The transit time of acoustic waves between a generator and a receiver positioned across a fluid chamber is determined by generating acoustic waves using a self-purging pneumatic sound generator, a transducer adjacent the outlet of the sound generator, and a receiving transducer positioned away from the sound generator outlet so that the acoustic waves received by the receiving transducer pass through a portion of the fluid. The electrical signals generated by the transmitting transducer and the receiving transducer are processed to obtain the impulse response of these electrical signals, and the point of maximum value is determined. This point of maximum value corresponds to the arrival time of the acoustic waves at the receiving location. The transit time determination may be used to calculate the fluid temperature or other parameters. The pneumatic sound generator is driven by a compressed air source so that the generator is automatically purged of any contaminants in the process of generating the random acoustic noise.

Patent
   5349859
Priority
Nov 15 1991
Filed
Nov 15 1991
Issued
Sep 27 1994
Expiry
Nov 15 2011
Assg.orig
Entity
Small
289
6
all paid
1. A method of measuring a transit time of acoustic waves in a fluid in a noisy environment, said method comprising the steps of:
(a) transmitting randomly generated acoustic waves through the fluid from a transmitting location to a receiving location;
(b) coupling electrical signals corresponding to said acoustic waves transmitted from said transmitting location to a computing device;
(c) coupling electrical signals corresponding to the acoustic waves arriving at the receiving location to the computing device; and
(d) determining the transit time of the acoustic waves between the transmitting location and the receiving location by
(1) obtaining the impulse response from the electrical signals corresponding to said transmitted waves and from the electrical signals corresponding to the received waves, whereby said impulse response is defined by the relationship:
h(τ)=F-1 [Sxy /Sxx ]
whereby
x(t)=the electrical signals corresponding to said transmitted waves
y(t)=the electrical signals corresponding to said received waves
X(f)ΔF[x(t)]
Y(f)ΔF[y(t)]
Sxy ΔX*Y
Sxx ΔX*X
and (2) determining the point of maximum value of the impulse response, the transit time of the acoustic waves being represented by the value τ at which the point of maximum value of the impulse response is found.
10. A system for measuring a transit time of acoustic waves in a fluid in a noisy environment, said system comprising:
transmitter transducer means for generating random acoustic waves for transmission through the fluid from a transmitting location to a receiving location;
means for producing electrical signals corresponding to the acoustic waves generated by said transmitter transducer means;
receiver transducer means for sensing the acoustic waves arriving at the receiving location and for producing electrical signals corresponding to the received acoustic waves; and
computing means for receiving the electrical signals from said producing means and said receiver means and for determining the transit time of the acoustic waves between the transmitting location and the receiving location by
(1) obtaining the impulse response of the electrical signals corresponding to said transmitted waves and from the electrical signals corresponding to the received waves, whereby said impulse response is defined by the relationship:
h(τ)=F-1 [Sxy /Sxx ]
whereby
x(t)=the electrical signals corresponding to said transmitted waves
y(t)=the electrical signals corresponding to said received waves
X(f)ΔF[x(t)]
Y(f)ΔF[y(t)]
Sxy ΔX*Y
Sxx ΔX*X
and (2) determining the point of maximum value of the impulse response, transit time of the acoustic waves being represented by the value τ at which the point of maximum value of the impulse response is found.
8. A method of determining the temperature of a fluid in a noisy environment, said method comprising the steps of:
(a) transmitting successive bursts of random acoustic waves through the fluid from a transmitting location to a receiving location, said waves having a spectrum of interest and a plurality of frequencies;
(b) coupling electrical signals corresponding to said acoustic waves transmitted from said transmitting location to a computing device;
(c) coupling electrical signals corresponding to the acoustic waves arriving at the receiving location to the computing device; and
(d) determining the transmit time of the acoustic waves between the transmitting location and the receiving location by
(1) obtaining the impulse response from the electrical signals corresponding to said transmitted waves and from the electrical signals corresponding to the received waves, whereby said impulse response is defined by the relationship:
h(τ)=F-1 [Sxy /Sxx ]
whereby
x(t)=the electrical signals corresponding to said transmitted waves
y(t)=the electrical signals corresponding to said received waves
X(f)ΔF[x(t)]
Y(f)ΔF[y(t)]
Sxy ΔX*Y
Sxx ΔX*X
and (2) determining the point of maximum value of the impulse response, to transit time of the acoustic waves being represented by the value τ at which the point of maximum value of the impulse response is found and
(e) computing the temperature of the fluid from the transmit time determined in step (d).
17. A system for determining the temperature of a fluid in a noisy environment, said system comprising:
transmitter transducer means for generating successive bursts of random acoustic waves for transmission through the fluid from a transmitting location to a receiving location, said bursts having a spectrum of interest and plurality of frequencies;
means for producing electrical signals corresponding to said acoustic waves generated by said transmitter transducer means;
receiver transducer means for sensing the acoustic waves arriving at the receiving location and for producing electrical signals corresponding to the received acoustic waves; and
computing means for receiving the electrical signals from said producing means and said receiver means and for determining the transit time of the acoustic waves between the transmitting location and the receiving location by
(1) obtaining the impulse response of the electrical signals corresponding to said transmitted waves and of the electrical signals corresponding to the received waves, whereby said impulse response is defined by the relationship:
h(τ)=F-1 [Sxy /Sxx ]
whereby
x(t)=the electrical signals corresponding to said transmitted waves
y(t)=the electrical signals corresponding to said received waves
X(f)ΔF[x(t)]
Y(f)ΔF[y(t)]
Sxy ΔX*Y
Sxx ΔX*X
and (2) determining the point of maximum value of the impulse response, the transit time of the acoustic waves being represented by the value τ at which the point of maximum value of the impulse response is found;
said computing means further including means for determining the temperature of the fluid medium form the transit time.
2. The method of claim 1 further including the step of computing the temperature of the fluid from the transit time determined in step (d).
3. The method of claim 1 wherein said step (a) of transmitting includes transmitting continuous acoustic waves.
4. The method of claim 1 wherein said step (a) of transmitting includes transmitting successive bursts of random acoustic waves.
5. The method of claim 1 wherein said step (a) of transmitting includes transmitting random acoustic waves having a spectrum of interest and a plurality of frequencies.
6. The method of claim 5 wherein the spectrum of interest is a band of frequencies between about 100 Hz and 3,000 Hz.
7. The method of claim 1 further including the step of computing the velocity of the acoustic waves in the fluid from the transit time determined in step (d).
9. The method of claim 8 wherein the spectrum of interest is a band of frequencies between about 100 Hz and about 3,000 Hz.
11. The system of claim 10 wherein said computing means further includes means for determining the temperature of the fluid medium from the transit time.
12. The system of claim 10 wherein said transmitter transducer means includes means for generating continuous random acoustic waves.
13. The system of claim 10 wherein said transmitter transducer means includes means for generating successive bursts of random acoustic waves.
14. The system of claim 10 wherein said transmitter transducer means includes means for generating acoustic waves having a spectrum of interest and a plurality of frequencies.
15. The system of claim 14 wherein the spectrum of interest is a band of frequencies between about 100 Hz and about 3,000 Hz.
16. The system of claim 10 wherein said computing means further includes means for determining the velocity of the acoustic waves in the fluid medium from the transit time.
18. The system of claim 17 wherein the spectrum of interest is in the band of frequencies between about 100 Hz and about 3,000 Hz.
19. The system of 15 wherein said transmitter transducing means includes a pneumatic driver unit.

