An HTSC material epitaxially deposited on a YSZ buffer layer on a surface of a monocrystalline silicon substrate has a zero resistance transition temperature of at least 85° K., a transition width (10-90%) of no more than 1.0° K., a resistivity at 300° K. of no more than 300 micro-ohms-centimeter and a resistivity ratio (at 300° K./100° K.) of 3.0± 0.2. The surface of the silicon substrate is cleaned using a spin-etch process to produce an atomically clean surface terminated with an atomic layer of an element such as hydrogen with does not react with silicon. The substrate can be moved to a deposition chamber without contamination. The hydrogen is evaporated in the chamber, and then YSZ is epitaxially deposited preferably by laser ablation. Thereafter, the HTSC material, such as YBCO, is epitaxially deposited preferably by laser ablation. The structure is then cooled in an atmosphere of oxygen.

Patent
   5358925
Priority
Apr 18 1990
Filed
Aug 10 1992
Issued
Oct 25 1994
Expiry
Oct 25 2011
Assg.orig
Entity
Large
53
11
EXPIRED
1. A structure comprising a monocrystalline silicon substrate having a major surface,
an epitaxial layer of monocrystalline yttria stabilized zirconia formed on said major surface, and
an exiptaxial layer of monocrystalline high temperature superconductor material selected from a group consisting of yba2 Cu3 O7-δ and Bi2 Sr2 Can-1 Cun O2n+4, where n is an integer an 0≦δ≦0.5, formed on said layer of yttria stabilized zirconia, said high temperature superconductor material having a resistivity of 300° K. of no more than 300 micro-ohn-centimeter and a ratio of resistivity at 300° K. to resistivity at 100° K. of 3.0±0.2.
an in-plane (100) direction of said monocrystalline yttria stabilized zirconia being parallel to an in-plane (100) direction of said monocrystalline silicon.
2. The structure as defined by claim 1 wherein said layer of high temperature superconductor material has a zero resistance transition temperature of at least 85° K. and a transition from 10% to 90% of resistance at an onset of a resistive to superconducting transition occurring in a temperature transition width of no more than 1.0° K.

The U.S. Government has rights in the disclosed invention pursuant to U.S. Air Force Office of Scientific Research Contract F49620-88-C0004 with Stanford University and NSF Grant No. DMR-8822353 with Santa Clara University.

This application is a continuation of application Ser. No. 07/693,770, Apr. 3, 1991, abandoned, which is a continuation of application Ser. No. 510,699, Apr. 18, 1990, now abandoned.

This invention relates generally to semiconductor and superconductor technologies, and more particularly the invention relates to a silicon substrate such as an integrated circuit having a superconducting layer thereon. The invention further relates to a method of epitaxially forming on silicon a superconducting layer having good technological properties for electronic devices and circuit applications.

Much research is being pursued in the field of superconductivity in respect to the new classes of ceramic materials such as copper oxides combined with lanthanum, yttrium, barium, thallium, lead, bismuth, calcium, praesedinium, and strontium which have a relatively high superconductivity transition temperature (Tc). The yttrium, barium, and copper oxide materials (Y1 Ba2 Cu3 O7) are referred to as 1-2-3 compounds and herein as YBCO.

Recently, work at Stanford University has been pursued to optimize the critical current density of superconducting materials. Materials have been yttrium barium and copper oxide perovskite compounds. The material has good superconducting properties at 77° K. and as a result can be used in combination with liquid nitrogen cooling. Thin film construction of the material is possible through vacuum deposition, either by electron-beam deposition or magnetron sputtering. Many of these planar films still show a limitation in critical current density due to random or non-preferred crystal orientation and grain boundary effects and atmospheric poisoning effects. When the films are deposited on single-crystal strontium titanate with a crystal orientation which is selected to be optimum, the deposited films orient themselves and grow epitaxially on the strontium titanate substrate after heat treatment. These films have exhibited critical current densities of 1.0 to 1.5×106 amperes per square centimeter at 4.2 K. which is exceptionally good.

The formation of high temperature superconductor (HTSC) material on silicon substrates has been a recognized goal of researchers for years. Silicon integrated circuits are operable at superconducting temperatures (at present as high as 125° K.). A limitation in realizing ultra high speed semiconductor ICs lies in the interconnection of various circuits in the semiconductor substrate. Conventionally this is accomplished by metal interconnect layers on the surface of the semiconductor substrate. By reducing the resistance of the interconnect metallization, circuit speed of operation can be enhanced.

