A method for recovering hydrocarbons (e.g. oil) from a low permeability subterranean reservoir of the type comprised primarily of diatomite. A first slug or volume of a heated fluid (e.g. 60% quality steam) is injected into the reservoir at a pressure greater than the fracturing pressure of the reservoir. The well is then shut in and the reservoir is allowed to soak for a prescribed period (e.g. 10 days or more) to allow the oil to displaced by the steam into the fractures by imbibition. The well is then produced until the production rate drops below an economical level. A second slug of steam is then injected and the cycles are repeated with the volume of each subsequent slug of steam being progressively smaller that the one before it (i.e. about 80%) and the respective soak period being increased by about 20% over that of the previous cycle.

Patent
   5415231
Priority
Mar 21 1994
Filed
Mar 21 1994
Issued
May 16 1995
Expiry
Mar 21 2014
Assg.orig
Entity
Large
290
6
all paid
1. A method for recovering hydrocarbons from a low permeability, subterranean reservoir, said method comprising:
providing a wellbore into said reservoir;
injecting a first volume of heated fluid through said wellbore and into said reservoir at a pressure above the fracture pressure of said reservoir;
shutting in said wellbore and allowing said reservoir to soak for a first period of time;
opening said wellbore and producing said reservoir therethrough until the production of hydrocarbons declines below a desired limit;
injecting a second volume of heated fluid through said wellbore and into said reservoir, said second volume of heated fluid is equal to about 80% of said first volume of heated fluid;
shutting in said wellbore and allowing said reservoir to soak for a second period of time wherein said second period of time is equal to at least about 120% of said first period of time; and
opening said wellbore and producing said reservoir therethrough until the production of hydrocarbons again declines below a desired limit.
2. The method of claim 1 wherein said second volume of heated fluid is injected at a pressure above the fracturing pressure of the reservoir.
3. The method of claim 1 wherein said heated fluid is steam.
4. The method of claim 3 wherein the quality of said steam is at least about 60%.
5. The method of claim 3 including:
injecting a third volume of steam through said wellbore and into said reservoir, said third volume of steam is equal to about 80% of said second volume of steam;
shutting in said wellbore and allowing said reservoir to soak for a third period of time;
opening said wellbore and producing said reservoir therethrough until the production of hydrocarbons again declines below a desired limit.
6. The method of claim 5 wherein said third period of time is equal to about 120% of said second period of time.
7. The method of claim 6 wherein said third volume of steam is injected at a pressure above the fracturing pressure of the reservoir.
8. The method of claim 7 wherein said first period of time is at least 10 days.
9. The method of claim 3 including:
injecting additional volumes of steam into said reservoir;
shutting in said wellbore after each of said additional volumes of steams is injected and allowing the reservoir to soak for a prescribed period of time; and
opening said wellbore after each prescribed period of time and producing said reservoir therethrough until the production of hydrocarbons again declines below a desired limit; wherein each of said additional volume of steam is equal to about 80% of the preceeding volume.
10. The method of claim 9 wherein:
each of said additional volumes of steam is equal to at least 50% more than the fracture volume in said reservoir.
11. The method of claim 3 wherein said first volume of steam is equal to about 60 barrels of steam for each completed foot of reservoir lying adjacent said wellbore.
12. The method of claim 1 wherein said heated fluid is hot water.
13. The method of claim 1 including:
cleaning debris from the wellbore before the injection of said second volume of heated fluid.

The present invention relates to the production of fluids from low permeability reservoirs and in one of its aspects relates to an imbibition method for producing connate fluids (e.g. hydrocarbons) from a low permeability reservoir (e.g. diatomite) by cyclically injecting steam in decreasing amounts.

Substantial reserves of hydrocarbons (e.g. oil) are known to exist in reservoirs which have very low permeabilities. For example, billions of barrels of oil of proven reserves are known to be trapped in diatomaceous reservoirs in California, alone. A diatomaceous reservoir (i.e. formed primarily of diatomite) is characterized by high porosity, high compressibility, and very low permeability (e.g. as low as 0.1 millidarcy) which makes the recovery of the oil from these reservoirs extremely difficult.

