A copolymerized poly(lactide) polymer. A lactide is copolymerized with an epoxidized fat, oil, or mixture thereof thereby resulting in poly(lactide) copolymers having improved processing properties over prior poly(lactide)s.

Patent
   5359026
Priority
Jul 30 1993
Filed
Jul 30 1993
Issued
Oct 25 1994
Expiry
Jul 30 2013
Assg.orig
Entity
Large
194
6
all paid
1. A polymer composition comprising the reaction product of a mixture comprising:
(a) lactide; and,
(b) about 0.1 to 10%, by weight, of a copolymerizing agent comprising an expoxidized material containing two or more epoxy groups per molecule.
15. A method of forming a polymer film; said method including a step of:
(a) extruding a polymer composition comprising the reaction product of a mixture comprising:
(i) lactide; and,
(ii) about 0.1 to 10%, by weight, of a copolymerizing agent comprising an epoxidized material containing two or more epoxy groups per molecule.
18. A polymer composition comprising the product of a reaction mixture wherein the non-catalyst, reactive components of the mixture consist essentially of:
(a) lactide material selected from the group consisting essentially of lactide and polylactide; and
(b) about 0.1 to 10%, by weight, of a copolymerizing agent comprising an epoxidized material containing two or more epoxy groups per molecule.
14. A process for manufacturing a poly(lactide) copolymer; said process comprising the steps of:
(a) providing a mixture comprising:
(i) lactide; and,
(ii) about 0.1 to 10%, by weight, of a copolymerizing agent comprising an epoxidized material containing two or more epoxy groups per molecule; and,
(b) polymerizing the lactide and the copolymerizing agent to produce a copolymerized poly(lactide) having a weight average molecular weight of about 100,000 to about 1,200,000 and a polydispersion index of at least 2.9.
2. A polymer composition according to claim 1 wherein said copolymerizing agent comprises epoxidized linseed oil.
3. A polymer composition according to claim 2 having a polydispersion index of at least 2.9.
4. A polymer composition according to claim 2 having a polydispersion index of at least 4∅
5. A polymer composition according to claim 2 having a weight average molecular weight of at least 296,000.
6. A polymer composition according to claim 1 having a polydispersion index of at least 2.9.
7. A polymer composition according to claim 6 having a weight average molecular weight of from about 100,000 to about 1,200,000.
8. A polymer composition according to claim 23 wherein:
(a) said copolymerizing agent comprises epoxidized soybean oil.
9. A polymer composition according to claim 8 having a weight average molecular weight of at least 400,000.
10. A polymer composition according to claim 8 having a weight average molecular weight of from about 100,000 to about 1,200,000.
11. A polymer composition according to claim 1 wherein the mixture, from which the polymer composition is formed, further comprises monomer cyclic esters selected from the group consisting essentially of: dioxanones, lactones, dioxan(dione)s, ester-amides and mixtures thereof.
12. A polymer composition according to claim 1 which has a weight average molecular weight of from about 100,000 to about 1,200,000.
13. A polymer composition according to claim 1 which is melt stable to processing through an extruder having a portion thereof that is in contact with the polymer composition, at a temperature of at least 285° F.
16. A method according to claim 15 wherein said step of extruding comprises a step of forming a cast film.
17. A method according to claim 16 wherein said step of extruding comprises a step of forming a blown film.
19. A film comprising the polymer of claim 1.
20. A diaper comprising the film of claim 19.
21. A sheet comprising the polymer of claim 1.
22. A coated paper comprising paper coated with the polymer of claim 1.
23. A blow molded article comprising the polymer of claim 1.
24. A thermoformed article comprising the polymer of claim 1 .
25. An injection molded article comprising the polymer of claim 1.
26. A non-woven fabric comprising the polymer of claim 1.
27. The polymer of claim 1 wherein said reactants further comprise:
(iii) catalyst means for catalyzing the polymerization of lactide to form poly(lactide) polymer chains, said catalyst means incorporated into the biodegradable polymer during polymerization.

1. Field of the Invention

The present invention relates to a poly(lactide) copolymer and a process for manufacturing same.

2. Description of the Prior Art

The continued depletion of available landfill and other disposal sites have lead to an increasing need for improved waste management practices, including the replacement of non-biodegradable or partially biodegradable polymers with polymer resins which are biodegradable. Used in conjunction with improved waste management practices such as composting or recycling, biodegradable resins can help alleviate the environmental stress due to disposal of items such as packaging materials, coated paper products, films, single use diapers and the like.

Poly(lactide)s are biodegradable polymer resins derived from annually renewable resources. They have been used as specialty chemicals in the medical industry, but high costs and processing difficulties have prevented their widespread use to replace conventional polymers derived from petrochemicals. Recent processing developments, such as those disclosed by Gruber et al. (U.S. Pat. No. 5,142,023), the disclosure of which is incorporated herein by reference, have made it possible to provide lower cost poly(lactide) polymers for use in packaging and other high-volume, low-margin applications.

There are a number of technical problems which have heretofore stood in the way of developing a commercially viable poly(lactide) based replacement resin for existing conventional resins. Poly(lactide) is subject to unwanted degradation during melt processing via a number of pathways, including hydrolysis, and other side reactions which, for example, result in lactide formation. It would be desirable, therefore, to produce a melt-stable poly(lactide).

Furthermore, at high processing temperatures, polymer degradation is accelerated. Accordingly, even if a melt-stable poly(lactide) can be produced, it would be desirable to provide a poly(lactide) formulation which can be processed into useful articles at reduced temperatures.

In a typical coating application or in cast film production there is a tendency for neck-in as the polymer resin leaves the die, resulting in a film or coating with a thickening at the edge. This material must be trimmed to produce a uniform coating or film. These trimmings can often be recycled, but this exposes the polymer to more thermal stress and can lead to increased degradation. Accordingly, there is a need to provide a poly(lactide) formulation which will have reduced neck-in.

In a coating application or blown film production the polymer melt must withstand certain forces, such as acceleration in going from the die to the substrate in a coating application or the gas pressure which causes stretching in a blown film. The ability to withstand these forces is called "melt-strength". Accordingly, there is a need for a poly(lactide) formulation which will have improved melt-strength.