Superconducting material such as YBCO cannot be deposited directly on silicon because the chemical reaction of silicon with YBCO either completely destroys the superconductivity of the material or significantly depresses the superconducting transition temperature. Numerous attempts have been made in using barrier layers between the silicon and the superconducting material to prevent chemical reactions yet allow the growth of a highly oriented high temperature semiconductor film with a high superconducting temperature. Barrier layers heretofore used include oxides of silicon, zirconium, magnesium, strontium and titanium, magnesium and aluminum, aluminum, lanthanum and aluminum, and others. Yttria stabilized zirconia (YSZ) has been proposed as a barrier layer. However, the superconducting material using these barriers has not had the technological properties necessary for practical utilization. Two of the problems encountered in using these barrier materials lie in contamination from the silicon substrate and oxidation of the silicon substrate during processing.

The present invention provides a silicon substrate having a high temperature superconductor layer epitaxially formed thereon which has the properties necessary for practical applications.

Accordingly, an object of the invention is a structure including a silicon substrate and a high temperature superconducting layer thereon having requisite properties for practical applications.

Another object of the invention is a process for fabricating high temperature superconducting layers on silicon substrates using a barrier which facilitates the epitaxial formation of the superconducting material.

Another object of the invention is a high temperature superconducting interconnect for a silicon integrated circuit which exhibits a zero resistance transistion temperature of at least 85° K. with a superconducting transition width (10-90%) of 1.0° K. or less and has resistivity at 300° K. of 300 micro-ohm-centimeter or less and a resistivity ratio (at 300° K./100° K.) of 3.0±0.2.

Another object of the invention is an integrated electronic circuit such as an infrared detector array and signal processing and control electronics which uses an integrated silicon circuit for signal processing and for control of a high-temperature superconducting device array such as a bolometric infrared detector array.

Still another object of the invention is a silicon integrated circuit using high temperature superconducting interconnections and/or superconducting microwave devices and resonators.

Briefly, in fabricating a structure in accordance with the invention a monocrystalline silicon substrate having a major surface is provided. The major surface is cleaned using a spin-etch process to produce an atomically clean surface terminated with an atomic layer of an element which does not react with silicon so as to disrupt the crystallinity of the surface and can be readily removed by heating the silicon.

Thereafter, the substrate is transferred to a deposition chamber and heated to evaporate the element from the surface of the silicon substrate, and a buffer layer of YSZ is deposited on the major surface while the substrate remains in the deposition chamber. The YSZ forms epitaxially on the major surface. Next, a high temperature superconducting material is deposited on the buffer layer while the substrate remains in the deposition chamber, the high temperature superconducting material forming epitaxially on the buffer layer of YSZ.

In a preferred embodiment the high temperature superconducting material comprises YBCO. Other oxide superconductors besides Y-Ba-Cu in a 1-2-3 or 2-4-8 ratio can be prepared. Any of the rare earth elements can be substituted for Y in the above compounds. Also some or all of the Ba can be replaced by Ca or Sr. In addition, some of the Cu can be replaced by transition metals and by Zn and Ga. Other oxide superconductors that could be deposited include the many Bi-Ca-Sr-Cu and Tl-Ba-Ca-Cu systems and their variants. The Ba (Pb, Bi) O3, (Ba, K) BiO3 and the n-type superconductors, such as, Nd2-x Cex CuO4-y could also be prepared. The YBCO and the YSZ materials can be deposited by laser ablation, by sputtering techniques, by e-beam deposition, by evaporation, by molecular beam epitaxy, or by the forms of chemical vapor deposition.

In accordance with one embodiment of the invention, a silicon substrate having a 1-0-0 crystallographic orientation is used, and the buffer layer of YSZ forms a cubic structure thereon. The YBCO film formed thereon has excellent crystal epitaxy with the underlying silicon crystal as required for electronic devices and circuit applications.

The process is readily implemented, and the resulting structures are compatible with silicon integrated technology.

The invention and objects and features thereof will be more readily apparent from the following detailed description and appended claims when taken with the drawing.

FIG. 1A is a perspective view of a structure in accordance with the invention including a silicon substrate, a buffer layer, and a high temperature superconductor layer thereon.