Several methods have been proposed and/or used for producing these low permeability reservoirs. For example, routine, secondary-production techniques (e.g. water and/or gas floods, steam stimulation, etc.) are often used but due to the low permeability and the absence of any substantial natural fracture network in diatomaceous reservoirs, it is difficult to establish the necessary flow of the drive fluid through the reservoir. Of course, these reservoirs may be hydraulically fractured to improve the permeabilities thereof. However, due to the subsidence/compaction characteristics of diatomaceous reservoirs, the hydraulically-induced fractures along with the natural fractures have a tendency to close as fluids are withdrawn from the reservoir, thereby again substantially decreasing the permeability of the formation long before the recovery operation is completed.

Another technique for producing low permeable reservoirs is one which is known as "imbibition". In an imbibition waterflood, the natural or induced fracture network in the reservoir is flooded with water but, unlike a conventional waterflood, there is no co-current flow of water and oil through the rock matrix. In other words, the water does not push the oil ahead of it so there is no flow of oil and water through the formation in the same direction. Instead, capillary action causes water in the fractures to soak or imbibe into the matrix through the fracture face.

The oil displaced by this water, in turn, flows from the matrix into the fracture through the same fracture face by means of countercurrent flow. The displaced or exchanged oil is then produced from the fracture network by excess water flowing therethrough. For a further description and discussion of "imbibition", see U.S. Pat. No. 3,490,527, incorporated herein by reference. Recently, an imbibition process carried out in a specialized fracturing pattern has been proposed for increasing the production from diatomaceous reservoirs, see commonly-assigned, U.S. patent application Ser. No. 08/142,028, filed Oct. 28, 1993now U.S. Pat. No. 5,3777,756.

Further, cyclic injection of steam has been used for the recovery of heavy oil. However, it has usually been used in formations that are generally unconsolidated and having high permeabilities since it is difficult for the steam to penetrate any substantial distances into low permeable reservoirs such as those formed of diatomite. Further, where there is extremely viscous oil in some unconsolidated formations, high pressure steam has been used to fracture the formation to increase the rate of heat input into the reservoir, see "STEAM STIMULATION HEAVY OIL RECOVERY AT COLD LAKE, ALBERTA", R. S. Buckles, SPE 7994, Ventura, Calif., Apr. 18-20, 1979. However, in these known steam recovery operations, imbibition is not an important recovery mechanism.

The present invention provides a method for recovering hydrocarbons (e.g. oil) from a low permeability subterranean reservoir of the type comprised primarily of diatomite. A first slug or volume of a heated fluid (e.g. preferably high quality steam) is injected through a wellbore and into the reservoir at a pressure greater than the fracturing pressure of the reservoir. Injection of the heated fluid under these conditions creates a fracture in the reservoir that does not need to be propped. The first volume should be great enough to fill the fractures in the reservoir to provide as much heat to the reservoir as possible and up to the limiting rate of heat transfer at the solid side of the fracture face.

After the first volume or slug of heated fluid is injected, the wellbore is shut in and the reservoir is allowed to soak for a prescribed period (e.g. 10 days or more). The heated fluid condenses on the fracture faces to heat the reservoir immediately adjacent to the fracture faces. This reduces the viscosity of the oil and increases the wettability of the rock matrix, thereby increasing the rate of "imbibition" which is the primary mechanism involved in the production of the oil into the fractures. In other words, the heated fluid (i.e. condensed steam, hot water, etc.) in the fracture imbibes into the water-wet matrix thereby countercurrently expelling oil into the fractures.

At the end of the soak period, the well is opened and put on production. As the pressure in the reservoir is reduced during the production period, the unpropped fracture begins to close thereby pushing fluids out of the fracture towards the wellbore. The expelled reservoir fluids are produced from the fractures and through the wellbore until the production rate drops below an economical level. At the end of the production period and before commencing the next cycle, it may be necessary to clean out the wellbore to remove sand or the like.