It is also worth noting that to gain widespread acceptance in the marketplace, films from which articles are made must have the sound and feel to which consumers have grown accustomed. Therefore, there is a need to provide a poly(lactide) formulation which will provide a film or article which will provide a better "feel" to the consumer and less noise when the film is crumpled.

According to the present invention, a melt-stable polymer comprised of a copolymerized poly(lactide) is provided. The copolymerized poly(lactide) is a reaction product of lactide, optionally other cyclic ester monomers, and a copolymerizing agent. The copolymerizing agent has at least one epoxide group and preferably two or more groups per molecule, and can be an epoxidized fat, epoxidized oil, other multi-functional epoxidized compounds, or a mixture thereof, having a weight ratio of about 0.1 to about 10 percent relative to the total monomer content. A process for manufacture of the copolymerized poly(lactide) is also provided.

Optionally, stabilizing agents in the form of antioxidants and water scavengers may be added. Further, plasticizers and/or blocking agents may be added. The resultant polymer has excellent melt processibility, that being evidenced by reduced neck-in and the ability to be processed at lower temperatures.

Polymer application processes, such as casting films or extrusion coating, are generally enhanced by a polymer which does not thin excessively in an extensional (or stretching) flow. It has been found that this behavior can be imparted to the polymer by increasing the degree of molecular entanglements in the poly(lactide) polymer melt, through increasing the weight average molecular weight, increasing the polydispersity index of the polymer, and/or introducing branching into the polymer.

Other advantages of the present invention include the softer feel of films made of the inventive copolymer, and a reduction in the level of noise created when a film made from the copolymer is crumpled as compared a film made solely of poly(lactide). In addition, the use of the copolymerizing agent of the present invention will generally increase reaction rates such that increased monomer conversion rates are exhibited.

The above described features and advantages along with other various advantages and features of novelty are pointed out with particularity in the claims of the present application. However, for a better understanding of the present invention, its advantages, and objects attained by its use, reference should be made to the following examples and tables, and to the accompanying descriptive matter, which form a further part of the present application and in which preferred embodiments of the present invention are described.

The poly(lactide) copolymers disclosed herein focus on meeting the requirements of the end user melt processor of a polymer resin. The improved processing features achievable with the present invention include lower temperature processing, lower power consumption and pressure, and increased melt strength. The copolymer of the present invention may be melt processed into films, sheets, coatings for paper, blow molded articles, fibers, foam, foamed articles, thermoformed articles, injection molded articles, non-woven fabrics, etc. These articles may thereafter be components of larger articles, such as films for diapers. The present invention is directed to a copolymerized poly(lactide) and is not limited to any lactide polymer composition or process. Further, disclosures of various preferred reactants, reaction conditions, additives and polymerizing and processing techniques are disclosed in commonly assigned U.S. patent application Ser. Nos. 07/935,566 filed Aug. 24, 1992; 07/955,690 filed Oct. 2, 1992; 08/034,099 filed Mar. 22, 1993 and 08/071,590 filed Jun. 2, 1993, the disclosures of which are each incorporated herein by reference.

Applicants have found that the addition of a copolymerizing agent having an epoxide group during the polymerization reaction of poly(lactide) results in a poly(lactide) having improved properties. In particular, poly(lactide) is copolymerized with an epoxidized oil. During polymerization, it is believed that the oxirane oxygens of the epoxidized oil react with either terminal alcohol groups or terminal acid groups of the lactide polymer during reaction to form the copolymer. This copolymerization results in an increase in the weight average molecular weight when compared to noncopolymerized poly(lactide)s.

The number average molecular weight is determined by dividing the total weight of the system by the number of molecules in the system. The weight average molecular weight is the summation of the product of the molecular weight of the species, squared, and the number of molecules of the species divided by the summation of the product of the molecular weight of the species and the number of molecules of the species. The polydispersity index is the weight average molecular weight divided by the number average molecular weight.

The copolymers of the present invention preferably have a weight average molecular weight of about 30,000 to about 1,500,000, more preferably about 100,000 to about 1,200,000.

The present invention is directed to poly(lactide)s copolymerized with epoxidized agents. The lactide can be D-lactide, L-lactide, meso-lactide or mixtures thereof. Preferred lactides include those disclosed in the aforementioned commonly assigned U.S. patent applications.

The lactide may be a mixture, which would contain additional cyclic ester monomers. These may include, for example, dioxanones (such as p-dioxanone), lactones (such as epsilon-caprolactone or 4-valerolactone), dioxan(dione)s (such as glycolide or tetramethyl 1,4-dioxan-2,5-dione), or ester-amides (such as morpholine-2,5-dione).

Useful copolymerizing agents have epoxide groups and include epoxidized fats and oils of all kinds, preferably epoxidized fatty acids, glycerides and mixtures thereof, more preferably epoxidized animal fats, animal oils, vegetable fats, vegetable oils, monoglycerides, diglycerides, triglycerides, free fatty acids and derivatives thereof, most preferably vegetable oils. The preferred agent has multiple epoxide groups. In particular, agents such as epoxidized linseed oil and epoxidized soybean oil are most useful. Further, epoxidized oils include cottonseed oil, ground nut oil, soybean oil, sunflower oil, rape seed oil or cannola oil, sesame seed oil, olive oil, corn oil, safflower oil, peanut oil, sesame oil, hemp oil, tung oil, neat's-foot oil, whale oil, fish oil, castor oil, tall oil and the like. Possible epoxidized fats include coconut, babassu, palm, butter, lard, tallow and the like.

Epoxidized linseed oil has been used as a copolymerizing agent with great success. In particular, an epoxidized linseed oil, known as Flexol® Plasticizer LOE (commercially available from Union Carbide Corporation) is a preferred copolymerizing agent of the present invention.

It is interesting to note that the epoxidized linseed oil is marketed as a plasticizer, however the Tg of the resultant copolymer was fairly constant, indicating little plasticizing effect at the levels tested. Further, copolymerizing agents such as epoxidized linseed oil and others act as a lubricant during processing, but the processed copolymer does not have a greasy texture.