FIG. 1B is a perspective view of the structure of FIG. 1 in which the silicon substrate comprises an integrated circuit, and the high temperature superconductor layer is selectively etched to form an interconnect pattern for the circuit.

FIG. 2A is a perspective view of an integrated electronic circuit which uses silicon circuitry for signal processing and for control of a high-temperature device array.

FIG. 2B is a cross-sectional view of the circuit.

FIG. 3 is a flow diagram illustrating steps in fabricating a structure in accordance with the invention.

FIG. 4A is a crystal lattice model of the crystal silicon and YSZ structures at the interface for the preferred embodiment.

FIG. 4B is a top plan view illustrating the crystallographic orientations of the materials.

FIG. 5 is a plot of resistivity versus temperature of epitaxial YSZ on monocrystalline silicon as described.

Referring now to the drawing, FIG. 1A is a perspective view of a monolithic silicon substrate 10 on which is formed an epitaxial heterojunction barrier layer 12 of YSZ and an epitaxial deposited layer of YBCO 14 in accordance with one embodiment of the invention. By employing a process in accordance with the invention, the resulting superconducting layer of YBCO exhibits a zero resistance transition temperature of at least 85° K. and a transition width (10-90%) of no greater than 1.0° K. The resistivity of the superconducting material at 300° K. is no greater than 300 micro-ohm-centimeter and the resistivity ratio (at 300° K./100° K.) is 3.0±0.2. Accordingly, the superconducting layer lends itself to providing an interconnection pattern 14 for an integrated circuit in the silicon substrate as illustrated in the isometric view of FIG. lB. In forming the interconnect pattern the YBCO can be selectively etched using photolithographic masking and etching techniques with nitric acid, hydrochloric acid, phosphoric acid, bromine and alcohol, or laser ablation as an etchant. The underlying YSZ is selectively removed by ion milling, by plasma etch, or by laser ablation.

FIGS. 2A and 2B are a perspective view and a cross-sectional view of another illustrative embodiment of bolometric infrared detectors comprising HTSC material 20 formed in accordance with the invention over recessed areas 22 in a silicon substrate 24. An integrated circuit 26 is formed in an end portion of the substrate 24.

The good technological properties of the superconducting material formed on the silicon substrate results from the unique process in forming the barrier layer and the superconducting layer on the silicon substrate. FIG. 3 is a flow diagram of process steps in carrying out the invention using YSZ as the buffer layer and YBCO as the superconducting layer on the YSZ.

First, a monocrystalline silicon substrate having a 1-0-0 crystallographic orientation is provided. The silicon substrate can comprise an integrated circuit, for example. A major surface of the substrate is stripped of all oxide, either intentionally grown oxides or native oxides, by the following process. A standard degreasing procedure is followed by a spin-etch treatment in flowing nitrogen. In this treatment, the silicon wafer is rotated, flushed with a few drops of high purity alcohol and then etched with a few pipetted drops of a (1:10:1) mixture of HF, ethanol and water, all of high purity. The spin-etch technique produces an atomically clean surface terminated with one atomic layer of hydrogen. The surface is then very passive to contamination or re-oxidation, even in air, and silicon wafers can be brought to the point of film deposition with highly ideal surfaces.

The spin-etch technique for cleaning and terminating the surface of the substrate is described in Fenner et al. "Silicon Surface Passivation by Hydrogen Termination: A Comparative Study of Preparation Methods", Journal of Applied Physics 66(1), Jul. 1989, 419-424. As described therein, the wafer surface oxide is etched using an HF-Alcohol reagent in a flowing nitrogen atmosphere at room temperature while the wafer is spinning.