Next, a second slug of heated fluid is injected which reopens the main fracture as well as other natural or newly-induced fractures. The hot water or condensed steam again provides the fluid to be imbibed into the matrix. The well is then soaked and produced as described above, completing the cycle. After this, a third slug of heated fluid may be injected and so on. The volume of each subsequent slug of steam is progressively smaller then the one before it (i.e. about 80% of the previous slug) and this may be continued until the volume of the slug to be injected approaches the volume of the main, open fracture in the reservoir. The soak period of each cycle, on the other hand, is increased by about 20% over that of the previous cycle since the temperature gradient at the fracture face will be decreasing with time, resulting in a slower rate of heat transfer.

The present invention is carried out through a typical wellbore has been drilled and completed from the surface into a low permeability reservoir, e.g. a diatomaceous reservoir. A diatomaceous reservoir (i.e. formed primarily of diatomite) is capable of containing large volumes of valuable connate fluids (e.g. hydrocarbons/oil) but is characterized by high porosity, high compressibility, and very low permeability (e.g. as low as 0.1 millidarcy) which makes the recovery of the fluids from these reservoirs extremely difficult.

The wellbore is typically cased throughout its length with a casing which, in turn, is normally cemented in place. The casing, in turn, is normally perforated along a linear portion which lies adjacent the production zone of the reservoir to establish fluid communication between the wellbore and the reservoir formation. As used herein, "reservoir" and "formation" may be used interchangeably when referring to the completed or production zone with the wellbore.

After the wellbore has been completed, a first slug or volume of a heated fluid is injected through the wellbore and into the reservoir at a pressure greater than the fracturing pressure of the reservoir. Steam is the preferred heated fluid because of its high heat content per unit mass as well as its high rate of heat transfer associated with condensation with the condensed steam providing the vehicle for imbibition. However, hot water (i.e. 0% steam) can be used in diatomaceous formations containing light oil.

When steam is the heated fluid, the quality of the steam should be relatively high, e.g. greater than about 60%. Injection of the steam under these conditions creates a fracture in the reservoir that does not need to be propped. By not having to prop the fractures, the cost of the recovery operation is significantly reduced.

The volume of the first slug should be large enough to fracture and fill both the induced and natural fractures within the reservoir with steam. This volume may be calculated from the known characteristics and properties of the particular reservoir being produced. The main consideration in determining this volume is to provide as much heat into the reservoir as possible up to the limiting rate of heat transfer at the solid side of the fracture face. More specificially, the approximate size of the first volume can be arrived at by using the following simplified heat balance equation:

Qt =Vs Hs =CVr T

wherein:

Qt =Total heat in Btu

Vs =Volume of first slug of steam in barrels (bbls)

Hs =Enthalpy or heat content of steam (Btu/bbl) C=Heat capacity of reservoir (Btu/ft3)

Vr =Volume of reservoir heated=4 Lhd

4=number of fracture faces

L=Length of fracture in feet

h=height of completion zone or interval in feet

d=depth of penetration from fracture face

T=Tf -To

Tf =Average temperature of adjacent reservoir after steam injection

To =Average temperature of adjacent reservoir prior to steam injection

Using the above relationships in a typical reservoir wherein Hs =295,000 Btu/bbl.; L=300 ft; d=4 ft.; (C=35 Btu/ft3); and T=100° F., the first volume of steam (Vs) is found to be about 57 bbls./ft. of interval h. This can be rounded upward to approximately 60 bbls./ft. to insure sufficient steam is injected in this example.

After the first volume or slug of heated fluid (e.g. steam) is injected, the wellbore is shut in and the reservoir is allowed to soak for a prescribed period. The soak time is normally based on experience relating to the known parameters of the particular reservoir. While this time may vary depending on a specific situation, it should be no less than 10 days.