This invention relates to the measurement of acoustic wave travel time in a fluid medium, with particular application to acoustic pyrometry.

Techniques are known for measuring the transit time of acoustic waves from a transmitting location to a receiving location through a fluid medium. Systems using both pulsed waves and continuous waves have been proposed and used in the past for various purposes. In pulsed systems, the transit time is typically measured by noting the time difference between the generation of an acoustic pulse at the transmitting location and the receipt of the same acoustic pulse at the receiving location. In continuous wave systems, the phase difference between the continuous wave at the transmitting location and at the receiving location provides an indirect measurement of the transit time. The transit time thus obtained is typically used to compute the velocity of the acoustic waves in the medium. In acoustic pyrometry, the computed velocity is used to compute the temperature of the fluid using a well-known relationship between acoustic velocity and temperature. For a fuller discussion of the pulsed technique see M. W. Dadd, "Acoustic Thermometry In Gases Using Pulse Techniques", High Temperature Technology, Vol. 1, No. 6, November, 1983. For a fuller discussion of the continuous wave technique see U.S. Pat. No. 4,215,582.

While both the pulsed and continuous wave techniques have been found to be useful in many applications, each is demonstrably unsuitable in extremely noisy environments in which erroneous transit time determinations occur due to the masking presence of substantial noise signals and multiple transmission paths for the acoustic wave. One example of such a noisy environment is in the field of industrial boilers, such as modern utility boilers, chemical recovery boilers and refuse boilers. Added to the noise problem is the compounding adverse effect of attenuation of acoustic waves due to scattering of the waves by temperature and velocity gradients (the latter in a moving fluid), and the masking effect of acoustic waves arriving at the receiving location via reflected boundary paths. While many efforts have been made to improve the reliability of acoustic transit time measurement in noisy environments, such efforts have not met with success to date.

The invention comprises a method and system for measuring the transit time of acoustic waves between a transmitting location and a receiving location which is highly reliable in operation, even in the extremely noisy and multi-path environments encountered in industrial applications.

From a method standpoint, the invention comprises the steps of transmitting acoustic waves through a fluid medium from a transmitting location to a receiving location, generating electrical counterpart signals corresponding to the acoustic waves at the transmitting location and at the receiving location, and determining the transit time of the acoustic waves between the transmitting location and the receiving location by obtaining the impulse response of the electrical signals and determining the point of maximum value corresponding to the arrival time of the acoustic waves at the receiving location. The acoustic waves transmitted through the fluid medium are random continuous or successive bursts each having a plurality of frequencies. For acoustic pyrometry applications, the spectrum of interest is in the band of frequencies between about 100 Hz and about 3,000 Hz.

