This invention provides a method of preventing or treating hyperproliferative vascular disease in a mammal by administering an amount of mycophenolic acid effective to inhibit intimal thickening.

Patent
   5283257
Priority
Jul 10 1992
Filed
Jul 10 1992
Issued
Feb 01 1994
Expiry
Jul 10 2012
Assg.orig
Entity
Small
120
2
EXPIRED
1. A method of preventing or treating hyperproliferative vascular disease in a susceptible mammal, comprising
administering to said mammal an amount of mycophenolic acid effective to i it intimal thickening in said mammal.
2. The method of claim 1, wherein the administering is accomplished orally, parenterally, intravascularly, intranasally, intrabronchially, transdermally, rectally, or via a vascular stent impregnated with mycophenolic acid.
3. The method of claim 1, wherein the mycophenolic acid is administered concurrent with said mammal undergoing a percutaneous transluminal coronary angioplasty procedure.
4. The method of claim 3, which further comprises administering the mycophenolic acid subsequent to said mammal undergoing a percutaneous transluminal coronary angioplasty procedure.
5. The method of claim 1, wherein the hyperproliferative vascular disease is selected from the group consisting of intimal smooth muscle cell hyperplasia, restenosis, and vascular occlusion.
6. The method of claim 5, wherein the hyperproliferative vascular disease is restenosis.
7. The method of claim 6, wherein the mycophenolic acid which is selected is in the form of a pharmaceutically acceptable salt.
8. The method of claim 1, wherein the mycophenolic acid is administered prior to, concurrent with and/or subsequent to said mammal sustaining a biologically mediated vascular injury.
9. The method of claim 1, wherein the mycophenolic acid is administered prior to, concurrent with and/or subsequent to said mammal sustaining a mechanically mediated vascular injury.

The present invention relates to the use of mycophenolic acid for the treatment of hyperproliferative vascular disease in a mammal, including intimal smooth muscle cell hyperplasia, restenosis, and vascular occlusion.

Allison, A. C., et al., U.S. Pat. No. 4,786,637, issued 22 November 1988.

Califf, R., et al., in Textbook of Interventional Cardiology, E. Topol, Ed., (W. B. Saunders Co., Philadelphia, 1990), pages 363-394.

Calne, R., European Patent Application 401,747.

Chevru, A., Surg. Gynecol. Obstet. 171:443 (1990).

Clowes, A. W., Lab. Invest. 32:339 (1975).

Clowes, A. W., Circ. Res. 56:139 (1985).

Clowes, A. W., J. Cardiovas. Pharm. 14 (Suppl. 6):Sl2 (1989).

Darius, H., Eur. Heart J. 12 (Suppl.):26 (1991).

Davies, P. F., Atherosclerosis Lab. Invest. 55:5 (1986).

de Vries, C., Eur. Heart J. 12 (Suppl.):386 (1991). Demke, D., Brit. J. Haematol 76 (Suppl.):20 (1990). Eugui, E., et al., Scand. J. Immunol. 33:161 (1991). Evans, R. G., JAMA 265:2382 (1991). Ferns, G. A., Circulation 80 (Suppl.):184 (1989). Ferns, G. A., Am. J. Path. 137:403 (1990). Ferns, G. A., Science 253:1129 (1991). Fingerle, J., Arteriosclerosis 10:1082 (1990). Fishman, J. Lab. Invest. 32:339 (1975). Forrester, J., J. Am. Coll. Cardiol. 1-7:758 (1991). Geisterfer, A. T. T., et al., Circ. Res. 62:749-756 (1988). Gellman, J., J. Am. Coll. Cardiol. 17:251 (1991). Gorman, R. R., et al., Prostaglandins 26(2):325-342 (1983). Gottlieb, N., J. Am. Coll. Cardiol. 17 (Suppl. A): A (1991). Graham, L. M., et al., J. Surg. Res. 46:611-615 (1989) . Hardoff, R., J. Am. Coll. Cardiol. 15:1486 (1990). Haudenschild, C., Lab. Invest. 4- 1:407 (1979). Ip, J. H., et al., JACC 15(7):1667-1687 (1990). Jonasson, L., Proc. Natl. Acad. Sci. 85:2303 (1988). Lee, H-Y., et al., Cancer Research 45:5512-5520 (1985). Manderson, J., Arterio. 9:289 (1989). Martel, R., Can J. Physiol. Pharm. 55:48 (1977). Morris, R., Med. Sci. Res. 17:877 (1989). Morris, R. E., Transplantation Rev. 6:39 (1992). Nelson, P. H., et al., U.S. Pat. No. 4,686,234, issued 11 August 1987. Nelson, P. H., et al., U.S. Pat. No. 4,727,069, issued 23 February 1988. Nelson, P. H., et al., U.S. Pat. No. 4,753,935, issued 28 June 1988. Nye, E., Aust. N.Z. J. Med. 20:549 (1990). Ohsugi, et al., Cancer Res. 36:2923-2927 (1976). Okamoto, S., Circulation 82 (Suppl.):428 (1990). Papadimitriou, J., et al., Ultrastruct. Pathol. 343 (1989). Payne, J. E., et al., Aust. N.Z. J. Surg. 61:619-625 (1991). Pepine, C., Circulation 81:1753 (1990). Reidy, M., Lab. Invest. 59:36 (1988). Sahni, R., Circulation 80 (Suppl.):65 (1989). Sakaguchi, K., et al., Cancer Research 35:1643-1648. Sokoloski, J., et al., Cancer Res. 46:2314 (1986). Schwartz, S. M., Human Pathology 18:240 (1987). Staruch, M., FASEB 3:3411 (1989). Sweeney, M. J., et al., Cancer Res. 32:1795-1802 (1972). Sehgal, S. N., et al., U.S. Pat. No. 3,929,992, issued 30 December 1975. Wynalda, M.A., et al., Prostaglandins 26(2):311-324 (1983). Yabe, Y., Circulation 80 (Suppl.):260 (1989).

Partial blockage of the blood vessels leading to the heart is one cause of heart disease. More severe blockage of blood vessels often leads to hypertension, ischemic injury, stroke, or myocardial infarction. Vascular occlusion is typically preceded by vascular stenosis which can be the result of intimal smooth muscle cell hyperplasia. One underlying cause of intimal smooth muscle cell hyperplasia is vascular smooth muscle injury and disruption of the integrity of the endothelial lining. Occlusive coronary atherosclerosis remains the major cause of mortality and morbidity in industrialized countries.