The basic purpose of injecting a large volume of steam as a first slug in the present invention is to generate a large fracture(s) into the formation and to allow the steam to condense on the fracture faces, thereby heating the reservoir immediately adjacent the fracture faces. The benefits of this are twofold: 1) it reduces the viscosity of the hydrocarbons in the rock matrix; and 2) it increases the wettability of the rock matrix, thereby resulting in greater rates of production due to imbibition. Still another potential benefit is that it expels solution gas from the heated oil which may push more oil into the fractures. In other words, the condensed steam in the fracture imbibes into the water-wet matrix thereby countercurrently expelling oil into the fractures.

After the reservoir has undergone its soak period, the well is opened and put on production. As the pressure in the reservoir is reduced during the production period, the unpropped fracture begins to close thereby pushing fluids out fracture towards the wellbore. The imbibed reservoir fluids are produced from the fractures and through the wellbore until the rate of hydrocarbon production drops below an economical level. At the end of the production period and before commencing the next cycle, it may be necessary to clean out the wellbore to remove siliceous and/or other material which may have been produced into the wellbore along with the fluids.

Next, a second slug of steam is injected and the complete cycle is repeated after which a third slug of steam may be injected and so on. The volume of each subsequent slug of steam is progressively smaller than the one before it and this may be continued until the volume of the slug to be injected approaches the volume of the fracture in the reservoir. As the area around the fracture faces heats up, it becomes more and more difficult for heat to be conducted further out into the formation. Accordingly, excessive volumes of steam (i.e. all volumes equal to that of the first volume) would result in wasted heat and would unnecessarily add substantially to the costs of the recovery operation.

More specifically, in each subsequent cycle of the present invention, approximately 80% of the previous volume of steam is injected into the reservoir. That is, a second slug of steam having a volume equal to approximately about 80% of the first volume is injected into the reservoir. Less steam is required during each successive cycle because of the heat already imparted to the reservoir by the previous cycle(s). The soak period of each cycle, on the other hand, is increased by about 20% over that of the previous cycle since the temperature gradient at the fracture face will be decreasing with time, resulting in a slower rate of heat transfer. Also, oil that is countercurrently expelled will have further to travel from its original place in the matrix to the fracture than did the previously displaced oil.

The cycles of the recovery operation are repeated with successive smaller amounts of steam being injected until the volume of steam approaches the volume of the fracture in the reservoir (e.g. estimated with tiltmeter surveys or the like). At this point, the injected volume may be insufficient to completely fill the entire fracture so preferably, the minimum volume of a slug of steam is always at least about 1.5 times or 50% more than the fracture volume as estimated.

Timmer, Robert S., Northrop, Paul S.