Other well known epoxidized vegetable oils may also be used. Furthermore, unsaturated fats and oils, preferably polyunsaturated fats and oils, can be epoxidized using commonly known methods for making epoxidized fats and oils, preferably by epoxidizing methods using peroxy acids. In those reactions, a peroxy acid, such as peroxyacetic acid, is believed to react with unsaturated fatty acids to give rise to epoxidized fatty acids, within the oil, having one or more three-member oxirane ring groups. It is preferable to have more than one oxirane group per molecule.

The amount of copolymerizing agent added varies with the desired molecular weight and polydispersity index. Generally, about 0.1-10 weight percent of copolymerizing agent is added to the original lactide mixture, more preferably, about 0.1-2.0 weight percent is added, most preferably about 0.1-1.0 weight percent of a copolymerizing agent is added. The copolymerizing agent may be selected such that it is biodegradable. Thus, combinations of the lactide and copolymerizing agent will be biodegradable.

The following examples further detail advantages of the invention described herein:

PAC Copolymerization of Lactide with Epoxidized Soybean Oil and Epoxidized Tall Oil

Epoxidized soybean oil (FLEXOL® EPO, commercially available from Union Carbide) and epoxidized tall oil (FLEXOL® EP8. commercially available from Union Carbide) were separately copolymerized with lactide. A phosphite based process stabilizer (Weston TNPP, commercially available from General Electric) was added to the lactide at 0.4 weight percent. Catalyst (2-Eythylhexanoic acid, tin(II) salt from Aldrich Co., Milwaukee, Wis.) in a tetrahydrofuran carrier was added in a molar ratio 1 part catalyst/10,000 parts lactide. Mixtures of the molten lactide, epoxidized oil, stabilizer, and catalyst were sealed in vials and polymerized at 180°C for 2.5 hours. The samples were then dissolved in chloroform and analyzed by gel permeation chromatography using a refractive index detector and Ultrastyragel® IR column from Waters Chromatography to determine weight average and number average molecular weights for the resulting copolymer resins. The system temperature was 35°C and the GPC column was calibrated against poly(styrene) standards. The results of these tests appear in Table 1.

TABLE 1
______________________________________
Weight Average
Sample Mol. Weight % Conversion
______________________________________
control 240,000 71
poly(lactide)
copolymerized
400,000 96
with 1.0 wt %
epoxidized soybean
oil
copolymerized
178,000 96
with 1.5 wt %
epoxidized tall
oil
______________________________________

The results for the epoxidized soybean oil show a significant increase in the weight average molecular weight, possibly indicative of a coupling or crosslinking mechanism during the copolymerization. This is attributed to the multiple oxirane functionality contained in most of the epoxidized soybean oil molecules (an average of about 4.6 oxirane oxygens/molecule). The epoxidized tall oil copolymer does not show an increase in weight average molecular weight, presumably because each of the tall oil molecules contain an average of only about 1 oxirane group. The results for both the epoxidized tall oil and the epoxidized soybean oil show an increase in reaction rate for the copolymerization, achieving 96% conversion of the monomers, while the control reaction only exhibited 71% conversion.

PAC Examples of Epoxidized Linseed Oil as a Copolymerizing Agent

A copolymerized poly(lactide) was produced by adding epoxidized linseed oil to a continuous pilot plant polymerization of lactide in the same manner described in Example 1. This was accomplished by adding a solution of TNPP and epoxidized linseed oil (FLEXOL® Plasticizer LOE from Union Carbide), in a ratio of 1:2 by weight, at a rate of 10 gm/hr to the continuous polymerization such that the weight ratio of epoxidized oil to lactide was 0.55. Lactic acid was processed into lactide in a continuous pilot scale reactor, purified by distillation, and fed to a continuous polymerization reactor system. The polymerization system consisted of a 1-gallon and a 5-gallon reactor in series. The reactors are continuous feed, stirred tank reactors. The lactide feed rate was 1.1 kg/hr, the catalyst, tin (II) bis(2-ethyl hexanoate) (T-9 from Atochem) was added at a rate of 0.03 weight percent. A phosphite process stabilizer (Weston TNPP® from General Electric) was added at a rate of 0.3 weight percent. Reactor temperatures were 190°C to 200°C The resulting polymer pellets were bagged every eight hours and labelled as samples I-VII. The pellets were dried and collected for GPC analysis. Total run time was 52 hours generating 60 kilograms material. GPC results after drying:

TABLE 2
______________________________________
Example Time Mn Mw PDI
______________________________________
start zero 89000 220000
2.5
I 0-8 hours
79000 307000
2.9
II 8-16 hours
50000 296000
5.0
III 16-24 hours
72200 323000
4.4
IV 24-32 hours
80900 339000
4.2
V 32-40 hours
81500 316000
3.9
VI 40-48 hours
76200 303000
4.0
VII 48-52 hours
81600 319000
4.0
______________________________________

The resulting material was then subjected to a devolatilization process to remove the residual amount of unreacted monomer lactide. After devolatilization, samples III-VII were combined and used in further testing. Molecular weights of the combined fractions after devolatization were: Mn-75,000 Mw-325000 PDI-4.3 and a residual lactide level of less than 0.5 percent as recorded by a GPC.

PAC Example of Vial Polymerizations with Epoxidized Oil, Showing Effect on Rate of Polymerization

Tin(II) bis (2-ethylhexanoate) commercially available as 2-ethylhexanoic acid, tin(II) salt from Aldrich Chemical Company, and epoxidized linseed oil (FLEXOL® Plasticizer LOE from Union Carbide) were placed into a vial. A molten mixture of 90% L-lactide and 10% D,L-lactide, with 0.4% by weight of a stabilizer (Weston TNPP), was then added to the vial. An identical set was made up without the epoxidized oil. In each case the final catalyst concentration was 1 part catalyst per 5000 parts lactide and the epoxidized oil was 1% by weight of the final reaction mixture. The solutions were sealed and placed in an oil bath at 180°C Samples were pulled over time and analyzed by GPC for molecular weight and extent of lactide conversion.

The experiment was repeated, except that the catalyst and the epoxidized oil were added to the molten lactide before it was placed in the respective vials.