Arterial intimal thickening after injury is the result of the following series of events: 1) initiation of smooth muscle cell (SMC) proliferation within hours of injury, 2) SMC migration to the intima, and 3) further SMC proliferation in the intima with deposition of matrix (Clowes, et al., 1989). Investigations of the pathogenesis of intimal thickening following arterial injury have shown that platelets, endothelial cells, macrophages and smooth muscle cells release paracrine and autocrine growth factors (such as platelet derived growth factor (PDGFa), epidermal growth factor, insulin-like growth factor, and transforming growth factor and cytokines that result in the smooth muscle cell proliferation and migration (Ip, et al.). T-cells and macrophages also migrate into the neotima (Haudenschild; Clowes, 1985; Clowes, 1989; Manderson; Forrester). This cascade of events is not limited to arterial injury, but also occurs following injury to veins and arterioles. The overall disease process can be termed a hyperproliferative vascular disease because of the etiology of the disease process.

Vascular injury causing intimal thickening can be broadly categorized as being either biologically or mechanically induced. One of the most commonly occurring forms of biologically mediated vascular injury leading to stenosis is Atherosclerosis. The migration and proliferation of vascular smooth muscle plays a crucial role in the pathogenesis of atherosclerosis. Atherosclerotic lesions include massive accumulation of lipid laden "foam cells" derived from monocyte/macrophage and smooth muscle cells. Formation of "foam cell" regions is associated with a breech of endothelial integrity and basal lamina destruction. Triggered by these events, restenosis is produced by a rapid and selective proliferation of vascular smooth muscle cells with increased new basal lamina (extracellular matrix) formation and results in eventual blocking of arterial pathways (Davies).

Mechanical injuries leading to intimal thickening result following balloon angioplasty, vascular surgery, transplantation surgery, and other similar invasive processes that disrupt vascular integrity. Although balloon angioplasty can dilate arterial stenosis effectively, restenosis occurs in 30-40% of patients after 6 months (Califf, et al., 1990). Intimal thickening following balloon catheter injury has been studied in animals as a model for arterial restenosis that occurs in human patients following balloon angioplasty. De-endothelialization with an intraarterial catheter, which dilates an artery, injures the innermost layers of medial smooth muscle and may even kill some of the innermost cells (Schwartz; Fingerle; Clowes, 1975, Ferns, 1989, Reidy, 1988).

Injury to the innermost layers of medial smooth muscle is followed by a proliferation of the medial smooth muscle cells, after which many of them migrate into the intima through fenestrae in the internal elastic lamina and proliferate to form a neointimal lesion.

Typically, vascular stenosis can be detected and evaluated using angiographic or sonographic imaging techniques (Evans) and is often treated by percutaneous transluminal coronary angioplasty (balloon catheterization). Within a few months following angioplasty, however, the blood flow is reduced in approximately 30-40 percent of treated patients as a result of restenosis caused by a response to mechanical vascular injury suffered during the angioplasty procedure (Pepine; Hardoff).

In an attempt to prevent restenosis or reduced intimal smooth muscle cell proliferation following angioplasty, numerous pharmaceutical agents have been employed clinically, concurrent with or following angioplasty. Most pharmaceutical agents employed in an attempt to prevent or reduce the extent of restenosis have been unsuccessful. The following list identifies several of the agents for which favorable clinical results have been reported: lovastatin (Sahni; Gellman); thromboxane A2 synthetase inhibitors such as DP-1904 (Yabe); eicosapentanoic acid (Nye); ciprostene (a prostacyclin analog) (Demke; Darius); trapidil (a platelet derived growth factor) (Okamoto); angiotensin converting enzyme inhibitors (Gottlieb); low molecular weight heparin (de Vries); and 5-(3'-pyridinylmethyl)-benzofuran-2-carboxylate (Gorman, et al.; Payne, et al.; Wynalda, et al.; Graham, et al.).

The use of balloon catheter induced arterial injury in a variety of mammals has been developed as a standard model of vascular injury that will lead to intimal thickening and eventual vascular narrowing (Chevru; Fishman; Clowes, 1983; Clowes, 1991). Many compounds have been evaluated in this standard animal model in an attempt to develop better agents for preventing or reducing smooth muscle proliferation and intimal thickening.

This invention provides a method of preventing or treating hyperproliferative vascular disease in a mammal in need thereof by administering an amount of mycophenolic acid effective to inhibit intimal thickening. Administration of the mycophenolic acid can be accomplished by a number of methods including orally, parenterally, intravascularly, intranasally, intrabronchially, transdermally, rectally, or via a vascular stent impregnated with mycophenolic acid.

In addition to mycophenolic acid, a number of derivatives thereof may be useful in the practice of the present invention including morpholinoethylesters of mycophenolic acid and heterocyclic aminoalkyl esters of mycophenolic acid. Further, the form of the mycophenolic acid may also include a pharmaceutically acceptable salt.

As such, mycophenolic acid is useful, alone or in combination with other treatments, in preventing or treating intimal smooth muscle cell hyperplasia, restenosis, and vascular occlusion in a mammal, particularly following either biologically or mechanically mediated vascular injury. Biologically mediated vascular injury includes, but is not limited to, injury attributed to autoimmune disorders; alloimmune related disorders; infectious disorders including endotoxins and herpes viruses, such as cytomegalovirus; metabolic disorders such as atherosclerosis; and vascular injury resulting from hypothermia and irradiation.

Mechanically mediated vascular injury includes, but is not limited to, vascular injury caused by catheterization procedures or vascular scraping procedures such as percutaneous transluminal coronary angioplasty; vascular surgery; transplantational surgery; laser treatment; and other invasive procedures which disrupt the integrity of the vascular intima and endothelium.

The method of the present invention includes the prophylactic prevention of hyperproliferative vascular disease in a susceptible mammal and/or treatment in order to arrest the development and retard the progression of hyperproliferative vascular disease in a susceptible mammal.