Patent Priority Assignee Title
10047594, Jan 23 2012 GENIE IP B V Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
10954430, Jan 12 2012 Courtney Gene, Rogers Low-toxicity, low-flammability, environmentally-safe, friction reducer fluid for hydraulic fracturing
5984010, Jun 23 1997 ELIAS, RAMON; POWELL, RICHARD R , JR ; PRATS, MICHAEL Hydrocarbon recovery systems and methods
6142229, Sep 16 1998 Atlantic Richfield Company Method and system for producing fluids from low permeability formations
6173775, Jun 23 1997 ELIAS, RAMON; POWELL, RICHARD R , JR ; PRATS, MICHAEL Systems and methods for hydrocarbon recovery
6446721, Apr 07 2000 Chevron U.S.A. Inc. System and method for scheduling cyclic steaming of wells
6581684, Apr 24 2000 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
6588504, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
6591906, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
6591907, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with a selected vitrinite reflectance
6607033, Apr 24 2000 Shell Oil Company In Situ thermal processing of a coal formation to produce a condensate
6609570, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation and ammonia production
6688387, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
6698515, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
6702016, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
6708758, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
6712135, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
6712136, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
6712137, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
6715546, Apr 24 2000 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
6715547, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
6715548, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
6715549, Apr 04 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
6719047, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
6722429, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
6722430, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
6722431, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of hydrocarbons within a relatively permeable formation
6725920, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
6725921, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
6725928, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
6729395, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
6729396, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
6729397, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
6729401, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
6732794, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
6732795, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
6732796, Apr 24 2000 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
6736215, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
6739393, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation and tuning production
6739394, Apr 24 2000 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
6742587, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
6742588, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
6742589, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
6742593, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
6745831, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
6745832, Apr 24 2000 SALAMANDER SOLUTIONS INC Situ thermal processing of a hydrocarbon containing formation to control product composition
6745837, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
6749021, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
6752210, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
6758268, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
6761216, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
6763886, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
6769483, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
6769485, Apr 24 2000 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
6789625, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
6805195, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
6820688, Apr 24 2000 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
6866097, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
6871707, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
6877554, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
6877555, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
6880633, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
6880635, Apr 24 2000 Shell Oil Company In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
6889769, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
6896053, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
6902003, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
6902004, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a movable heating element
6910536, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
6913078, Apr 24 2000 Shell Oil Company In Situ thermal processing of hydrocarbons within a relatively impermeable formation
6915850, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
6918442, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
6918443, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
6923257, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation to produce a condensate
6923258, Apr 24 2000 Shell Oil Company In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
6929067, Apr 24 2001 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
6932155, Oct 24 2001 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
6948562, Apr 24 2001 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
6948563, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
6951247, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
6953087, Apr 24 2000 Shell Oil Company Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
6959761, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
6964300, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
6966372, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
6966374, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
6969123, Oct 24 2001 Shell Oil Company Upgrading and mining of coal
6973967, Apr 24 2000 Shell Oil Company Situ thermal processing of a coal formation using pressure and/or temperature control