The transit time value can be used to determine a number of parameters, such as the acoustic wave velocity in the fluid medium, the velocity of the medium itself (for a moving medium), and the temperature of the fluid medium.

From a system standpoint, the invention comprises a transmitter transducer for generating random acoustic waves for transmission through the fluid medium from a transmitting location to a receiving location, means for producing electrical signals corresponding to the acoustic waves generated by the transducer, a receiver transducer for sensing the acoustic waves arriving at the receiving location and for producing electrical signals corresponding to the received acoustic waves, and computing means for receiving the electrical signals from the producing means and the receiver transducer and for determining the transit time of the acoustic waves between the transmitting location and the receiving location by obtaining the impulse response of the electrical signals and determining the point of maximum value corresponding to the arrival time of the acoustic waves at the receiving location. The transmitting transducer is preferably a pneumatic generator powered by a suitable compressed air source and operated in a time sequential fashion in order to generate continuous or successive bursts of random acoustic waves.

The invention has been found to provide particularly improved results in extremely noisy environments, such as those found in industrial boiler applications, while at the same time providing the known advantages attendant with non-invasive acoustic pyrometric techniques. Also, the pneumatic embodiment of the transmitting transducer provides automatic purging of contaminants in the sound generating path without adversely affecting the ability of the system to obtain the transmit time.

For a fuller understanding of the nature and advantages of the invention, reference should be had to the ensuing detailed description, taken in conjunction with the accompanying drawings.

FIG. 1 is a schematic diagram illustrating the preferred embodiment of the invention applied to acoustic pyrometry;

FIG. 2 is a top plan view of the sound transmitter unit;

FIG. 3 is a side elevational view of the sound transmitter unit;

FIG. 4 is a rear elevational view of the sound transmitter unit with the cover opened;

FIG. 5 is a wiring diagram of the sound transmitter unit; and

FIG. 6 is a plot of the impulse response versus time for the system of FIG. 1 applied to a boiler.

Turning now to the drawings, FIGS. 1-5 illustrate a preferred embodiment of a system incorporating the invention. As seen in FIG. 1, a pair of boundary walls 11, 12 partially define a volume 14 in which a fluid (not illustrated) of interest is located. In the specific example described below, the fluid is a gas in an industrial boiler, and the parameter of interest is temperature of this gas in the volume 14. In order to determine this temperature, the transit time of acoustic waves between the boundary walls 11, 12 must be measured according to the invention.

For this purpose, a pneumatic sound generator 21 is mounted externally of wall 11 in any convenient fashion. The pneumatic sound generator 21 is a unit having two valves schematically indicated by elements 22, 23 and is designed to produce random noise in response to the application of compressed air to an inlet 24 from a suitable source shown). The compressed air is released via valve 23 which comprises an electrically operated solenoid valve (shown in FIG. 4) and which opens and closes in response to control signals supplied by a controller/processor 25. Pneumatic source 21 is coupled to the interior volume 14 via a pipe waveguide 27 having a flared end 28 coupled to a stand-off pipe coupler 29 received in a suitable aperture in wall 11. Check valve 22 (FIG. 4) prevents high pressure in volume 14 from entering the compressed air line and contaminating the compressed air conduit (or otherwise affecting adversely the sound generator 21).

The entire system is designed to produce random noise in the frequency band of interest for the acoustic pyrometry application for two major reasons: firstly, the frequency spectrum of paramount interest to acoustic pyrometry is the band of frequencies between 100 Hz and 3,000 Hz; and secondly, it is desired to have as many frequencies as possible generated in the spectrum of interest. Thus, the generator 21 causes a spectrum to be generated with acoustic energy distributed throughout the frequency band of interest.

Adjacent the flared end 28 of the pneumatic sound generator 21 is a transducer 30, which is preferably a model 941 piezoelectric transducer available from Scientific Engineering Instruments, Inc. of Sparks, Nev. and which generates electrical signals corresponding to the actual acoustic waves generated by pneumatic generator 21 and injected into the volume 14 via waveguide 27 and coupler 29. These electrical signals are coupled via a cable 31, a preamplifier 32 and cable 26 to the controller/processor 25 and represent a function x(t) required for the signal processing described below. Preamplifier 32 is a dual gain amplifier having a low gain operation and a high gain operation. The low gain operation is used for measuring the high intensity transmitting signal and the high gain operation is used for measuring a received signal.