Other combinations containing mycophenolic acid that are useful for preventing or treating hyperproliferative vascular disease will be apparent to one skilled in the art. These include, but are not limited to, using mycophenolic acid in combination with other antiproliferative antimetabolites or other drugs useful for the treatment of hyperproliferative diseases.

In addition to MPA, a number of molecules which inhibit inosine monophosphate dehydrogenase (IMP-DH) may be useful in the method of the present invention for suppression of intimal thickening after vascular injury. The following are exemplary of such molecules: Mizoribine (bredinin), Ribovirin, tiazofurin and selenazarfurin.

The present invention also includes a composition for the use in preventing or treating hyperproliferative vascular disease in a mammal which comprises an amount of mycophenolic acid effective to inhibit intimal thickening and a pharmaceutically acceptable carrier. The composition can be used as described above.

FIG. 1 shows a schematic representation of the cross-section of the carotid artery (adapted from Ip, et al.).

FIG. 2 shows a bar graph presenting the data which demonstrate the effects of a number of drugs on 3 H-uridine and 3 H-thymidine incorporation of rat aortic smooth muscle cells.

FIG. 3 shows a bar graph presenting the data for intima percent of rat arteries 14 days after balloon catheter injury with a variety of drug treatments.

PAC I. Mycophenolic Acid and Hyperproliferative Vascular Disease

The effect of mycophenolic acid (MPA) on hyperproliferative vascular disease was evaluated using in vitro and in vivo standard pharmacological test procedures. The in vivo test emulates the hyperproliferative effects observed in mammals undergoing intimal smooth muscle (FIG. 1) proliferation--a common model for the development of restenosis.

Basic fibroblast growth factor (BFGF) has been shown to be a key mitogen for vascular SMCs following injury. bFGF was used to stimulate intimal smooth muscle cell proliferation in vitro (a standard pharmacological test procedure which emulates the intimal smooth muscle cell proliferation observed following vascular injury). The effects of different concentrations of cyclosporine (CsA), FK506, rapamycin (RPM), and mycophenolic acid (MPA) on bFGF's mitogenic effects on SMC were tested in vitro. The drugs were added individually to wells containing confluent cultures of rat aortic SMC made quiescent in defined serum-free media (Example 1). Twenty-four hours later, BFGF (15 μg/ml) was added and the synthesis of both RNA and DNA were measured. The results of this analysis are presented in FIG. 2.

The only drug that was cytotoxic to SMC was CsA; 1000 nM caused both histopathologic abnormalities and a four-fold increase in lactate dehydrogenase levels in supernatant fluids compared to controls. RPM inhibited significantly basal- and bFGF-stimulated SMC DNA synthesis (FIG. 2). Only high concentrations of CsA, FK506 and MPA were inhibitory.

CsA, FK506, MPA, RPM, and rapamycin plus mycophenolic acid (RPM/MPA) were evaluated in an in vivo standard pharmacological test procedure that emulates the vascular injury suffered and restenosis that develops following percutaneous transluminal coronary angioplasty in humans (Chevru; Fishman; Haudenschild; Clowes, 1983; Clowes, 1989; Ferns, 1991).

To examine the possible efficacy of these agents on restenosis, the left carotid arteries of male Sprague Dawley rats were injured by three passes with an inflated 2 Fr balloon catheter on day 0; the right, uninjured carotid arteries were negative controls (Example 2). Rats were treated daily starting after balloon injury (days 0-13) with CsA (6 or 3 mg/kg/d IP, N =6/group), FK506 (4 mg/kg/d PO, N =5), MPA (40 mg/kg/d PO, N =8), RPM (1.5, 3 or 6 mg/kg/d IP, N =5) or combined treatment (1.5 mg/kg/d of RPM plus 40 mg/kg/d of MPA, N =5). One rat in each group served as a balloon-injured, no treatment positive control. All rats were euthanized on day 14 and midportions of both carotid arteries were excised, frozen and sectioned for histopathologic, morphometeric, and immunohistochemical assays. The results of quantitation of intimal and media thickening are presented in Table 1 (Example 2) and FIG. 3.

In the rats treated with 6 mg/kg of CsA, the injured arteries became thrombosed or were completely occluded by the thickened intima. A dose of CsA (3 mg/kg) caused thrombosis of two of the injured vessels and failed to reduce the mean intimal percent (morphometric quantitation of: (intima area/intima area+media area)×100) in the remaining 4 arteries (p=0.801 vs. control) (Table 1; FIG. 3)). Treatment of FK506 did not decrease intimal percent compared to untreated controls (p=0.6847), but treatment with MPA decreased intimal percent by 52% (p=0.0254) (Table 1). A RPM dose of 1.5 mg/kg decreased intimal percent by 45% (p=0.0338) (FIG. 3). This was the maximally effective dose in this study, since higher doses of RPM did not result in further reduction in intimal thickness (p>0.5). The response of the arterial wall to balloon injury was most effectively suppressed by combined treatment with RPM plus MPA; the mean intimal percent for this group was reduced by 97% (p=0.000085). The uninjured right carotid arteries in rats from all groups were histopathologically normal.

The results indicate that in vivo the following drugs, and combinations, are effective in preventing restenosis that develops following percutaneous transluminal coronary angioplasty: RPM/MPA>MPA>RPM. The results demonstrate that MPA alone is useful in preventing or treating hyperproliferative vascular disease. Specifically, mycophenolic acid is useful in preventing or treating intimal smooth muscle cell hyperplasia, restenosis, and vascular occlusion in a mammal, particularly following either biologically or mechanically mediated vascular injury, or under conditions that would predispose a mammal to suffering such a vascular injury.

Although MPA blocks intimal thickening, it does not appear to block DNA or RNA production in BFGF stimulated SMC (see above). Accordingly, the in vitro results in no way predicted that it would be effective in vivo to treat hyperproliferative vascular disease with mycophenolic acid.

Experiments performed in support of the present invention indicate that mycophenolic acid's inhibition of inosine monophosphate dehydrogenase (IMP-DH) is responsible for its effects on suppression of intimal thickening. Immune cells depend solely on the de novo biosynthetic pathway for guanosine synthesis, i.e., there is no active salvage pathway. MPA inhibits DNA synthesis in activated immune cells, such as monocytes, relatively selectively: it prevents guanosine synthesis by blocking inosine monophosphate dehydrogenase activity (Eugui, et al.). The resistance of fibroblasts and SMC to antiproliferative effects of MPA, when these cells are stimulated in vivo by BFGF (FIG. 2), may be explained by MPA having no effect on nucleic acid salvage pathways in SMC.