6981548, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation
6991031, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
6991032, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
6991033, Apr 24 2001 Shell Oil Company In situ thermal processing while controlling pressure in an oil shale formation
6991036, Apr 24 2001 Shell Oil Company Thermal processing of a relatively permeable formation
6991045, Oct 24 2001 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
6994160, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
6994161, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with a selected moisture content
6994168, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
6994169, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation with a selected property
6997255, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a reducing environment
6997518, Apr 24 2001 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
7004247, Apr 24 2001 Shell Oil Company Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
7004251, Apr 24 2001 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
7011154, Oct 24 2001 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
7013972, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
7017661, Apr 24 2000 Shell Oil Company Production of synthesis gas from a coal formation
7032660, Apr 24 2001 Shell Oil Company In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
7036583, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
7040398, Apr 24 2001 Shell Oil Company In situ thermal processing of a relatively permeable formation in a reducing environment
7040399, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using a controlled heating rate
7040400, Apr 24 2001 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
7051807, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation with quality control
7051808, Oct 24 2001 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
7051811, Apr 24 2001 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
7055600, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
7063145, Oct 24 2001 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
7066254, Oct 24 2001 Shell Oil Company In situ thermal processing of a tar sands formation
7066257, Oct 24 2001 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
7073578, Oct 24 2002 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
7077198, Oct 24 2001 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
7077199, Oct 24 2001 Shell Oil Company In situ thermal processing of an oil reservoir formation
7086465, Oct 24 2001 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
7086468, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
7090013, Oct 24 2002 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
7096941, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
7096942, Apr 24 2001 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
7096953, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
7100994, Oct 24 2002 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
7104319, Oct 24 2001 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
7114566, Oct 24 2001 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
7121341, Oct 24 2002 Shell Oil Company Conductor-in-conduit temperature limited heaters
7121342, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
7128153, Oct 24 2001 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
7156176, Oct 24 2001 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
7165615, Oct 24 2001 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
7219734, Oct 24 2002 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
7225866, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
7320364, Apr 23 2004 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
7353872, Apr 23 2004 Shell Oil Company Start-up of temperature limited heaters using direct current (DC)
7357180, Apr 23 2004 Shell Oil Company Inhibiting effects of sloughing in wellbores
7360588, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
7370704, Apr 23 2004 Shell Oil Company Triaxial temperature limited heater
7383877, Apr 23 2004 Shell Oil Company Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
7424915, Apr 23 2004 Shell Oil Company Vacuum pumping of conductor-in-conduit heaters
7431076, Apr 23 2004 Shell Oil Company Temperature limited heaters using modulated DC power
7435037, Apr 22 2005 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
7461691, Oct 24 2001 Shell Oil Company In situ recovery from a hydrocarbon containing formation
7481274, Apr 23 2004 Shell Oil Company Temperature limited heaters with relatively constant current
7490665, Apr 23 2004 Shell Oil Company Variable frequency temperature limited heaters
7500528, Apr 22 2005 Shell Oil Company Low temperature barrier wellbores formed using water flushing
7510000, Apr 23 2004 Shell Oil Company Reducing viscosity of oil for production from a hydrocarbon containing formation
7527094, Apr 22 2005 Shell Oil Company Double barrier system for an in situ conversion process
7533719, Apr 21 2006 Shell Oil Company Wellhead with non-ferromagnetic materials
7540324, Oct 20 2006 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
7546873, Apr 22 2005 Shell Oil Company Low temperature barriers for use with in situ processes
7549470, Oct 24 2005 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
7556095, Oct 24 2005 Shell Oil Company Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
7556096, Oct 24 2005 Shell Oil Company Varying heating in dawsonite zones in hydrocarbon containing formations
7559367, Oct 24 2005 Shell Oil Company Temperature limited heater with a conduit substantially electrically isolated from the formation
7559368, Oct 24 2005 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
7562706, Oct 24 2005 Shell Oil Company Systems and methods for producing hydrocarbons from tar sands formations
7562707, Oct 20 2006 Shell Oil Company Heating hydrocarbon containing formations in a line drive staged process
7575052, Apr 22 2005 Shell Oil Company In situ conversion process utilizing a closed loop heating system
7575053, Apr 22 2005 Shell Oil Company Low temperature monitoring system for subsurface barriers
7581589, Oct 24 2005 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