Adjacent boundary wall 12 is a second transducer 34 which is substantially identical to transducer 30 and which generates electrical signals corresponding to the acoustic waves which travel across volume 14 and reach the region of boundary wall 12 adjacent transducer 34. The output of transducer 34 is coupled via a cable 35 and a second preamplifier 36 as a second function y(t) to controller/processor 25. Preamplifier 36 is essentially identical to preamplifier 32 in construction and function, and is used as a high gain preamplifier when used as a receiver amplifier for detecting acoustic; waves generated within the volume 14 by sound generator 21. Similarly, preamplifier 36 is used as a low gain amplifier when sound generator 41 is used as the acoustic wave generator for transmitting waves in the opposite direction towards boundary wall 11.

The system shown in FIG. 1 is designed to be symmetric about the vertical plane through the middle of volume 14. Consequently, a second pneumatic source 41, check valve 42, electrically operated air valve 44, pipe waveguide 47 and flared end 48 are provided as shown. It should be understood that such symmetry is not required for all applications, but only those applications in which it is desired to present the capability of generating acoustic waves alternately in opposite directions across volume 14.

The acoustic waves generated by source 21 or generator 41 for the high noise acoustic pyrometry application comprise a constant flow or a series of successive bursts of random acoustic waves in the frequency band of interest.

The electrical counterparts to the generated acoustic waves developed by transducer 30 and the electrical counterparts to the received acoustic waves generated by transducer 34 are coupled as functions x(t) and y(t), respectively to controller/processor 25 for further processing. This processing proceeds as follows.

An impulse response, h (τ) calculation is performed on the signals x(t) and y(t). The impulse response for this system is given as the inverse Fourier Transform of the frequency response function, H(f), that: is,

h(τ)=F-1 [H(f)]=F-1 [Sxy /Sxx ] (1)

where

Sxx (f)=averaged autospectral density function or autospectrum of x(t), and

Sxy (f)=averaged cross spectral density function or cross spectrum between x(t) and y(t)

It is well known that the cross-correlation function between x(t) and y(t) is given by

Rxy (τ)=F-1 [Sxy ] (2)

As can be seen from a comparison of the two equations, the unit impulse response function resembles a cross-correlation function for an input x(t) with a uniform spectral density of Sxx (f)=1. In effect, the unit impulse response provides the cross-correlation function for a uniform input spectral density. Hence, the input data can be computationally pre-whitened over its frequency range using a unit impulse response calculation, which improves the definition of individual propagation paths. This is an extremely important feature in acoustic pyrometry where multi-path signals are generated in the cavity of the furnace. In particular, since the actual input spectrum of the acoustic wave source extends over the relatively wide range noted above and has concentrations of power, improved resolution of flight paths can be achieved by using the unit impulse response computation. As a consequence, it is important to provide as many frequencies as possible throughout the frequency band of interest for acoustic pyrometry since each frequency generates a concentration of power for use by the unit impulse response calculation.

FIG. 6 illustrates the result of the impulse response computation for values of x(t) and y(t) obtained in a coal fired 265 megawatt utility boiler presenting an extremely noisy environment. This data was obtained with a pneumatic source 21 capable of generating acoustic waves in excess of 130 dB re: 20μPa @1 m. FIG. 6 is a plot of the magnitude of the impulse response function along the ordinate versus time along the abscissa. The results show a prominent peak at a value of 17.5 milliseconds. Efforts to obtain the same pronounced data using a pulsed chirp system have been found to fail due to the level of noise in the furnace and the presence of multipaths. Other experimental results have established the advantages of the invention in obtaining reliable data in particularly noisy environments.

As will now be apparent, the invention provides a method and system for enabling the accurate determination of the transit time between two boundary points in a bounded volume of acoustic waves. From this transit time measurement, the velocity of acoustic waves in the fluid medium between the two boundaries can be computed, and the temperature and velocity of fluid (e.g., gas) can also be computed from the velocity computation using a well known relationship. Further, due to the use of a pneumatic acoustic generator 21 (and alternate, symmetric generator 41), energy levels beyond those available from electromechanical transducers can be achieved, with a corresponding increase in the ability of a system employing acoustic pyrometry to obtain reliable transit time basic information. In addition, by providing transducer 30 adjacent the entrance point of the acoustic waves into the volume 14, a reliable electrical signal replica of the acoustic waves actually injected into the volume 14 can be obtained for subsequent signal processing purposes; and an accurate replica of the received acoustic waves at the receiving wall boundary is obtained by the use of transducer 34. Consequently, intermediate effects produced by pipe 27 and flared end 28 are substantially reduced or eliminated from the information signals x(t) and y(t), which eliminates the necessity of providing compensation factors found in prior art devices using stored waveforms.

One important aspect of the invention lies in the use of the pneumatic sound generator 21 as both an acoustic wave generation device and also a contaminant purging device. In known systems, for example, using non-pneumatic generators (such as electro mechanical devices, piezoelectric transducers and the like), in particularly contaminated environments, the wave guides extending between the wave generating element (e.g., a diaphragm) and the entrance to the volume 14 can become contaminated with particulate matter found in the interior of the volume 14 (such as soot) in a coal-fired boiler system. The buildup of the contaminating particles over time leads to a change in the acoustic characteristics of the sound generating system (and the acoustic receiving system as well). Consequently, these units require cleaning at maintenance intervals whose frequency depends on a number of factors affecting the buildup of contamination. With the pneumatic sound generator described above, purging of the acoustic paths leading from the sound source to the volume under investigation is automatically performed along with the generation of the acoustic waves. The importance of this advantage is commensurate with the rate at which contamination accumulates in the system subject to the acoustic testing. For relatively clean environments, either the pneumatic generator described above or conventional acoustic wave generating devices (such as those discussed in the references cited above) may be employed.