Accordingly, unlike RPM, it is not likely that MPA inhibits intimal thickening after balloon injury by acting on SMC directly to prevent their proliferation. Experiments performed in support of the present invention suggest that the effects of MPA on monocytes may be indirectly responsible for its efficacy in preventing restenosis. In particular, low levels of guanosine caused by inhibition of IMP-DH may be responsible for the inability of monocytes to synthesize DNA and adhesion molecules. Adhesion molecules are typically glycosylated proteins and the glycosylation of these proteins proceeds through guanosine linked sugars.

In view of the above results, a number of molecules which inhibit IMP-DH, in addition to MPA, may be useful in the method of the present invention for suppression of intimal thickening after vascular injury. Examples of other such molecules, which inhibit IMP-DH, include but are not limited to the following: Mizoribine (bredinin) (Sakaguchi, et al.); and Ribovirin, tiazofurin and selenazarfurin (Lee, et al.).

Neither treatment with RPM nor MPA alone completely prevented intimal thickening after balloon catheter arterial injury in this study. This suggests that there are specific pathways responsible for vascular remodeling after mechanical injury that are resistant to the individual actions of RPM or MPA at the doses used. Accordingly, this result suggests that MPA, alone or in combination with other IMP-DH inhibitors, may be particularly useful in treatment of intimal thickening when combined with other active agents, where the other agents affect the RPM-like pathway.

Mycophenolic acid is an antibiotic substance which is produced by Penicillium brevi-compactum and related species (The Merk Index, Tenth Edition, 1983). A number of forms of mycophenolic acid have been derived which are useful in methods of treating autoimmune disorders, psoriasis and other inflammatory diseases. In the present application, the term "mycophenolic acid" is used to refer to mycophenolic acid itself and to pharmaceutically active derivatives thereof. A number of derivatives of mycophenolic acid are taught in Ohsugi, et al., Sweeney, et al., and U.S. Pat. Nos. 4,686,234, 4,727,069, 4,753,935, 4,786,637, all herein incorporated by reference, as well as the pharmaceutically acceptable salts thereof.

Typically, after introduction of derivatives of mycophenolic acid into the body, the derivatives are converted to mycophenolic acid. Accordingly, the treatment methods of the present invention include the delivery of any such derivatives of mycophenolic acid into a mammalian system, in order to inhibit intimal thickening, which, when the derivative is administered to the mammalian host, results in the therapeutic form of the derivative being mycophenolic acid--regardless of the derivative form by which it was originally introduced into the mammalian host.

In addition to structurally modified variant compounds of mycophenolic acid, a number of pharmaceutically acceptable salts of these compounds are also available. Such pharmaceutically acceptable salts include any salt derived from bases or acids, where the base or acid is inorganic or organic. Inorganic acids include, but are not limited to, hydrochloric acid, sulfuric acid and phosphoric acid. organic acids include, but are not limited to, acetic acid, pyruvic acid, succinic acid, oxalic acid and maleic acid. Inorganic bases include, but are not limited to, sodium, lithium, potassium, calcium, magnesium and ammonium. Organic bases include, but are not limited to, primary, secondary and tertiary amines.

Other variant forms of mycophenolic acid can be tested for use in the method of the present invention as described above, and as described in Examples 1 and 2. Typically, mycophenolic acid is administered to a mammal in need of treatment at a therapeutically effective amount of the compound.

Mycophenolic acid when employed in the prevention or treatment of hyperproliferative vascular disease, can be formulated neat or with a the addition of a pharmaceutical carrier. The pharmaceutical carrier may be solid or liquid. The formulation is then administered in a therapeutically effective dose to a mammal in need thereof.

A solid carrier can include one or more substances. The carrier may also act to provide flavoring agents, lubricants, solubilizers, suspending agents, filters, glidants, compression aids, binders or tablet-disintegrating agents. The carrier can also function as an encapsulating material. In powders, the carrier is typically a finely rendered solid which is in a mixture with the finely rendered active ingredient--mycophenolic acid. In tablet form, a carrier with the necessary compression properties is mixed with the mycophenolic acid in suitable proportions. The mixture is then compacted in the shape and size desired. The powders and tablets preferably contain up to 99% of the active ingredient. A number of suitable solid carriers are available, including, but not limited to, the following: sugars, lactose, dextrin, starch, gelatin, calcium phosphate, magnesium stearate, talc, polyvinylpyrrolidone, low melting waxes, ion exchange resins, cellulose, methyl cellulose, and sodium carboxymethyl cellulose.

Liquid carriers can be used in the preparation of elixirs, solutions, emulsions, syrups, suspensions and pressurized compositions. The mycophenolic acid is dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both, or pharmaceutically accepted oils or fats. The liquid carrier can contain other suitable pharmaceutical additives including, but not limited to, the following: solubilizers, flavoring agents, suspending agents, emulsifiers, buffers, thickening agents, colors, viscosity regulators, preservatives, sweeteners, stabilizers and osmolarity regulators. Suitable examples of liquid carriers for oral and parenteral administration of mycophenolic acid preparations include water (partially containing additives as above, e.g., cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols, e.g., glycols) and their derivatives, and oils (e.g., fractionated coconut oil and arachis oil).

For parenteral administration of mycophenolic acid the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate. Sterile carriers are useful in sterile liquid form compositions for parenteral administration.

Sterile liquid pharmaceutical compositions, solutions or suspensions can be utilized by, for example, intraperitoneal injection, subcutaneous injection, or intravenously. Mycophenolic acid, can be also be administered intravascularly or via a vascular stent impregnated with mycophenolic acid, during balloon catheterization to provide localized effects immediately following injury.

Mycophenolic acid-containing compositions of the present invention can also be administered orally either in liquid or solid composition form.

The liquid carrier for pressurized compositions can be halogenated hydrocarbon or other pharmaceutically acceptable propellent. Such pressurized compositions may also be lipid encapsulated for delivery via inhalation. For administration by intranasal or intrabronchial inhalation or insufflation, mycophenolic acid may be formulated into an aqueous or partially aqueous solution, which can then be utilized in the form of an aerosol.