The results of both experiments are shown in Tables 3 and 4 respectively. The epoxidized oil resulted in an increase in the polymerization reaction rate in each study. The weight average molecular weight and PDI are also higher.

TABLE 3
______________________________________
Time
Sample (min.) % Conversion
Mn Mw PDI
______________________________________
Control 15 10 6800 7800 1.12
30 16 39100 40600
1.04
45 48 30400 40100
1.32
60 73 48900 77800
1.59
90 78 54000 86200
1.60
With 1% 15 12 7800 8800 1.12
epoxidized
30 69 57100 115000
2.01
oil 45 74 50500 112000
2.22
60 80 67300 123000
1.82
90 93 78400 176000
2.25
______________________________________
TABLE 4
______________________________________
Time
Sample (min.) % Conversion
Mn Mw PDI
______________________________________
Control 15 0 -- -- --
30 8 5400 5700 1.05
45 18 14500 16500 1.14
60 28 26400 29000 1.10
90 45 26900 29000 1.15
With 1% 15 11 7500 8800 1.17
epoxidized
30 32 24700 29700 1.22
oil 45 57 31300 44000 1.40
60 69 50300 71000 1.41
90 84 53500 96400 1.80
______________________________________
PAC Cast Film at Typical Extrusion Temperatures

Films of a control polymer and a copolymer of the present invention were extruded. The conditions and the results follow:

Equipment: Killion 1" extruder 30/1 L/D rate with a 6" cast sheet displaced about 1/2 inch from a three stack chill roll. The following were the temperatures (° F.):

______________________________________
Zone Zone Zone Chill
1 2 3 4 Adapter Die Melt Roll
______________________________________
300 330 350 350 335 330 340 100
______________________________________
TABLE 5
______________________________________
Cast film results:
Base PLA (Mn = 70,000; Mw = 215,000)
Screw Thick-
Power Speed Press Take Off
ness Width Neck-in
(amps)
(rpm) (psi) Setting
(mils)
(inches)
(inches)
______________________________________
12.5 40 3840 2.0 17.0 5.125 0.875
12.5 40 3840 4.0 8.0 4.625 1.375
12.5 40 3840 6.0 5.5 4.375 1.625
12.5 40 3840 8.0 4.0 4.250 1.75
12.5 40 3840 10.0 2.5 4.0 2.0
12.0 30 3610 10.0 1.5 4.0 2.0
11.5 20 3380 10.0 1.0 3.75 2.25
11.5 10 2850 10.0 0.7 3.75 2.25
______________________________________
TABLE 6
______________________________________
PLA w/epoxidized linseed oil (Mn = 75,000;
Mw = 325,000)
Screw Thick-
Power Speed Press Take Off
ness Width Neck-in
(amps)
(rpm) (psi) Setting
(mils)
(inches)
(inches)
______________________________________
5.5 40 1950 2.0 12.0 5.0 1.0
5.0 40 1950 4.0 8.5 5.0 1.0
5.0 40 1950 6.0 5.5 4.75 1.25
5.0 40 1950 8.0 4.0 4.75 1.25
5.0 40 1950 10.0 3.5 4.75 1.25
5.0 30 1650 10.0 2.0 4.75 1.25
5.0 20 1250 10.0 1.0 4.75 1.25
4.5 10 880 10.0 0.5 4.75 1.25
______________________________________

The results show that poly(lactide) co-polymerized with epoxidized linseed oil processes at lower power consumption and pressure, and generates a polymer with reduced neck-in.

PAC Cast Film at Reduced Extrusion Temperatures

Separate films made from a poly(lactide) control polymer and from the copolymer of the present invention described in Example 2 were extruded under various conditions. The resulting films were then evaluated using standard measuring techniques. The extruding conditions and the data gathered from this evaluation are set forth below:

______________________________________
Extruder Temperatures (°F.) of:
Zone Zone Zone Zone Chill
1 2 3 4 Adapter Die Melt Roll
______________________________________
285 295 305 305 305 305 305 100
______________________________________
TABLE 7
______________________________________
Cast film results:
PLA w/epoxidized linseed oil
Screw Thick-
Power Speed Press Take Off
ness Width Neck-in
(amps)
(rpm) (psi) Setting
(mils)
(inches)
(inches)
______________________________________
10.5 40 3470 2.0 10.0 5.125 0.875
10.0 40 3470 4.0 6.0 5.125 0.875
10.0 40 3470 6.0 4.0 5.125 0.875
10.0 40 3470 8.0 3.5 5.0 1.0
10.0 10 3470 10.0 2.5 5.0 1.0
7.5 30 3250 10.0 1.5 5.0 1.0
6.0 20 2720 10.0 0.7 5.0 1.0
6.0 10 2000 10.0 0.5 5.125 0.875
2.5 4.5 1450 10.0 0.25 5.25 0.75
2.5 1.0 920 10.0 0.1 5.25 0.75
______________________________________

Under similar extrusion temperatures, the control poly(lactide) could not run because the power consumption exceeded maximum levels (>15 amps). The results show that poly(lactide) polymerized with epoxidized linseed oil has the benefit of processing at lower temperatures and generates a polymer with increased melt strength, less neck-in and a film of lower thickness.

PAC Blown Film of Base Poly(lactide) w/Epoxidized Linseed Oil

A copolymer of lactide with epoxidized linseed oil was prepared in the manner described in Example 2 and was blown into a 8 inch width film at thickness from 3.0 to 0.5 mils. The blown film line consisted of a Killion tower connected to a Killion 1" extruder 30:1 L/D ratio equipped with a 2.25 inch blown film die. Distance from the die to the towers nip roll was 2.5 feet.

TABLE 8
______________________________________
Extruder Temperatures (°F.):
Zone Zone Zone Zone Chill
1 2 3 4 Adapter Die Melt Roll
______________________________________
300 320 330 325 310 310 310 320
______________________________________

Operation of the blown film line was very smooth.

It will be understood that even though these numerous characteristics and advantages of the invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of the parts or in the sequence or the timing of the steps, within the broad principle of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Gruber, Patrick R.