An another significant advantage of the invention is that the effect of increasing levels of noise, which tend to mask the transit time information, can be compensated for by either increasing the length of time during which the acoustic waves are generated by the transmitter and detected by the receiver or by increasing the number of averages in the frequency domain, especially by providing an increased number of burst repetitions and corresponding impulse response computations when using the burst mode.

While the above provides a full and complete disclosure of the preferred embodiment of the invention, various modifications, alternate constructions and equivalents will appear to those skilled in the art. For example, other specific frequencies may be employed in both acoustic pyrometry applications and other applications. Also, other transducers than those specifically identified with respect to elements 30, 34 may be employed, as desired. Therefore, the above descriptions and illustrations should not be construed as limiting the invention which is defined by the appended claims.

Kleppe, John A.

Patent Priority Assignee Title
10047594, Jan 23 2012 GENIE IP B V Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
11499939, Oct 04 2017 UEDA JAPAN RADIO CO , LTD ; JAPAN RADIO CO , LTD ; Nisshinbo Holdings Inc Ultrasonic wave transmitter, propagation time measurement device, gas concentration measurement device, propagation time measurement program, and propagation time measurement method
5639972, Mar 31 1995 Caldon, Inc. Apparatus for determining fluid flow
6386755, Jul 05 1997 VALMET AUTOMATION OY Acoustic pyrometer
6581684, Apr 24 2000 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
6588504, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
6591906, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
6591907, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with a selected vitrinite reflectance
6607033, Apr 24 2000 Shell Oil Company In Situ thermal processing of a coal formation to produce a condensate
6609570, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation and ammonia production
6688387, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
6698515, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
6702016, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
6708758, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
6712135, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
6712136, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
6712137, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
6715546, Apr 24 2000 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
6715547, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
6715548, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
6715549, Apr 04 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
6719047, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
6722429, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
6722430, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
6722431, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of hydrocarbons within a relatively permeable formation
6725920, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
6725921, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
6725928, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
6726358, Jul 05 1997 VALMET AUTOMATION OY Acoustic pyrometer
6726359, Nov 06 2000 SIEMENS SCHWEIZ AG Apparatus and method of detecting the room temperature by means of sound waves
6729395, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
6729396, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
6729397, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
6729401, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
6732794, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
6732795, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
6732796, Apr 24 2000 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
6736215, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
6739393, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation and tuning production
6739394, Apr 24 2000 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
6742587, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
6742588, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
6742589, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
6742593, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
6745831, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
6745832, Apr 24 2000 SALAMANDER SOLUTIONS INC Situ thermal processing of a hydrocarbon containing formation to control product composition
6745837, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
6749021, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
6752210, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
6758268, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
6761216, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
6763886, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
6769483, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
6769485, Apr 24 2000 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
6789625, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
6805195, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
6820688, Apr 24 2000 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
6866097, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
6871707, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
6877554, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
6877555, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
6880633, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
6880635, Apr 24 2000 Shell Oil Company In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
6889769, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
6896053, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
6902003, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
6902004, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a movable heating element
6910536, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
6913078, Apr 24 2000 Shell Oil Company In Situ thermal processing of hydrocarbons within a relatively impermeable formation
6915850, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
6918442, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
6918443, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
6923257, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation to produce a condensate
6923258, Apr 24 2000 Shell Oil Company In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
6929067, Apr 24 2001 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
6932155, Oct 24 2001 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