Mycophenolic acid can be rectally administered in the form of a conventional suppository. Alternatively, the drug may be administered transdermally through the use of a transdermal patch containing the active compound and a carrier that is inert to the active compound, is non-toxic to the skin, and allows delivery of the agent for systemic absorption into the blood stream via the skin. Carriers for transdermal absorption may include pastes, e.g., absorptive powders dispersed in petroleum or hydrophilic petroleum containing the active ingredient with or without a carrier, or a matrix containing the active ingredient; creams and ointments, e.g., viscous liquid or semi-solid emulsions of either the oil-in-water or the water-in-oil type; gels and occlusive devices. Preparations of mycophenolic acid, may be administered topically as a solution, cream, or lotion, by formulation with pharmaceutically acceptable vehicles containing the active compound.

The dosage requirements for treatment with mycophenolic acid vary with the particular compositions employed, the route of administration, the severity of the symptoms presented, the form of mycophenolic acid and the particular subject being treated. Based on the results obtained in the standard pharmacological test procedures, projected daily intravenous dosages of mycophenolic acid, when administered as the sole active compound, would be in the range of approximately 500-4000 mg/d, p.o.

Typically, treatment with mycophenolic acid is initiated with small dosages: less than the optimum dose. The dosage is increased until the optimum effect, under the conditions of treatment, is reached. Precise dosages for oral, parenteral, intravascular, intranasal, intrabronchial, transdermal, or rectal administration are determined by the administering physician based on experience with the individual subject treated.

In general, mycophenolic acid is administered at a concentration that affords effective results without causing any harmful or deleterious side effects. Such a concentration can be achieved by administration of either a single unit dose, or by the administration of the dose divided into convenient subunits at suitable intervals throughout the day.

Mechanical injuries leading to intimal thickening result following balloon angioplasty, vascular surgery, transplantation surgery, and other similar invasive processes that disrupt vascular integrity. Injury to the innermost layers of medial smooth muscle is followed by a proliferation of the medial smooth muscle cells, after which many of them migrate into the intima through fencstrac in the internal elastic lamina and proliferate to form a neointimal lesion.

Partial blockage of the blood vessels leading to the heart is one cause of heart disease. More severe blockage of blood vessels often leads to hypertension, ischemic injury, stroke, or myocardial infarction. Vascular occlusion is typically preceded by vascular stenosis which can be the result of intimal smooth muscle cell hyperplasia. One underlying cause of intimal smooth muscle cell hyperplasia is vascular smooth muscle injury and disruption of the integrity of the endothelial lining.

Typically, vascular stenosis can be detected and evaluated using angiographic or sonographic imaging techniques (Evans) and is often treated by percutaneous transluminal coronary angioplasty (balloon catheterization). Within a few months following angioplasty, however, the blood flow is reduced in approximately 30-40 percent of treated patients as a result of restenosis caused by a response to mechanical vascular injury suffered during the angioplasty procedure (Pepine; Hardoff).

In an attempt to prevent restenosis or reduced intimal smooth muscle cell proliferation following angioplasty, numerous pharmaceutical agents have been employed clinically, concurrent with or following angioplasty. Most pharmaceutical agents employed in an attempt to prevent or reduce the extent of restenosis have been unsuccessful.

Experiments performed in support of the present invention indicate that mycophenolic acid is nontoxic and an effective agent, in vivo, for preventing intimal smooth muscle thickening following arterial injury. The use of mycophenolic acid may provide therapeutic strategies for the control of hyperproliferative vascular disease following heart transplantation. The present invention generally relates to the use of mycophenolic acid for the treatment of hyperproliferative vascular disease in a mammal, including intimal smooth muscle cell hyperplasia, restenosis, and vascular occlusion.

The following examples illustrate, but in no way are intended to limit the present invention.

The immunosuppressive agents were obtained from the following sources: cyclosporine (CsA) (Sandoz, Inc., East Hannover, N.J.), FK506 (Fujisawa, Inc., Usaka, Japan), rapamycin (RPM) (Wyeth-Ayerst, Inc., Princeton, N.J.), and mycophenolic acid (MPA) (Sigma Chemical Co., St. Louis, Mo.).

PAC Treatment of Rat Aortic Smooth Muscle Cell Cultures with MPA

The immunosuppressive agents cyclosporine (CsA), FK506, rapamycin (RPM), and mycophenolic acid (MPA), were compared in vitro for antiproliferative effects against vascular smooth muscle cells. Rat aortic smooth muscle cells were grown in culture essentially as described by Geisterfer, et al. Briefly, rat smooth muscle cells were maintained in a 1:1 mixture of defined Eagle's medium (DEM) (Gibco BRL, Gaithersburg Md.) and Ham's F12 medium (Gibco BRL) with 10% fetal calf serum, penicillin (100 U/mL), streptomycin (100 mg/ml) and 25 ML Hepes at pH 7.4. Cells were incubated at 37°C in a humidified atmosphere of 5% CO2 with media changes every 2-3 days. Each compound tested was diluted with an appropriate solvent to obtain a 1 mm stock solution.

Ethanol was used as the solvent for rapamycin, methanol for FK506, dimethylsulfoxide (DMSO) for mycophenolic acid and 20% "TWEEN 80" (Sigma, St. Louis Mo.) in ethanol was the vehicle for cyclosporin A. Test concentrations of drug were obtained by diluting appropriate concentrations of stock solution with serum free media.

Multi-well plate cultures of smooth muscle cells were maintained in defined serum free media containing 1:1 DEM and Ham's F12 medium, insulin (5×10-7 M), transferrin (5 μg/mL), and ascorbate (0.2 MM) for 72 hours before the addition of test compounds. After 72 hours, dilutions of the test compounds were added to the smooth muscle cell culture and media mixtures.

After 24 hours BFGF (basic fibroblast growth factor (Gibco BRL)) was added at a concentration of approximately 15 μg/ml.

For the measurement of DNA or RNA synthesis, 3 H-thymidine or 3 H-uridine, respectively, was added at 12 hours after the growth factor was added, and the cells were harvested at 18 hours. The amount of incorporated radioactive label was measured using a scintillation counter.