Thereafter, the substrate is moved to a deposition chamber and is heated to about 800°C in a moderate vacuum (e.g. 10-6 Torr) which evaporates the hydrogen from the surface. Preferably, the substrate is first raised to approximately 250°C to remove weakly bound adsorbed impurities before heating the substrate to approximately 800°C The YSZ layer is then epitaxially deposited on the substrate surface using laser ablation, sputtering techniques, e-beam evaporation, thermal evaporation, molecular beam epitaxy or by the form of chemical vapor deposition. The laser ablation technique is described by Fork et al. in "Applied Physics Letters," 53,337 (1988). Briefly, a laser beam is focused onto a pressed YSZ target. The laser most often used is an excimer laser producing intense pulses in the ultraviolet (UV) region. Other UV lasers, such as, tripled Nd:YAG, can also be used as well as lasers providing pulses of light in other regions of the electromagnetic spectrum, such as, pulsed CO2 lasers. The targets used are made by grinding appropriate mixtures of ZrO2 and Y2 O3 in an agate mortar and pestle and impressing 0.5 inch diameter disks at 50,000 psi. The disks are then sintered for 36 hours at 1,000°C in flowing oxygen. YSZ films may also be produced from separate similarly pressed targets of ZrO2 and Y2 O3 and pulsing them in the required ratio. Films made from the YSZ pressed pellets produce smoother featureless films as compared with YSZ films made from the separate ZrO2 and Y2 O3 targets with current procedures. The laser heats the target surface, producing a plume of Y, Zr and 0 atoms which land on the nearby substrate. The film is grown in a pulse by pulse fashion; several hundred to several thousand pulses are needed to grow a thin film, up to 250 nm in thickness. After depositing the first few layer equivalents of the buffer film of YSZ, oxygen gas is introduced into the chamber to a low pressure, e.g. 5×10-4 Torr. A highly textured (100) cubic-fluorite structured YSZ film is formed epitaxially on the single crystal silicon surface as is shown in FIG. 4A and FIG. 4B.

Immediately after the buffer film has been deposited, the silicon is cooled to about 750°C, and the oxygen pressure is raised to about 200 milli Torr and the YBCO film is deposited by laser ablation method. With changes in silicon substrate temperature and oxygen pressure YBCO could be deposited by sputtering, by e-beam deposition, by evaporation, by molecular beam epitaxy, or by the forms of chemical vapor deposition. Laser ablation of YBCO is described by Koren et al. in "Highly Oriented As-Deposited Superconducting Laser Ablated Thin Films of Y1 Ba2 Cu3 O7 on SrTiO3, Zirconia, and Si Substrates", Applied Physics Letter 53(23) 5 Dec. 1988. The YBCO compound can be 1-2-3, 2-4-8, or other combinations depending on pulsing variations in the ablation technique.

Other oxide superconductors besides Y-Ba-Cu in a 1-2-3 or 2-4-8 ratio can be prepared. Any of the rare earth elements can be substituted for Y in the above compounds. Also some or all of the Ba can be replaced by Ca or Sr. In addition, some of the Cu can be replaced by transition metals and by zn and Ga. Other oxide superconductors that could be deposited include the many Bi-Ca-Sr-Cu and Tl-Ba- Ca-Cu systems and their variants. The Ba (Pb, Bi) 03, (Ba, K) BiO3 and the n-type superconductors, such as, Nd2-x Cex CuO4-y could also be prepared.

After the desired thickness of YBCO film is deposited, the substrate is cooled at a controlled rate in an oxygen atmosphere to prevent reduction of the film. The YBCO film is a high quality superconductor in having good electrical resistivity properties. FIG. 4A is the in-plane epitaxial orientation of the YBCO on YSZ where the in-plane (100) direction of the YBCO is parallel to the in-plane (110) of the YSZ which leads to the superior crystal quality of the aforementioned YBCO on YSZ. FIG. 4A also illustrates the in-plane epitaxial orientation of the YSZ on silicon where the in-plane (100) direction of the YSZ is parallel to the in-plane (100) direction of the silicon which leads to the superior crystal quality of aforementioned YSZ on silicon. FIG. 4B is a top plan view illustrating the crystallographic orientations of the materials. Therefore both the YSZ buffer and YBCO films have excellent crystal epitaxy with the silicon crystal.

Transmission electron micrographs reveal coherent epitaxial growth of the YSZ on the silicon and of the YBCO on the YSZ, highly textured (100) cubic-fluorite structure YSZ, and YBCO with a high degree of C-axis orientation. X-ray diffraction of the films indicates a high degree of in plane epitaxial orientation for both films with the YSZ having cubic-fluorite structure exclusively and the YBCO having C-axis orientation. The zero resistance transition temperature and transition width along with the resistivity at 300° K. and the resistivity ratio prove that the superconducting material had good technological properties for integrated circuit applications and other superconducting environment applications.