Patent Priority Assignee Title
10876178, Apr 07 2011 VIRDIA, LLC Lignocellulosic conversion processes and products
11053558, May 03 2012 VIRDIA, LLC Methods for treating lignocellulosic materials
11667981, Apr 07 2011 VIRDIA, LLC Lignocellulosic conversion processes and products
11787932, Dec 03 2017 NatureWorks LLC Polylactic resin compositions for paperboard coating and paperboard coating processes using the compositions
5472518, Dec 30 1994 Minnesota Mining and Manufacturing Company Method of disposal for dispersible compositions and articles
5508101, Dec 30 1994 Minnesota Mining and Manufacturing Company Dispersible compositions and articles and method of disposal for such compositions and articles
5567510, Dec 30 1994 Minnesota Mining and Manufacturing Company Dispersible compositions and articles and method of disposal for such compositions and articles
5594095, Jul 30 1993 Cargill, Incorporated Viscosity-modified lactide polymer composition and process for manufacture thereof
5630972, Dec 30 1994 Method of making dispersible compositions and articles
5702826, Oct 12 1994 Fiberweb Sodoca Sarl Laminated nonwoven webs derived from polymers of lactic acid and process for producing
5709227, Dec 05 1995 R J REYNOLDS TOBACCO COMPANY Degradable smoking article
5714573, Jan 19 1995 Cargill, Incorporated Impact modified melt-stable lactide polymer compositions and processes for manufacture thereof
5763065, Dec 30 1994 3M Innovative Properties Company Water dispersible multi-layer microfibers
5798435, Jul 30 1993 Cargill, Incorporated Viscosity-modified lactide polymer composition and process for manufacture thereof
5807973, Oct 02 1992 Cargill, Incorporated Melt-stable lactide polymer nonwoven fabric and process for manufacture thereof
5849374, Sep 28 1995 Cargill, Incorporated Compostable multilayer structures, methods for manufacture, and articles prepared therefrom
5849401, Sep 28 1995 Cargill, Incorporated Compostable multilayer structures, methods for manufacture, and articles prepared therefrom
5998552, Jul 30 1993 Cargill, Incorporated Viscosity-modified lactide polymer composition and process for manufacture thereof
6083524, Sep 23 1996 Genzyme Corporation Polymerizable biodegradable polymers including carbonate or dioxanone linkages
6093792, Sep 16 1997 MASSACHUSETTS, UNIVERSITY OF Bioresorbable copolymers
6111060, Oct 02 1992 Cargill, Incorporated Melt-stable lactide polymer nonwoven fabric and process for manufacture thereof
6114495, Apr 01 1998 Cargill, Incorporated Lactic acid residue containing polymer composition and product having improved stability, and method for preparation and use thereof
6177095, Sep 23 1996 Genzyme Corporation Polymerizable biodegradable polymers including carbonate or dioxanone linkages
6183814, May 23 1997 Cargill Incorporated Coating grade polylactide and coated paper, preparation and uses thereof, and articles prepared therefrom
6229046, Oct 14 1997 Cargill, Incorporated Lactic acid processing methods arrangements and products
6291597, Jul 30 1993 Cargill, Incorporated Viscosity-modified lactide polymer composition and process for manufacture thereof
6312823, Sep 28 1995 Cargrill, Incorporated Compostable multilayer structures, methods for manufacture and articles prepared therefrom
6320077, Oct 14 1997 Cargill, Incorporated Lactic acid processing; methods; arrangements; and, product
6353086, Apr 01 1998 Cargill, Incorporated Lactic acid residue containing polymer composition and product having improved stability, and method for preparation and use thereof
6355772, Oct 02 1992 Cargill, Incorporated Melt-stable lactide polymer nonwoven fabric and process for manufacture thereof
6475759, Oct 14 1997 CARGILL, INC Low PH lactic acid fermentation
6495631, Jan 19 1995 Cargill, Incorporated Impact modified melt-stable lactide polymer compositions and processes for manufacture thereof
6534679, Oct 14 1997 Cargill, Incorporated Lactic acid processing; methods; arrangements; and, products
6579814, Dec 30 1994 3M Innovative Properties Company Dispersible compositions and articles of sheath-core microfibers and method of disposal for such compositions and articles
6730772, Jun 22 2001 Degradable polymers from derivatized ring-opened epoxides
6800663, Oct 18 2002 ALKERMES, INC Crosslinked hydrogel copolymers
6978836, May 23 2003 Halliburton Energy Services, Inc. Methods for controlling water and particulate production
6997259, Sep 05 2003 Halliburton Energy Services, Inc. Methods for forming a permeable and stable mass in a subterranean formation
7013976, Jun 25 2003 Halliburton Energy Services, Inc. Compositions and methods for consolidating unconsolidated subterranean formations
7017665, Aug 26 2003 Halliburton Energy Services, Inc. Strengthening near well bore subterranean formations
7021377, Sep 11 2003 Halliburton Energy Services, Inc. Methods of removing filter cake from well producing zones
7021379, Jul 07 2003 Halliburton Energy Services, Inc. Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures
7028774, May 23 2003 Halliburton Energy Services, Inc. Methods for controlling water and particulate production
7032663, Jun 27 2003 Halliburton Energy Services, Inc. Permeable cement and sand control methods utilizing permeable cement in subterranean well bores
7032667, Sep 10 2003 Halliburtonn Energy Services, Inc. Methods for enhancing the consolidation strength of resin coated particulates
7036586, Jan 30 2004 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using crack resistant cement compositions
7036587, Jun 27 2003 Halliburton Energy Services, Inc. Methods of diverting treating fluids in subterranean zones and degradable diverting materials
7044220, Jun 27 2003 Halliburton Energy Services, Inc. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
7044224, Jun 27 2003 Halliburton Energy Services, Inc. Permeable cement and methods of fracturing utilizing permeable cement in subterranean well bores
7059406, Aug 26 2003 Halliburton Energy Services, Inc. Production-enhancing completion methods
7063150, Nov 25 2003 Halliburton Energy Services, Inc.; Halliburton Energy Services, Inc Methods for preparing slurries of coated particulates
7063151, Mar 05 2004 Halliburton Energy Services, Inc. Methods of preparing and using coated particulates