7584789, Oct 24 2005 Shell Oil Company Methods of cracking a crude product to produce additional crude products
7591310, Oct 24 2005 Shell Oil Company Methods of hydrotreating a liquid stream to remove clogging compounds
7597147, Apr 21 2006 United States Department of Energy Temperature limited heaters using phase transformation of ferromagnetic material
7604052, Apr 21 2006 Shell Oil Company Compositions produced using an in situ heat treatment process
7610962, Apr 21 2006 Shell Oil Company Sour gas injection for use with in situ heat treatment
7631689, Apr 21 2006 Shell Oil Company Sulfur barrier for use with in situ processes for treating formations
7631690, Oct 20 2006 Shell Oil Company Heating hydrocarbon containing formations in a spiral startup staged sequence
7635023, Apr 21 2006 Shell Oil Company Time sequenced heating of multiple layers in a hydrocarbon containing formation
7635024, Oct 20 2006 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Heating tar sands formations to visbreaking temperatures
7635025, Oct 24 2005 Shell Oil Company Cogeneration systems and processes for treating hydrocarbon containing formations
7640980, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
7640987, Aug 17 2005 Halliburton Energy Services, Inc Communicating fluids with a heated-fluid generation system
7644765, Oct 20 2006 Shell Oil Company Heating tar sands formations while controlling pressure
7662215, Jul 12 2004 ExxonMobil Upstream Research Company Methods for removing sulfur-containing compounds
7673681, Oct 20 2006 Shell Oil Company Treating tar sands formations with karsted zones
7673786, Apr 21 2006 Shell Oil Company Welding shield for coupling heaters
7677310, Oct 20 2006 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
7677314, Oct 20 2006 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
7681647, Oct 20 2006 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
7683296, Apr 21 2006 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
7703513, Oct 20 2006 Shell Oil Company Wax barrier for use with in situ processes for treating formations
7717171, Oct 20 2006 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
7730945, Oct 20 2006 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
7730946, Oct 20 2006 Shell Oil Company Treating tar sands formations with dolomite
7730947, Oct 20 2006 Shell Oil Company Creating fluid injectivity in tar sands formations
7735935, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
7770643, Oct 10 2006 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
7785427, Apr 21 2006 Shell Oil Company High strength alloys
7793722, Apr 21 2006 Shell Oil Company Non-ferromagnetic overburden casing
7797139, Dec 07 2001 CHEVRON U S A , INC Optimized cycle length system and method for improving performance of oil wells
7798220, Apr 20 2007 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
7798221, Apr 24 2000 Shell Oil Company In situ recovery from a hydrocarbon containing formation
7809538, Jan 13 2006 Halliburton Energy Services, Inc Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
7831134, Apr 22 2005 Shell Oil Company Grouped exposed metal heaters
7832482, Oct 10 2006 Halliburton Energy Services, Inc. Producing resources using steam injection
7832484, Apr 20 2007 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
7841401, Oct 20 2006 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
7841408, Apr 20 2007 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
7841425, Apr 20 2007 Shell Oil Company Drilling subsurface wellbores with cutting structures
7845411, Oct 20 2006 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
7849922, Apr 20 2007 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
7860377, Apr 22 2005 Shell Oil Company Subsurface connection methods for subsurface heaters
7866385, Apr 21 2006 Shell Oil Company Power systems utilizing the heat of produced formation fluid
7866386, Oct 19 2007 Shell Oil Company In situ oxidation of subsurface formations
7866388, Oct 19 2007 Shell Oil Company High temperature methods for forming oxidizer fuel
7912358, Apr 21 2006 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Alternate energy source usage for in situ heat treatment processes
7931086, Apr 20 2007 Shell Oil Company Heating systems for heating subsurface formations
7942197, Apr 22 2005 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
7942203, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
7950453, Apr 20 2007 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
7986869, Apr 22 2005 Shell Oil Company Varying properties along lengths of temperature limited heaters
8011451, Oct 19 2007 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
8027571, Apr 22 2005 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD In situ conversion process systems utilizing wellbores in at least two regions of a formation
8042610, Apr 20 2007 Shell Oil Company Parallel heater system for subsurface formations
8070840, Apr 22 2005 Shell Oil Company Treatment of gas from an in situ conversion process
8083813, Apr 21 2006 Shell Oil Company Methods of producing transportation fuel
8113272, Oct 19 2007 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
8146661, Oct 19 2007 Shell Oil Company Cryogenic treatment of gas
8146669, Oct 19 2007 Shell Oil Company Multi-step heater deployment in a subsurface formation
8151880, Oct 24 2005 Shell Oil Company Methods of making transportation fuel
8151907, Apr 18 2008 SHELL USA, INC Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
8162059, Oct 19 2007 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Induction heaters used to heat subsurface formations
8162405, Apr 18 2008 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
8172335, Apr 18 2008 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
8177305, Apr 18 2008 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
8191630, Oct 20 2006 Shell Oil Company Creating fluid injectivity in tar sands formations
8192682, Apr 21 2006 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD High strength alloys
8196658, Oct 19 2007 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
8220539, Oct 13 2008 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
8224163, Oct 24 2002 Shell Oil Company Variable frequency temperature limited heaters