The data for the effects of CsA, FK506, RPM, and MPA on 3 H-thymidine and 3 H-uridine incorporation in rat aortic smooth muscle cells (SMC) are shown in FIG. 2. In the figure: each bar represents the mean dissociations per minute of four cultures; BFGF indicates the addition of 15 μg/ml of basic FGF; and for CsA, FK506, RPM, and MPA, the concentrations of the addition of each drug are given at the bottom of each panel of the figure (1000 nM, 100 nM, 10 nM or 1 nM).

The only drug that was cytotoxic to SMC was CsA; 1000 nM caused both histopathologic abnormalities and a four-fold increase in lactate dehydrogenase levels in supernatant fluids compared to controls. RPM inhibited significantly basal- and bFGF-stimulated SMC DNA synthesis (FIG. 2). Only high concentrations of the other drugs were inhibitory.

PAC Balloon Catheter Injury Assays for Intimal Thickening

Intimal smooth muscle proliferation was produced by balloon catheter injury to the left carotid artery of groups of 6, male Sprague-Dawley rats. Endothelial denudation and vascular injury were achieved in the left carotid arteries of male Sprague-Dawley rats. A balloon catheter (2 French Fogarty, Edwards Laboratories, Santa Anna, Calif.) was passed through the external carotid artery into the aorta. The balloon was then inflated with an amount of water sufficient to distend the common carotid artery and was then pulled back to the external carotid artery. The inflation and pull back were repeated three times. This procedure leads to complete denudation of the endothelium throughout the common carotid artery, and also some injury typically occurs to the medial smooth muscle cells.

During a 14-day post-operative period (day 0 to day 13), these rats were divided into 6 groups and treated daily with rapamycin (1.5 mg/kg/d, N=5/group; i.p.), FK506 (4 mg/kg/d, N=5/group; p.o.), MPA (40 mg/kg/d, N=8/group; p.o.), cyclosporin A (3 mg/kg/d, N=6/group; i.p.), or rapamycin plus mycophenolic acid (1.5 mg/kg/d of RPM plus 40 mg/kg/d of MPA, N=5/group: i.p., and p.o., respectively).

An injured group not treated with any drug was used as an injured control to establish the amount of intimal groups in the absence of treatment. The right carotid was used as an uninjured control in all groups.

After the 14 day period, the rats were sacrificed, the carotids removed. The mean areas of the intima, media and total blood vessel wall were measured by morphometry. The injured artery was also examined using histopathologic assays. Results are presented as an intima percent, expressed as follows: ##EQU1##

Table 1 shows the data obtained in the above experiment.

TABLE 1
__________________________________________________________________________
Percent Intime
Control RPM FK506 MPA CsA MPA-RPM
__________________________________________________________________________
60 19 33 0 60.7 0
65 50 26 16 60.7 8
65 34 55 20 47.8 0
28 9 58 51 34.8 0
54 21 52 32 0
33 0
35 45.7
mean 48.57143
26.6 44.8 23.52857
51 1.6
sd 16.07127
15.82087
14.34225
20.38927
12.39435
3.577709
p VALUE, T-Test for two
0.0338
0.6847
0.0254
0.801 0.000085
means, vs CONTROL
__________________________________________________________________________

The data presented in Table 1 are also represented in FIG. 3. In the figure, the intima percent of 5 to 8 rat carotid arteries 14 days after balloon catheter injury are shown. All drugs were administered starting the day of surgery and for 13 additional days. The bars in FIG. 3 represent the following: control, untreated and uninjured rats; CsA, cyclosporin at 3 mg/kg/IP; FK506, at 4 mg/kg/PO; RPM, rapamycin at 1.5 mg/kg/IP; MPA, mycophenolic acid at 40 mg/kg/PO; and RPM +MPA at 1.5 mg/kg/IP and 40 mg/kg/PO, respectively. The asterisk shows a significant value at p less than or equal to 0.05 using the Student Tetest (two-tailed) for two means.

In vivo, combined RPM +MPA treatment resulted in an approximately 97% decrease in mean percentage of intimal thickening, relative to the untreated control group. Separate RPM and MPA treatment resulted in approximately 45% and 52% decrease in mean percentage of intimal thickening, respectively, relative to the untreated control group. CsA and FK506 had little or no effect on smooth muscle intimal thickening.

While the invention has been described with reference to specific methods and embodiments, it will be appreciated that various modifications and changes may be made without departing from the invention.

Morris, Randall E., Gregory, Clare R.