While the invention has been described with reference to a specific embodiment, the description is illustrative of the invention and is not to be construed as limiting the invention. For example, the YSZ film can grow on silicon surfaces having other crystallographic orientations (such as 111) by laser ablation deposition. Further, other superconducting material can be deposited using the process in accordance with the invention.

Other oxide superconductors besides Y-Ba-Cu in a 1-2-3 or 2-4-8 ratio can be prepared. Any of the rare earth elements can be substituted for Y in the above compounds. Also some or all of the Ba can be replaced by Ca or Sr. In addition, some of the Cu can be replaced by transition metals and by Zn and Ga. Other oxide superconductors that could be deposited include the many Bi-Ca-Sr-Cu and Tl-Ba-CA-Cu systems and their variants. The Ba (Pb, Bi) O3, (Ba, K) BiO3 and the n-type superconductors, such as, Nd2-x Cex CuO4-y could also be prepared.

Accordingly, various modifications and applications may occur to those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims.

Fork, David K., Fenner, David B., Boyce, James B., Neville Connell, George A.

Patent Priority Assignee Title
5804323, Jul 30 1993 UNIVERSITY OF TENNESSEE RESEARCH CORPORATION, THE Process for growing a film epitaxially upon an oxide surface and structures formed with the process
5821135, Oct 16 1996 Xerox Corporation Methods for and applications of making buried structures in semiconductor thin films
5912068, Dec 05 1996 Los Alamos National Security, LLC Epitaxial oxides on amorphous SiO2 on single crystal silicon
6113690, Jun 08 1998 Freescale Semiconductor, Inc Method of preparing crystalline alkaline earth metal oxides on a Si substrate
6392257, Feb 10 2000 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same
6410941, Jun 30 2000 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Reconfigurable systems using hybrid integrated circuits with optical ports
6427066, Jun 30 2000 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Apparatus and method for effecting communications among a plurality of remote stations
6462360, Aug 06 2001 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Integrated gallium arsenide communications systems
6472694, Jul 23 2001 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Microprocessor structure having a compound semiconductor layer
6477285, Jun 30 2000 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Integrated circuits with optical signal propagation
6498107, May 01 2000 Lumentum Operations LLC Interface control for film deposition by gas-cluster ion-beam processing
6501973, Jun 30 2000 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Apparatus and method for measuring selected physical condition of an animate subject
6518648, Sep 27 2000 GLOBALFOUNDRIES U S INC Superconductor barrier layer for integrated circuit interconnects
6555946, Jul 24 2000 Freescale Semiconductor, Inc Acoustic wave device and process for forming the same
6563118, Dec 08 2000 Freescale Semiconductor, Inc Pyroelectric device on a monocrystalline semiconductor substrate and process for fabricating same
6583034, Nov 22 2000 Freescale Semiconductor, Inc Semiconductor structure including a compliant substrate having a graded monocrystalline layer and methods for fabricating the structure and semiconductor devices including the structure
6585424, Jul 25 2001 Google Technology Holdings LLC Structure and method for fabricating an electro-rheological lens
6589856, Aug 06 2001 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method and apparatus for controlling anti-phase domains in semiconductor structures and devices
6594414, Jul 25 2001 Google Technology Holdings LLC Structure and method of fabrication for an optical switch
6638838, Oct 02 2000 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Semiconductor structure including a partially annealed layer and method of forming the same
6639249, Aug 06 2001 Google Technology Holdings LLC Structure and method for fabrication for a solid-state lighting device
6646293, Jul 18 2001 Freescale Semiconductor, Inc Structure for fabricating high electron mobility transistors utilizing the formation of complaint substrates
6653211, Feb 09 2001 Canon Kabushiki Kaisha Semiconductor substrate, SOI substrate and manufacturing method therefor
6667196, Jul 25 2001 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
6673646, Feb 28 2001 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Growth of compound semiconductor structures on patterned oxide films and process for fabricating same
6673667, Aug 15 2001 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method for manufacturing a substantially integral monolithic apparatus including a plurality of semiconductor materials
6693033, Feb 10 2000 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method of removing an amorphous oxide from a monocrystalline surface
6693298, Jul 20 2001 Freescale Semiconductor, Inc Structure and method for fabricating epitaxial semiconductor on insulator (SOI) structures and devices utilizing the formation of a compliant substrate for materials used to form same
6709989, Jun 21 2001 Apple Inc Method for fabricating a semiconductor structure including a metal oxide interface with silicon