7066258, Jul 08 2003 Halliburton Energy Services, Inc. Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
7073581, Jun 15 2004 Halliburton Energy Services, Inc. Electroconductive proppant compositions and related methods
7080688, Aug 14 2003 Halliburton Energy Services, Inc. Compositions and methods for degrading filter cake
7096947, Jan 27 2004 Halliburton Energy Services, Inc. Fluid loss control additives for use in fracturing subterranean formations
7114560, Jun 23 2003 Halliburton Energy Services, Inc. Methods for enhancing treatment fluid placement in a subterranean formation
7114570, Apr 07 2003 Halliburton Energy Services, Inc. Methods and compositions for stabilizing unconsolidated subterranean formations
7131493, Jan 16 2004 Halliburton Energy Services, Inc. Methods of using sealants in multilateral junctions
7140438, Aug 14 2003 Halliburton Energy Services, Inc. Orthoester compositions and methods of use in subterranean applications
7144977, Oct 14 1997 Cargill, Incorporated Lactic acid processing; methods; arrangements; and, products
7156174, Jan 30 2004 Halliburton Energy Services, Inc. Contained micro-particles for use in well bore operations
7156194, Aug 26 2003 Halliburton Energy Services, Inc. Methods of drilling and consolidating subterranean formation particulate
7168489, Jun 11 2001 Halliburton Energy Services, Inc. Orthoester compositions and methods for reducing the viscosified treatment fluids
7172022, Mar 17 2004 Halliburton Energy Services, Inc. Cement compositions containing degradable materials and methods of cementing in subterranean formations
7178596, Jun 27 2003 Halliburton Energy Services, Inc.; Halliburton Energy Services Inc Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
7195068, Dec 15 2003 Halliburton Energy Services, Inc. Filter cake degradation compositions and methods of use in subterranean operations
7204312, Jan 30 2004 Halliburton Energy Services, Inc. Compositions and methods for the delivery of chemical components in subterranean well bores
7211547, Mar 03 2004 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
7216705, Feb 22 2005 Halliburton Energy Services, Inc. Methods of placing treatment chemicals
7216711, Jan 08 2002 Halliburton Eenrgy Services, Inc. Methods of coating resin and blending resin-coated proppant
7228904, Jun 27 2003 Halliburton Energy Services, Inc. Compositions and methods for improving fracture conductivity in a subterranean well
7235605, Jul 02 2002 Toyoda Gosei Co., Ltd. Crystalline biodegradable resin composition
7237609, Aug 26 2003 Halliburton Energy Services, Inc. Methods for producing fluids from acidized and consolidated portions of subterranean formations
7237610, Mar 30 2006 Halliburton Energy Services, Inc. Degradable particulates as friction reducers for the flow of solid particulates and associated methods of use
7252146, Nov 25 2003 Halliburton Energy Services, Inc. Methods for preparing slurries of coated particulates
7255169, Sep 09 2004 Halliburton Energy Services, Inc. Methods of creating high porosity propped fractures
7261156, Mar 05 2004 Halliburton Energy Services, Inc. Methods using particulates coated with treatment chemical partitioning agents
7264051, Mar 05 2004 Halliburton Energy Services, Inc. Methods of using partitioned, coated particulates
7264052, Mar 06 2003 Halliburton Energy Services, Inc. Methods and compositions for consolidating proppant in fractures
7267170, Jan 31 2005 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
7267171, Jan 08 2002 Halliburton Energy Services, Inc. Methods and compositions for stabilizing the surface of a subterranean formation
7273099, Dec 03 2004 Halliburton Energy Services, Inc. Methods of stimulating a subterranean formation comprising multiple production intervals
7276466, Jun 11 2001 Halliburton Energy Services, Inc. Compositions and methods for reducing the viscosity of a fluid
7281580, Sep 09 2004 Halliburton Energy Services, Inc. High porosity fractures and methods of creating high porosity fractures
7281581, Dec 01 2004 Halliburton Energy Services, Inc. Methods of hydraulic fracturing and of propping fractures in subterranean formations
7299869, Sep 03 2004 Halliburton Energy Services, Inc. Carbon foam particulates and methods of using carbon foam particulates in subterranean applications
7299875, Jun 08 2004 Halliburton Energy Services, Inc. Methods for controlling particulate migration
7300787, Jul 05 2002 Archer-Daniels-Midland Company Lactobacillus strains and use thereof in fermentation for L-lactic acid production
7306037, Apr 07 2003 Halliburton Energy Services, Inc. Compositions and methods for particulate consolidation
7318473, Mar 07 2005 Halliburton Energy Services, Inc. Methods relating to maintaining the structural integrity of deviated well bores
7318474, Jul 11 2005 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
7326659, Feb 16 2004 Conwed Plastics LLC Biodegradable netting
7334635, Jan 14 2005 Halliburton Energy Services, Inc. Methods for fracturing subterranean wells
7334636, Feb 08 2005 Halliburton Energy Services, Inc. Methods of creating high-porosity propped fractures using reticulated foam
7343973, Jan 08 2002 Halliburton Energy Services, Inc.; Halliburton Energy Services, Inc Methods of stabilizing surfaces of subterranean formations
7345011, Oct 14 2003 Halliburton Energy Services, Inc. Methods for mitigating the production of water from subterranean formations
7350571, Mar 05 2004 Halliburton Energy Services, Inc. Methods of preparing and using coated particulates
7353876, Feb 01 2005 Halliburton Energy Services, Inc. Self-degrading cement compositions and methods of using self-degrading cement compositions in subterranean formations
7398825, Dec 03 2004 Halliburton Energy Services, Inc Methods of controlling sand and water production in subterranean zones
7407010, Mar 16 2006 Halliburton Energy Services, Inc. Methods of coating particulates
7413010, Jun 23 2003 Halliburton Energy Services, Inc. Remediation of subterranean formations using vibrational waves and consolidating agents
7413017, Sep 24 2004 Halliburton Energy Services, Inc. Methods and compositions for inducing tip screenouts in frac-packing operations