6948562, Apr 24 2001 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
6948563, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
6951247, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
6953087, Apr 24 2000 Shell Oil Company Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
6959761, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
6964300, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
6966372, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
6966374, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
6969123, Oct 24 2001 Shell Oil Company Upgrading and mining of coal
6973967, Apr 24 2000 Shell Oil Company Situ thermal processing of a coal formation using pressure and/or temperature control
6981548, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation
6991031, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
6991032, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
6991033, Apr 24 2001 Shell Oil Company In situ thermal processing while controlling pressure in an oil shale formation
6991036, Apr 24 2001 Shell Oil Company Thermal processing of a relatively permeable formation
6991045, Oct 24 2001 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
6994160, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
6994161, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with a selected moisture content
6994168, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
6994169, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation with a selected property
6997255, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a reducing environment
6997518, Apr 24 2001 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
7004247, Apr 24 2001 Shell Oil Company Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
7004251, Apr 24 2001 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
7011154, Oct 24 2001 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
7013972, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
7017661, Apr 24 2000 Shell Oil Company Production of synthesis gas from a coal formation
7032660, Apr 24 2001 Shell Oil Company In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
7036583, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
7040398, Apr 24 2001 Shell Oil Company In situ thermal processing of a relatively permeable formation in a reducing environment
7040399, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using a controlled heating rate
7040400, Apr 24 2001 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
7051807, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation with quality control
7051808, Oct 24 2001 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
7051811, Apr 24 2001 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
7055600, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
7063145, Oct 24 2001 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
7066254, Oct 24 2001 Shell Oil Company In situ thermal processing of a tar sands formation
7066257, Oct 24 2001 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
7073578, Oct 24 2002 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
7077198, Oct 24 2001 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
7077199, Oct 24 2001 Shell Oil Company In situ thermal processing of an oil reservoir formation
7086465, Oct 24 2001 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
7086468, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
7090013, Oct 24 2002 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
7096941, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
7096942, Apr 24 2001 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
7096953, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
7100994, Oct 24 2002 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
7104319, Oct 24 2001 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
7114566, Oct 24 2001 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
7121341, Oct 24 2002 Shell Oil Company Conductor-in-conduit temperature limited heaters
7121342, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
7128153, Oct 24 2001 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
7156176, Oct 24 2001 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
7165615, Oct 24 2001 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
7219734, Oct 24 2002 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
7225866, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
7320364, Apr 23 2004 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
7353872, Apr 23 2004 Shell Oil Company Start-up of temperature limited heaters using direct current (DC)
7357180, Apr 23 2004 Shell Oil Company Inhibiting effects of sloughing in wellbores
7360588, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
7370704, Apr 23 2004 Shell Oil Company Triaxial temperature limited heater
7383877, Apr 23 2004 Shell Oil Company Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
7404671, Mar 10 2005 Luna Innovations Incorporated Dynamic acoustic thermometer
7424915, Apr 23 2004 Shell Oil Company Vacuum pumping of conductor-in-conduit heaters
7431076, Apr 23 2004 Shell Oil Company Temperature limited heaters using modulated DC power
7434988, May 17 2006 VALMET AUTOMATION OY Low pressure acoustic pyrometer signal generator
7435037, Apr 22 2005 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
7461691, Oct 24 2001 Shell Oil Company In situ recovery from a hydrocarbon containing formation
7481274, Apr 23 2004 Shell Oil Company Temperature limited heaters with relatively constant current
7490665, Apr 23 2004 Shell Oil Company Variable frequency temperature limited heaters
7500528, Apr 22 2005 Shell Oil Company Low temperature barrier wellbores formed using water flushing
7510000, Apr 23 2004 Shell Oil Company Reducing viscosity of oil for production from a hydrocarbon containing formation
7527094, Apr 22 2005 Shell Oil Company Double barrier system for an in situ conversion process
7533719, Apr 21 2006 Shell Oil Company Wellhead with non-ferromagnetic materials
7540324, Oct 20 2006 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
7546873, Apr 22 2005 Shell Oil Company Low temperature barriers for use with in situ processes
7549470, Oct 24 2005 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
7556095, Oct 24 2005 Shell Oil Company Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
7556096, Oct 24 2005 Shell Oil Company Varying heating in dawsonite zones in hydrocarbon containing formations
7559367, Oct 24 2005 Shell Oil Company Temperature limited heater with a conduit substantially electrically isolated from the formation
7559368, Oct 24 2005 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