6841490, Feb 09 2001 Canon Kabushiki Kaisha Semiconductor substrate, SOI substrate and manufacturing method therefor
6855992, Jul 24 2001 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Structure and method for fabricating configurable transistor devices utilizing the formation of a compliant substrate for materials used to form the same
6885065, Nov 20 2002 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Ferromagnetic semiconductor structure and method for forming the same
6916717, May 03 2002 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
6960539, Sep 05 2002 Seiko Epson Corporation Substrate for electronic devices, manufacturing method therefor, and electronic device
6965128, Feb 03 2003 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Structure and method for fabricating semiconductor microresonator devices
6992321, Jul 13 2001 MOTOROLA SOLUTIONS, INC Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials
7005717, May 31 2000 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Semiconductor device and method
7019332, Jul 20 2001 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Fabrication of a wavelength locker within a semiconductor structure
7020374, Feb 03 2003 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Optical waveguide structure and method for fabricating the same
7045815, Apr 02 2001 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Semiconductor structure exhibiting reduced leakage current and method of fabricating same
7046719, Mar 08 2001 Google Technology Holdings LLC Soft handoff between cellular systems employing different encoding rates
7067856, Feb 10 2000 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same
7105866, Jul 24 2000 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Heterojunction tunneling diodes and process for fabricating same
7161227, Aug 14 2001 Google Technology Holdings LLC Structure and method for fabricating semiconductor structures and devices for detecting an object
7169619, Nov 19 2002 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method for fabricating semiconductor structures on vicinal substrates using a low temperature, low pressure, alkaline earth metal-rich process
7211852, Dec 06 2001 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate
7342276, Oct 17 2001 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method and apparatus utilizing monocrystalline insulator
7910929, Dec 18 2007 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
7968879, Dec 28 2007 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including the same
8030655, Dec 03 2007 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor
8343821, Dec 03 2007 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film transistor
8860030, Dec 28 2007 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including the same
8951849, Dec 18 2007 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including layer containing yttria-stabilized zirconia
Patent Priority Assignee Title
4837609, Sep 09 1987 American Telephone and Telegraph Company, AT&T Bell Laboratories Semiconductor devices having superconducting interconnects
4939308, Apr 29 1988 Allied-Signal Inc. Method of forming crystallite-oriented superconducting ceramics by electrodeposition and thin film superconducting ceramic made thereby
4940693, Jul 28 1988 The United States of America as represented by the Secretary of the Army High temperature superconducting thin film structure and method of making
4980339, Jul 29 1987 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD , A CORP OF JAPAN Superconductor structure
5087605, Jun 01 1989 Telcordia Technologies, Inc Layered lattice-matched superconducting device and method of making
FR2617645A1,
JP155880,
JP157521,
JP166978,
JP189387,
JP282585,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 10 1992Board of Trustees of the Leland Stanford Junior University(assignment on the face of the patent)
Jun 21 2002Xerox CorporationBank One, NA, as Administrative AgentSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0131530001 pdf
Jun 25 2003Xerox CorporationJPMorgan Chase Bank, as Collateral AgentSECURITY AGREEMENT0151340476 pdf
Aug 22 2022JPMORGAN CHASE BANK, N A AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO JPMORGAN CHASE BANKXerox CorporationRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0667280193 pdf
Date Maintenance Fee Events
May 06 1998M183: Payment of Maintenance Fee, 4th Year, Large Entity.
May 06 1998M186: Surcharge for Late Payment, Large Entity.
Jan 06 2002M184: Payment of Maintenance Fee, 8th Year, Large Entity.
May 10 2006REM: Maintenance Fee Reminder Mailed.
Oct 25 2006EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 25 19974 years fee payment window open
Apr 25 19986 months grace period start (w surcharge)
Oct 25 1998patent expiry (for year 4)
Oct 25 20002 years to revive unintentionally abandoned end. (for year 4)
Oct 25 20018 years fee payment window open
Apr 25 20026 months grace period start (w surcharge)
Oct 25 2002patent expiry (for year 8)
Oct 25 20042 years to revive unintentionally abandoned end. (for year 8)
Oct 25 200512 years fee payment window open
Apr 25 20066 months grace period start (w surcharge)
Oct 25 2006patent expiry (for year 12)
Oct 25 20082 years to revive unintentionally abandoned end. (for year 12)