Patent Priority Assignee Title
10272073, Jan 16 2001 Vascular Therapies, Inc. Apparatus and methods for preventing or treating failure of hemodialysis vascular access and other vascular grafts
10772995, Sep 28 2004 ATRIUM MEDICAL CORPORATION Cross-linked fatty acid-based biomaterials
10792312, Sep 28 2004 ATRIUM MEDICAL CORPORATION Barrier layer
10814043, Sep 28 2004 ATRIUM MEDICAL CORPORATION Cross-linked fatty acid-based biomaterials
10864304, Aug 11 2009 ATRIUM MEDICAL CORPORATION Anti-infective antimicrobial-containing biomaterials
10869902, Sep 28 2004 ATRIUM MEDICAL CORPORATION Cured gel and method of making
10888617, Jun 13 2012 ATRIUM MEDICAL CORPORATION Cured oil-hydrogel biomaterial compositions for controlled drug delivery
11083823, Sep 28 2005 ATRIUM MEDICAL CORPORATION Tissue-separating fatty acid adhesion barrier
11097035, Jul 16 2010 ATRIUM MEDICAL CORPORATION Compositions and methods for altering the rate of hydrolysis of cured oil-based materials
11166929, Mar 10 2009 ATRIUM MEDICAL CORPORATION Fatty-acid based particles
11766506, Mar 04 2016 MiRus LLC Stent device for spinal fusion
11779685, Jun 24 2014 MiRus LLC Metal alloys for medical devices
11793912, Sep 28 2004 ATRIUM MEDICAL CORPORATION Cross-linked fatty acid-based biomaterials
5407955, Feb 18 1994 Eli Lilly and Company Methods for lowering serum cholesterol and inhibiting smooth muscle cell proliferation, restenosis, endometriosis, and uterine fibroid disease
5453442, Feb 18 1994 Eli Lilly and Company Methods for lowering serum cholesterol and inhibiting smooth muscle cell proliferation, restenosis, endometriosis, and uterine fibroid disease
5462929, Aug 06 1991 Asahi Kasei Kogyo Kabushiki Kaisha Treatment of psoriasis by administration of 4-carbamoyl-1-β-D-ribofuranosylimidszolium-5-oleate
5482958, Oct 28 1994 Eli Lilly and Company Method for treating endometriosis
5545569, May 12 1994 UAB Research Foundation, The; Boston Scientific Scimed, Inc Prevention and treatment of pathologies associated with abnormally proliferative smooth muscle cells
5595722, Jan 28 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Method for identifying an agent which increases TGF-beta levels
5599844, May 13 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Prevention and treatment of pathologies associated with abnormally proliferative smooth muscle cells
5646160, Jan 09 1992 Wyeth Method of treating hyperproliferative vascular disease with rapamycin and mycophenolic acid
5665591, Dec 06 1994 Trustees of Boston University Regulation of smooth muscle cell proliferation
5733925, Jan 28 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
5756673, Dec 06 1994 Trustees of Boston University Regulation of smooth muscle cell proliferation
5770609, Jan 28 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Prevention and treatment of cardiovascular pathologies
5773479, May 13 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Prevention and treatment of pathologies associated with abnormally proliferative smooth muscle cells
5811447, Jan 28 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
5847007, May 13 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Prevention and treatment of pathologies associated with abnormally proliferative smooth muscle cells
5849730, Aug 31 1994 Pfizer Inc. Process for preparing demethylrapamycins
5945456, May 13 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Prevention and treatment of pathologies associated with abnormally proliferative smooth muscle cells
5952364, Feb 18 1994 Eli Lilly and Company Methods for inhibiting smooth muscle cell proliferation
5962497, Feb 18 1994 Eli Lilly and Company Methods for lowering serum cholesterol and inhibiting smooth muscle cell proliferation, restenosis, endometriosis, and uterine fibroid disease
5977157, Feb 18 1994 Eli Lilly and Company Methods for inhibiting endometriosis
5981568, May 13 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
6011057, Feb 18 1994 Eli Lilly and Company Methods for inhibiting uterine fibroid disease
6025381, Feb 18 1994 Eli Lilly and Company Methods for lowering serum cholesterol and inhibiting smooth muscle cell proliferation, restenosis, endometriosis, and uterine fibroid disease
6033357, Mar 28 1997 VOLCANO THERAPEUTICS, INC Intravascular radiation delivery device
6074659, Sep 27 1991 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
6077213, Mar 28 1997 VOLCANO THERAPEUTICS, INC Intravascular radiation delivery device
6166090, May 13 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Prevention and treatment of pathologies associated with abnormally proliferative smooth muscle cells
6171609, Feb 15 1995 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
6197789, Jun 07 1995 UAB Research Foundation, The; Boston Scientific Scimed, Inc Prevention and treatment of cardiovascular pathologies with tamoxifen analogues
6251920, Jan 28 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Prevention and treatment of cardiovascular pathologies
6262079, Jan 28 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Prevention and treatment of cardiovascular pathologies
6268390, Sep 27 1991 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
6306421, Jan 28 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
6309339, Mar 28 1997 VOLCANO THERAPEUTICS, INC Intravascular radiation delivery device
6358989, May 13 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
6362160, Jun 30 1993 GLIAMED, INC Immunophilin-binding agents prevent glutamate neurotoxicity associated with vascular stroke and neurodegenerative diseases
6387035, Mar 28 1997 Volcano Corporation Catheter with swivel tip
6395494, May 13 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Method to determine TGF-β
6471980, Dec 22 2000 Avantec Vascular Corporation Intravascular delivery of mycophenolic acid
6491938, May 13 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
6515009, Sep 27 1991 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
6569441, Jan 28 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
6585764, Apr 18 1997 CARDINAL HEALTH SWITZERLAND 515 GMBH Stent with therapeutically active dosage of rapamycin coated thereon
6599928, Sep 25 1992 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
6641611, Nov 26 2001 Vascular Concepts Holdings Limited Therapeutic coating for an intravascular implant
6663881, Jan 28 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
6720350, Mar 31 1997 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
6726923, Jan 16 2001 VASCULAR THERAPIES, INC Apparatus and methods for preventing or treating failure of hemodialysis vascular access and other vascular grafts
6776796, May 12 2000 Wyeth Antiinflammatory drug and delivery device
6808536, Apr 18 1997 CARDINAL HEALTH SWITZERLAND 515 GMBH Stent containing rapamycin or its analogs using a modified stent
6858221, Dec 22 2000 Avantec Vascular Corporation Intravascular delivery of mycophenolic acid
6939375, Dec 22 2000 Avantec Vascular Corporation Apparatus and methods for controlled substance delivery from implanted prostheses