7562706, Oct 24 2005 Shell Oil Company Systems and methods for producing hydrocarbons from tar sands formations
7562707, Oct 20 2006 Shell Oil Company Heating hydrocarbon containing formations in a line drive staged process
7575052, Apr 22 2005 Shell Oil Company In situ conversion process utilizing a closed loop heating system
7575053, Apr 22 2005 Shell Oil Company Low temperature monitoring system for subsurface barriers
7581589, Oct 24 2005 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
7584789, Oct 24 2005 Shell Oil Company Methods of cracking a crude product to produce additional crude products
7591310, Oct 24 2005 Shell Oil Company Methods of hydrotreating a liquid stream to remove clogging compounds
7597147, Apr 21 2006 United States Department of Energy Temperature limited heaters using phase transformation of ferromagnetic material
7604052, Apr 21 2006 Shell Oil Company Compositions produced using an in situ heat treatment process
7610962, Apr 21 2006 Shell Oil Company Sour gas injection for use with in situ heat treatment
7631689, Apr 21 2006 Shell Oil Company Sulfur barrier for use with in situ processes for treating formations
7631690, Oct 20 2006 Shell Oil Company Heating hydrocarbon containing formations in a spiral startup staged sequence
7635023, Apr 21 2006 Shell Oil Company Time sequenced heating of multiple layers in a hydrocarbon containing formation
7635024, Oct 20 2006 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Heating tar sands formations to visbreaking temperatures
7635025, Oct 24 2005 Shell Oil Company Cogeneration systems and processes for treating hydrocarbon containing formations
7640980, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
7644765, Oct 20 2006 Shell Oil Company Heating tar sands formations while controlling pressure
7673681, Oct 20 2006 Shell Oil Company Treating tar sands formations with karsted zones
7673786, Apr 21 2006 Shell Oil Company Welding shield for coupling heaters
7677310, Oct 20 2006 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
7677314, Oct 20 2006 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
7681647, Oct 20 2006 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
7683296, Apr 21 2006 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
7703513, Oct 20 2006 Shell Oil Company Wax barrier for use with in situ processes for treating formations
7717171, Oct 20 2006 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
7730945, Oct 20 2006 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
7730946, Oct 20 2006 Shell Oil Company Treating tar sands formations with dolomite
7730947, Oct 20 2006 Shell Oil Company Creating fluid injectivity in tar sands formations
7731420, Sep 17 2004 Siemens Aktiengesellschaft Measuring device and method for determining temperature and/or pressure using measuring device
7735935, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
7785427, Apr 21 2006 Shell Oil Company High strength alloys
7793722, Apr 21 2006 Shell Oil Company Non-ferromagnetic overburden casing
7798220, Apr 20 2007 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
7798221, Apr 24 2000 Shell Oil Company In situ recovery from a hydrocarbon containing formation
7831134, Apr 22 2005 Shell Oil Company Grouped exposed metal heaters
7832484, Apr 20 2007 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
7841401, Oct 20 2006 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
7841408, Apr 20 2007 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
7841425, Apr 20 2007 Shell Oil Company Drilling subsurface wellbores with cutting structures
7845411, Oct 20 2006 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
7849922, Apr 20 2007 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
7860377, Apr 22 2005 Shell Oil Company Subsurface connection methods for subsurface heaters
7866385, Apr 21 2006 Shell Oil Company Power systems utilizing the heat of produced formation fluid
7866386, Oct 19 2007 Shell Oil Company In situ oxidation of subsurface formations
7866388, Oct 19 2007 Shell Oil Company High temperature methods for forming oxidizer fuel
7912358, Apr 21 2006 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Alternate energy source usage for in situ heat treatment processes
7931086, Apr 20 2007 Shell Oil Company Heating systems for heating subsurface formations
7942197, Apr 22 2005 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
7942203, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
7950453, Apr 20 2007 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
7986869, Apr 22 2005 Shell Oil Company Varying properties along lengths of temperature limited heaters
8011451, Oct 19 2007 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
8027571, Apr 22 2005 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD In situ conversion process systems utilizing wellbores in at least two regions of a formation
8042610, Apr 20 2007 Shell Oil Company Parallel heater system for subsurface formations
8070840, Apr 22 2005 Shell Oil Company Treatment of gas from an in situ conversion process
8083813, Apr 21 2006 Shell Oil Company Methods of producing transportation fuel
8113272, Oct 19 2007 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
8146661, Oct 19 2007 Shell Oil Company Cryogenic treatment of gas
8146669, Oct 19 2007 Shell Oil Company Multi-step heater deployment in a subsurface formation
8151880, Oct 24 2005 Shell Oil Company Methods of making transportation fuel
8151907, Apr 18 2008 SHELL USA, INC Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
8162059, Oct 19 2007 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Induction heaters used to heat subsurface formations
8162405, Apr 18 2008 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
8172335, Apr 18 2008 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
8177305, Apr 18 2008 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
8191630, Oct 20 2006 Shell Oil Company Creating fluid injectivity in tar sands formations
8192682, Apr 21 2006 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD High strength alloys
8196658, Oct 19 2007 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
8220539, Oct 13 2008 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
8224163, Oct 24 2002 Shell Oil Company Variable frequency temperature limited heaters
8224164, Oct 24 2002 DEUTSCHE BANK AG NEW YORK BRANCH Insulated conductor temperature limited heaters
8224165, Apr 22 2005 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
8225866, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ recovery from a hydrocarbon containing formation
8230927, Apr 22 2005 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
8233782, Apr 22 2005 Shell Oil Company Grouped exposed metal heaters