7431088, Jan 20 2006 Halliburton Energy Services, Inc. Methods of controlled acidization in a wellbore
7448451, Mar 29 2005 Halliburton Energy Services, Inc. Methods for controlling migration of particulates in a subterranean formation
7455112, Sep 29 2006 Halliburton Energy Services, Inc Methods and compositions relating to the control of the rates of acid-generating compounds in acidizing operations
7461697, Nov 21 2005 Halliburton Energy Services, Inc.; Halliburton Energy Services, Inc Methods of modifying particulate surfaces to affect acidic sites thereon
7475728, Jul 23 2004 Halliburton Energy Services, Inc. Treatment fluids and methods of use in subterranean formations
7484564, Aug 16 2005 Halliburton Energy Services, Inc. Delayed tackifying compositions and associated methods involving controlling particulate migration
7497258, Feb 01 2005 Halliburton Energy Services, Inc Methods of isolating zones in subterranean formations using self-degrading cement compositions
7497278, Aug 14 2003 Halliburton Energy Services, Inc Methods of degrading filter cakes in a subterranean formation
7500521, Jul 06 2006 Halliburton Energy Services, Inc. Methods of enhancing uniform placement of a resin in a subterranean formation
7506689, Feb 22 2005 Halliburton Energy Services, Inc. Fracturing fluids comprising degradable diverting agents and methods of use in subterranean formations
7541318, May 26 2004 Halliburton Energy Services, Inc. On-the-fly preparation of proppant and its use in subterranean operations
7547665, Apr 29 2005 Halliburton Energy Services, Inc. Acidic treatment fluids comprising scleroglucan and/or diutan and associated methods
7553800, Nov 17 2004 Halliburton Energy Services, Inc. In-situ filter cake degradation compositions and methods of use in subterranean formations
7566753, Jun 23 2004 NatureWorks LLC Branching polylactide by reacting OH or COOH polylactide with epoxide acrylate (co)polymer
7571767, Sep 09 2004 Halliburton Energy Services, Inc High porosity fractures and methods of creating high porosity fractures
7595280, Aug 16 2005 Halliburton Energy Services, Inc. Delayed tackifying compositions and associated methods involving controlling particulate migration
7598208, Dec 15 2003 Halliburton Energy Services, Inc. Filter cake degradation compositions and methods of use in subterranean operations
7608566, Mar 30 2006 Halliburton Energy Services, Inc. Degradable particulates as friction reducers for the flow of solid particulates and associated methods of use
7608567, May 12 2005 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
7621334, Apr 29 2005 Halliburton Energy Services, Inc. Acidic treatment fluids comprising scleroglucan and/or diutan and associated methods
7637319, Feb 01 2005 Halliburton Energy Services, Inc Kickoff plugs comprising a self-degrading cement in subterranean well bores
7640985, Feb 01 2005 Halliburton Energy Services, Inc Methods of directional drilling and forming kickoff plugs using self-degrading cement in subterranean well bores
7648946, Nov 17 2004 Halliburton Energy Services, Inc. Methods of degrading filter cakes in subterranean formations
7662753, May 12 2005 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
7665517, Feb 15 2006 Halliburton Energy Services, Inc. Methods of cleaning sand control screens and gravel packs
7673686, Mar 29 2005 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
7674753, Sep 17 2003 Halliburton Energy Services, Inc. Treatment fluids and methods of forming degradable filter cakes comprising aliphatic polyester and their use in subterranean formations
7677315, May 12 2005 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
7678742, Sep 20 2006 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
7678743, Sep 20 2006 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
7686080, Nov 09 2006 Halliburton Energy Services, Inc. Acid-generating fluid loss control additives and associated methods
7687438, Sep 20 2006 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
7700525, Sep 22 2005 Halliburton Energy Services, Inc. Orthoester-based surfactants and associated methods
7712531, Jun 08 2004 Halliburton Energy Services, Inc. Methods for controlling particulate migration
7713916, Sep 22 2005 Halliburton Energy Services, Inc. Orthoester-based surfactants and associated methods
7757768, Oct 08 2004 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
7819192, Feb 10 2006 Halliburton Energy Services, Inc Consolidating agent emulsions and associated methods
7829507, Sep 17 2003 Halliburton Energy Services Inc. Subterranean treatment fluids comprising a degradable bridging agent and methods of treating subterranean formations
7833943, Sep 26 2008 Halliburton Energy Services, Inc Microemulsifiers and methods of making and using same
7833944, Sep 17 2003 Halliburton Energy Services, Inc. Methods and compositions using crosslinked aliphatic polyesters in well bore applications
7883740, Dec 12 2004 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
7888418, Dec 17 2007 Toyota Motor Corporation Block copolymer modified vegetable oil and polymer blends and methods of making same
7906464, May 13 2008 Halliburton Energy Services, Inc Compositions and methods for the removal of oil-based filtercakes
7926591, Feb 10 2006 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
7938181, Oct 08 2004 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
7939603, May 26 2009 Regents of the University of Minnesota Polylactide composites and methods of producing the same
7943566, Jun 21 2006 AHLSTROM-MUNKSJO NA SPECIALTY SOLUTIONS LLC Dryer sheet and methods for manufacturing and using a dryer sheet
7947644, Sep 26 2006 AHLSTROM-MUNKSJO NA SPECIALTY SOLUTIONS LLC Dryer sheet and methods for manufacturing and using a dryer sheet
7960314, Sep 26 2008 Halliburton Energy Services Inc. Microemulsifiers and methods of making and using same
7963330, Feb 10 2004 Halliburton Energy Services, Inc. Resin compositions and methods of using resin compositions to control proppant flow-back
7980024, Apr 27 2007 Algae Systems, LLC; IHI INC Photobioreactor systems positioned on bodies of water
7998910, Feb 24 2009 Halliburton Energy Services, Inc. Treatment fluids comprising relative permeability modifiers and methods of use
