabushiki Kaisha Filamentary electron-emission device having self-aligned gate or/and lower conductive/resistive region
6204834, Aug 17 1994 SI DIAMOND TECHNOLOGY, INC System and method for achieving uniform screen brightness within a matrix display
6252569, Sep 28 1994 Texas Instruments Incorporated Large field emission display (FED) made up of independently operated display sections integrated behind one common continuous large anode which displays one large image or multiple independent images
6296740, Apr 24 1995 SI DIAMOND TECHNOLOGY, INC Pretreatment process for a surface texturing process
6423239, May 15 1992 Micron Technology, Inc. Methods of making an etch mask and etching a substrate using said etch mask
6515407, Sep 08 1993 Canon Kabushiki Kaisha Gated filament structures for a field emission display
6629869, Mar 16 1992 APPLIED NANOTECH HOLDINGS, INC Method of making flat panel displays having diamond thin film cathode
6749476, Feb 06 2001 AU Optronics Corporation Field emission display cathode (FED) plate with an internal via and the fabrication method for the cathode plate
7025892, Sep 08 1993 Canon Kabushiki Kaisha Method for creating gated filament structures for field emission displays
Patent Priority Assignee Title
4908539, Jul 24 1984 Commissariat a l'Energie Atomique Display unit by cathodoluminescence excited by field emission
4968382, Jan 18 1989 GENERAL ELECTRIC COMPANY, P L C , THE Electronic devices
JP61221783,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 30 1992LEE, KANGOKSAMSUNG ELECTRON DEVICES CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST 0063620925 pdf
Dec 15 1992Samsung Electron Devices Co., Ltd.(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 29 1996ASPN: Payor Number Assigned.
Jun 30 1997M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Jun 21 2001M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 16 2005M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jan 11 19974 years fee payment window open
Jul 11 19976 months grace period start (w surcharge)
Jan 11 1998patent expiry (for year 4)
Jan 11 20002 years to revive unintentionally abandoned end. (for year 4)
Jan 11 20018 years fee payment window open
Jul 11 20016 months grace period start (w surcharge)
Jan 11 2002patent expiry (for year 8)
Jan 11 20042 years to revive unintentionally abandoned end. (for year 8)
Jan 11 200512 years fee payment window open
Jul 11 20056 months grace period start (w surcharge)
Jan 11 2006patent expiry (for year 12)
Jan 11 20082 years to revive unintentionally abandoned end. (for year 12)