8238730, Oct 24 2002 Shell Oil Company High voltage temperature limited heaters
8240774, Oct 19 2007 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
8256512, Oct 13 2008 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
8261832, Oct 13 2008 Shell Oil Company Heating subsurface formations with fluids
8267170, Oct 13 2008 Shell Oil Company Offset barrier wells in subsurface formations
8267185, Oct 13 2008 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
8272455, Oct 19 2007 Shell Oil Company Methods for forming wellbores in heated formations
8276661, Oct 19 2007 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
8281861, Oct 13 2008 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
8327681, Apr 20 2007 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
8327932, Apr 10 2009 Shell Oil Company Recovering energy from a subsurface formation
8353347, Oct 13 2008 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
8355623, Apr 23 2004 Shell Oil Company Temperature limited heaters with high power factors
8381815, Apr 20 2007 Shell Oil Company Production from multiple zones of a tar sands formation
8434555, Apr 10 2009 Shell Oil Company Irregular pattern treatment of a subsurface formation
8448707, Apr 10 2009 Shell Oil Company Non-conducting heater casings
8459359, Apr 20 2007 Shell Oil Company Treating nahcolite containing formations and saline zones
8485252, Apr 24 2000 Shell Oil Company In situ recovery from a hydrocarbon containing formation
8536497, Oct 19 2007 Shell Oil Company Methods for forming long subsurface heaters
8555971, Oct 20 2006 Shell Oil Company Treating tar sands formations with dolomite
8562078, Apr 18 2008 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
8579031, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
8606091, Oct 24 2005 Shell Oil Company Subsurface heaters with low sulfidation rates
8627887, Oct 24 2001 Shell Oil Company In situ recovery from a hydrocarbon containing formation
8631866, Apr 09 2010 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
8636323, Apr 18 2008 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
8662175, Apr 20 2007 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
8701768, Apr 09 2010 Shell Oil Company Methods for treating hydrocarbon formations
8701769, Apr 09 2010 Shell Oil Company Methods for treating hydrocarbon formations based on geology
8739874, Apr 09 2010 Shell Oil Company Methods for heating with slots in hydrocarbon formations
8752904, Apr 18 2008 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
8789586, Apr 24 2000 Shell Oil Company In situ recovery from a hydrocarbon containing formation
8791396, Apr 20 2007 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Floating insulated conductors for heating subsurface formations
8820406, Apr 09 2010 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
8833453, Apr 09 2010 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
8851170, Apr 10 2009 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
8857506, Apr 21 2006 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Alternate energy source usage methods for in situ heat treatment processes
8881806, Oct 13 2008 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Systems and methods for treating a subsurface formation with electrical conductors
9016370, Apr 08 2011 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
9022109, Apr 09 2010 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
9022118, Oct 13 2008 Shell Oil Company Double insulated heaters for treating subsurface formations
9033042, Apr 09 2010 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
9051829, Oct 13 2008 Shell Oil Company Perforated electrical conductors for treating subsurface formations
9127523, Apr 09 2010 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
9127538, Apr 09 2010 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
9129728, Oct 13 2008 Shell Oil Company Systems and methods of forming subsurface wellbores
9181780, Apr 20 2007 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
9309755, Oct 07 2011 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
9399905, Apr 09 2010 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
9453784, Sep 04 2013 SIEMENS ENERGY, INC Non-intrusive measurement of hot gas temperature in a gas turbine engine
9528322, Apr 18 2008 SHELL USA, INC Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
9605524, Jan 23 2012 GENIE IP B V Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
9683901, Jul 16 2015 SIEMENS ENERGY, INC Acoustic measurement system incorporating a temperature controlled waveguide
9696216, Sep 04 2013 SIEMENS ENERGY, INC Acoustic transducer in system for gas temperature measurement in gas turbine engine
9702768, Sep 05 2012 SIEMENS ENERGY, INC Noise robust time of flight estimation for acoustic pyrometry
Patent Priority Assignee Title
4162630, Sep 20 1976 UNIVERSITY OF UTAH RESEARCH FONDATION, FOUNDATION Measurement and reconstruction of three-dimensional fluid flow
4772131, Mar 30 1987 Thermosonics, Inc. Signal processing apparatus for ultrasonic thermometers
4848924, Aug 19 1987 BABCOCK & WILCOX COMPANY, THE, NEW ORLEANS, LOUISIANA, A CORP OF DE Acoustic pyrometer
5042303, Feb 21 1986 B.V. Optische Industrie "De Oude Delft" Apparatus for ultrasound detection
5181778, Sep 30 1991 Bechtel BXWT Idaho, LLC Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium
5197019, Jul 20 1989 Asulab S.A. Method of measuring distance using ultrasonic waves
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 07 1991KLEPPE, JOHN A SCIENTIFIC ENGINEERING INSTRUMENTS, INC ASSIGNMENT OF ASSIGNORS INTEREST 0059170115 pdf
Nov 15 1991Scientific Engineering Instruments, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Mar 26 1998M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Mar 31 1998ASPN: Payor Number Assigned.
Mar 28 2002M281: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity.
Mar 28 2002M284: Payment of Maintenance Fee, 8th Yr, Small Entity.
Apr 16 2002REM: Maintenance Fee Reminder Mailed.
Mar 27 2006M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Sep 27 19974 years fee payment window open
Mar 27 19986 months grace period start (w surcharge)
Sep 27 1998patent expiry (for year 4)
Sep 27 20002 years to revive unintentionally abandoned end. (for year 4)
Sep 27 20018 years fee payment window open
Mar 27 20026 months grace period start (w surcharge)
Sep 27 2002patent expiry (for year 8)
Sep 27 20042 years to revive unintentionally abandoned end. (for year 8)
Sep 27 200512 years fee payment window open
Mar 27 20066 months grace period start (w surcharge)
Sep 27 2006patent expiry (for year 12)
Sep 27 20082 years to revive unintentionally abandoned end. (for year 12)