8006760, Apr 10 2008 Halliburton Energy Services, Inc Clean fluid systems for partial monolayer fracturing
8013031, Mar 26 2004 NatureWorks LLC Extruded polylactide foams blown with carbon dioxide
8017561, Mar 03 2004 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
8022169, Dec 06 2007 Industrial Technology Research Institute Aliphatic copolyesters and method of preparing the same
8030249, Jan 28 2005 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
8030251, Jan 28 2005 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
8058470, Sep 04 2006 Bio-Energy Corporation; OSAKA UNIVERSITY; KANSAI CHEMICAL ENGINEERING CO , LTD Polyester polyol
8076001, Sep 02 2008 PPG Industries Ohio, Inc Crosslinked coatings comprising lactide
8082992, Jul 13 2009 Halliburton Energy Services, Inc. Methods of fluid-controlled geometry stimulation
8110395, Jul 10 2006 Algae Systems, LLC; IHI INC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
8188013, Jan 31 2005 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
8220548, Jan 12 2007 Halliburton Energy Services, Inc Surfactant wash treatment fluids and associated methods
8329621, Jul 25 2006 Halliburton Energy Services, Inc. Degradable particulates and associated methods
8354279, Apr 18 2002 Halliburton Energy Services, Inc. Methods of tracking fluids produced from various zones in a subterranean well
8443885, Feb 10 2006 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
8507253, May 13 2002 Algae Systems, LLC; IHI INC Photobioreactor cell culture systems, methods for preconditioning photosynthetic organisms, and cultures of photosynthetic organisms produced thereby
8507264, Jul 10 2006 Algae Systems, LLC; IHI INC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
8541051, Aug 14 2003 Halliburton Energy Services, Inc. On-the fly coating of acid-releasing degradable material onto a particulate
8598092, Feb 02 2005 Halliburton Energy Services, Inc. Methods of preparing degradable materials and methods of use in subterranean formations
8613320, Feb 10 2006 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
8614286, Sep 02 2008 PPG Industries Ohio, Inc Biomass derived radiation curable liquid coatings
8689872, Jul 11 2005 KENT, ROBERT A Methods and compositions for controlling formation fines and reducing proppant flow-back
8734933, Sep 25 2009 TORAY PLASTICS (AMERICA), INC. Multi-layer high moisture barrier polylactic acid film
8795803, Sep 25 2009 TORAY PLASTICS (AMERICA), INC. Multi-layer high moisture barrier polylactic acid film
8859262, Apr 27 2007 Algae Systems, LLC; IHI INC Photobioreactor systems positioned on bodies of water
8877488, Jul 10 2006 Algae Systems, LLC; IHI INC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
9023443, Sep 25 2009 TORAY PLASTICS AMERICA , INC Multi-layer high moisture barrier polylactic acid film
9150004, Jun 19 2009 TORAY PLASTICS AMERICA , INC Biaxially oriented polylactic acid film with improved heat seal properties
9221213, Sep 25 2009 TORAY PLASTICS AMERICA , INC Multi-layer high moisture barrier polylactic acid film
9234075, Feb 10 2014 Samsung Electronics Co., Ltd.; SNU R&DB Foundation Polylactic acid preparation method, polylactic acid resin prepared using the method, resin composition comprising the polylactic acid resin, and catalyst system for preparing polylactic acid
9238324, Mar 31 2010 TORAY PLASTICS AMERICA , INC Biaxially oriented polylactic acid film with reduced noise level
9314999, Aug 15 2008 TORAY PLASTICS AMERICA , INC Biaxially oriented polylactic acid film with high barrier
9492962, Mar 31 2010 TORAY PLASTICS AMERICA , INC Biaxially oriented polylactic acid film with reduced noise level and improved moisture barrier
9493851, May 03 2012 VIRDIA, LLC Methods for treating lignocellulosic materials
9631246, May 03 2012 VIRDIA, LLC Methods for treating lignocellulosic materials
9650540, Sep 02 2008 PPG Industries Ohio, Inc Radiation curable coating compositions comprising a lactide reaction product
9650687, May 03 2012 VIRDIA, LLC Methods for treating lignocellulosic materials
9783861, May 03 2012 VIRDIA, LLC Methods for treating lignocellulosic materials
RE39713, Sep 23 1996 Genzyme Corporation Polymerizable biodegradable polymers including carbonate or dioxanone linkages
Patent Priority Assignee Title
4195167, May 28 1976 Union Carbide Corporation Gradient polymers of two or more cyclic, organic, ring-opening, addition polymerizable monomers and methods for making same
4644038, Sep 30 1985 STALEY CONTINENTAL, INC , ROLLING MEADOWS, ILLINOIS, A DE CORP Unsaturated poly (alpha-hydroxy acid) copolymers
5080665, Jul 06 1990 Sherwood Services AG Deformable, absorbable surgical device
5216043, Dec 12 1991 Minnesota Mining and Manufacturing Company Degradable thermophastic compositions and blends with naturally biodegradable polymers
5225521, Dec 31 1991 Ecological Chemical Products Star-shaped hydroxyacid polymers
WO9302075,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 29 1993GRUBER, PATRICK R Cargill, IncorporatedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0066580271 pdf
Jul 30 1993Cargill, Incorporated(assignment on the face of the patent)
Oct 20 2021NatureWorks LLCJPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0578790338 pdf
Date Maintenance Fee Events
Jan 22 1998ASPN: Payor Number Assigned.
Apr 24 1998M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Apr 24 2002M184: Payment of Maintenance Fee, 8th Year, Large Entity.
May 14 2002REM: Maintenance Fee Reminder Mailed.
Jul 09 2002ASPN: Payor Number Assigned.
Jul 09 2002RMPN: Payer Number De-assigned.
Apr 25 2006M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 25 19974 years fee payment window open
Apr 25 19986 months grace period start (w surcharge)
Oct 25 1998patent expiry (for year 4)
Oct 25 20002 years to revive unintentionally abandoned end. (for year 4)
Oct 25 20018 years fee payment window open
Apr 25 20026 months grace period start (w surcharge)
Oct 25 2002patent expiry (for year 8)
Oct 25 20042 years to revive unintentionally abandoned end. (for year 8)
Oct 25 200512 years fee payment window open
Apr 25 20066 months grace period start (w surcharge)
Oct 25 2006patent expiry (for year 12)
Oct 25 20082 years to revive unintentionally abandoned end. (for year 12)