7018405, Dec 22 2000 Avantec Vascular Corporation Intravascular delivery of methylprednisolone
7056550, Sep 29 2000 Ethicon, Inc Medical devices, drug coatings and methods for maintaining the drug coatings thereon
7077859, Dec 22 2000 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
7083642, Dec 22 2000 Avantec Vascular Corporation Delivery of therapeutic capable agents
7094550, May 13 1993 UAB Research Foundation, The; Boston Scientific Scimed, Inc Method to determine TGF-beta
7108701, Sep 28 2001 Wyeth Drug releasing anastomosis devices and methods for treating anastomotic sites
7195640, Sep 25 2001 CARDINAL HEALTH SWITZERLAND 515 GMBH Coated medical devices for the treatment of vulnerable plaque
7211108, Jan 23 2004 Icon Interventional Systems, Inc Vascular grafts with amphiphilic block copolymer coatings
7217286, Apr 18 1997 CARDINAL HEALTH SWITZERLAND 515 GMBH Local delivery of rapamycin for treatment of proliferative sequelae associated with PTCA procedures, including delivery using a modified stent
7223286, Apr 18 1997 CARDINAL HEALTH SWITZERLAND 515 GMBH Local delivery of rapamycin for treatment of proliferative sequelae associated with PTCA procedures, including delivery using a modified stent
7229473, Apr 18 1997 CARDINAL HEALTH SWITZERLAND 515 GMBH Local delivery of rapamycin for treatment of proliferative sequelae associated with PTCA procedures, including delivery using a modified stent
7261735, May 07 2001 Wyeth Local drug delivery devices and methods for maintaining the drug coatings thereon
7300662, May 12 2000 Wyeth Drug/drug delivery systems for the prevention and treatment of vascular disease
7445628, Jun 07 1995 Cook Medical Technologies LLC Method of treating a patient with a coated implantable medical device
7488444, Mar 03 2005 MiRus LLC Metal alloys for medical devices
7625410, May 02 2001 Boston Scientific Scimed, Inc. Stent device and method
7666222, Apr 18 1997 Cordis Corporation Methods and devices for delivering therapeutic agents to target vessels
7709020, Feb 01 2002 MEDINOL LTD Implantable device comprising phosphorus-containing macrolides
7780647, Apr 16 2003 Cook Medical Technologies LLC Medical device with therapeutic agents
7807191, Jan 16 2001 VASCULAR THERAPIES, INC Apparatus and methods for preventing or treating failure of hemodialysis vascular access and other vascular grafts
7819912, Mar 30 1998 Innovational Holdings LLC Expandable medical device with beneficial agent delivery mechanism
7842083, Aug 20 2001 Innovational Holdings LLC Expandable medical device with improved spatial distribution
7850727, Aug 20 2001 Innovational Holdings LLC Expandable medical device for delivery of beneficial agent
7850728, Oct 16 2000 Innovational Holdings LLC Expandable medical device for delivery of beneficial agent
7896912, Mar 30 1998 Innovational Holdings LLC Expandable medical device with S-shaped bridging elements
7896914, Feb 20 1997 Cook Medical Technologies LLC Coated implantable medical device
7901453, May 16 1996 Cook Medical Technologies LLC Coated implantable medical device
7967855, Jul 27 1998 MiRus LLC Coated medical device
8016881, Jul 31 2002 MiRus LLC Sutures and surgical staples for anastamoses, wound closures, and surgical closures
8052734, Mar 30 1998 Innovational Holdings, LLC Expandable medical device with beneficial agent delivery mechanism
8052735, Mar 30 1998 Innovational Holdings, LLC Expandable medical device with ductile hinges
8067022, Sep 25 1992 UAB Research Foundation, The; Boston Scientific Scimed, Inc Therapeutic inhibitor of vascular smooth muscle cells
8070796, Jul 27 1998 MiRus LLC Thrombosis inhibiting graft
8097642, Feb 15 1995 Boston Scientific Scimed, Inc. Therapeutic inhibitor of vascular smooth muscle cells
8100963, Oct 26 2001 MiRus LLC Biodegradable device
8114152, Apr 15 1998 MiRus LLC Stent coating
8158670, Feb 15 1996 Boston Scientific Scimed, Inc. Therapeutic inhibitor of vascular smooth muscle cells
8182527, May 07 2001 Wyeth Heparin barrier coating for controlled drug release
8187321, Aug 20 2001 Innovational Holdings LLC Expandable medical device for delivery of beneficial agent
8236048, May 12 2000 Wyeth Drug/drug delivery systems for the prevention and treatment of vascular disease
8257433, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
8303609, Sep 29 2000 Wyeth Coated medical devices
8439968, Apr 17 2009 Innovational Holdings, LLC Expandable medical device for delivery of beneficial agent
8460693, Nov 08 2001 ATRIUM MEDICAL CORPORATION Intraluminal device with a coating containing synthetic fish oil and a therapeutic agent
8469943, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
8496967, Nov 14 2006 ARIAD Pharmaceuticals, Inc. Oral formulations
8556962, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
8758428, May 16 1996 Cook Medical Technologies LLC Coated implantable medical device
8808618, Mar 03 2005 MiRus LLC Process for forming an improved metal alloy stent
8858982, Jan 16 2001 VASCULAR THERAPIES, INC Apparatus and methods for preventing or treating failure of hemodialysis vascular access and other vascular grafts
8945206, May 16 1996 Cook Medical Technologies LLC Methods for making implantable medical devices
8957071, Feb 08 2005 Aspreva Pharmaceuticals Corp. Treatment of vascular, autoimmune and inflammatory diseases using low dosages of IMPDH inhibitors
9024014, Feb 01 2002 MEDINOL LTD Phosphorus-containing compounds and uses thereof
9034245, Dec 10 2010 MiRus LLC Method for forming a tubular medical device
9107899, Mar 03 2005 MiRus LLC Metal alloys for medical devices
Patent Priority Assignee Title
3705946,
3880995,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 10 1992The Board of Trustees of the Leland Stanford Junior University(assignment on the face of the patent)
Aug 29 1992GREGORY, CLARE R LELAND STANFORD JUNIOR UNIVERSITY, THEASSIGNMENT OF ASSIGNORS INTEREST 0064110813 pdf
Oct 09 1992MORRIS, RANDALL E LELAND STANFORD JUNIOR UNIVERSITY, THEASSIGNMENT OF ASSIGNORS INTEREST 0064100020 pdf
Apr 17 1995MORRIS, RANDALL E BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0074960475 pdf
Apr 22 1995GREGORY, CLARE R BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0074960475 pdf
Date Maintenance Fee Events
Sep 09 1997REM: Maintenance Fee Reminder Mailed.
Feb 01 1998EXP: Patent Expired for Failure to Pay Maintenance Fees.
Jan 29 2002PMFP: Petition Related to Maintenance Fees Filed.
Aug 05 2002PMFD: Petition Related to Maintenance Fees Denied/Dismissed.
Oct 02 2002ASPN: Payor Number Assigned.


Date Maintenance Schedule
Feb 01 19974 years fee payment window open
Aug 01 19976 months grace period start (w surcharge)
Feb 01 1998patent expiry (for year 4)
Feb 01 20002 years to revive unintentionally abandoned end. (for year 4)
Feb 01 20018 years fee payment window open
Aug 01 20016 months grace period start (w surcharge)
Feb 01 2002patent expiry (for year 8)
Feb 01 20042 years to revive unintentionally abandoned end. (for year 8)
Feb 01 200512 years fee payment window open
Aug 01 20056 months grace period start (w surcharge)
Feb 01 2006patent expiry (for year 12)
Feb 01 20082 years to revive unintentionally abandoned end. (for year 12)