8224164, Oct 24 2002 DEUTSCHE BANK AG NEW YORK BRANCH Insulated conductor temperature limited heaters
8224165, Apr 22 2005 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
8225866, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ recovery from a hydrocarbon containing formation
8230927, Apr 22 2005 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
8233782, Apr 22 2005 Shell Oil Company Grouped exposed metal heaters
8238730, Oct 24 2002 Shell Oil Company High voltage temperature limited heaters
8240774, Oct 19 2007 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
8256512, Oct 13 2008 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
8261832, Oct 13 2008 Shell Oil Company Heating subsurface formations with fluids
8267170, Oct 13 2008 Shell Oil Company Offset barrier wells in subsurface formations
8267185, Oct 13 2008 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
8272455, Oct 19 2007 Shell Oil Company Methods for forming wellbores in heated formations
8276661, Oct 19 2007 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
8281861, Oct 13 2008 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
8327681, Apr 20 2007 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
8327932, Apr 10 2009 Shell Oil Company Recovering energy from a subsurface formation
8353347, Oct 13 2008 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
8355623, Apr 23 2004 Shell Oil Company Temperature limited heaters with high power factors
8381815, Apr 20 2007 Shell Oil Company Production from multiple zones of a tar sands formation
8434555, Apr 10 2009 Shell Oil Company Irregular pattern treatment of a subsurface formation
8448707, Apr 10 2009 Shell Oil Company Non-conducting heater casings
8459359, Apr 20 2007 Shell Oil Company Treating nahcolite containing formations and saline zones
8485252, Apr 24 2000 Shell Oil Company In situ recovery from a hydrocarbon containing formation
8536497, Oct 19 2007 Shell Oil Company Methods for forming long subsurface heaters
8555971, Oct 20 2006 Shell Oil Company Treating tar sands formations with dolomite
8562078, Apr 18 2008 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
8579031, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
8606091, Oct 24 2005 Shell Oil Company Subsurface heaters with low sulfidation rates
8627887, Oct 24 2001 Shell Oil Company In situ recovery from a hydrocarbon containing formation
8631866, Apr 09 2010 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
8636323, Apr 18 2008 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
8662175, Apr 20 2007 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
8672027, Feb 24 2009 EOG Resources Inc. In situ fluid reservoir stimulation process
8701768, Apr 09 2010 Shell Oil Company Methods for treating hydrocarbon formations
8701769, Apr 09 2010 Shell Oil Company Methods for treating hydrocarbon formations based on geology
8739874, Apr 09 2010 Shell Oil Company Methods for heating with slots in hydrocarbon formations
8752904, Apr 18 2008 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
8789586, Apr 24 2000 Shell Oil Company In situ recovery from a hydrocarbon containing formation
8791396, Apr 20 2007 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Floating insulated conductors for heating subsurface formations
8820406, Apr 09 2010 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
8833453, Apr 09 2010 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
8851170, Apr 10 2009 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
8857506, Apr 21 2006 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Alternate energy source usage methods for in situ heat treatment processes
8881806, Oct 13 2008 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Systems and methods for treating a subsurface formation with electrical conductors
9016370, Apr 08 2011 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
9022109, Apr 09 2010 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
9022118, Oct 13 2008 Shell Oil Company Double insulated heaters for treating subsurface formations
9033042, Apr 09 2010 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
9051829, Oct 13 2008 Shell Oil Company Perforated electrical conductors for treating subsurface formations
9127523, Apr 09 2010 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
9127538, Apr 09 2010 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
9129728, Oct 13 2008 Shell Oil Company Systems and methods of forming subsurface wellbores
9181780, Apr 20 2007 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
9309755, Oct 07 2011 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
9399905, Apr 09 2010 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
9528322, Apr 18 2008 SHELL USA, INC Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
9587169, Jan 12 2012 ROGERS, COURTNEY GENE Low-toxicity, low-flammability, environmentally-safe, friction reducer fluid for hydraulic fracturing
9605524, Jan 23 2012 GENIE IP B V Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
Patent Priority Assignee Title
3490527,
3739852,
5085276, Aug 29 1990 CHEVRON RESEARCH AND TECHNOLOGY COMPANY, SAN FRANCISCO, CA A CORP OF DE Production of oil from low permeability formations by sequential steam fracturing
5247993, Jun 16 1992 Union Oil Company of California Enhanced imbibition oil recovery process
5305829, Sep 25 1992 Chevron Research and Technology Company Oil production from diatomite formations by fracture steamdrive
5325920, Dec 18 1992 Mobil Oil Corporation Enhanced oil recovery from low permeability reservoirs using organosilicone surfactants
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 03 1994TIMMER, ROBERT SCOTTMobil Oil CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0069300335 pdf
Mar 04 1994NORTHROP, PAUL SCOTTMobil Oil CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0069300335 pdf
Mar 21 1994Mobil Oil Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Nov 13 1998M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 24 2002M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 07 2002ASPN: Payor Number Assigned.
Sep 26 2006M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
May 16 19984 years fee payment window open
Nov 16 19986 months grace period start (w surcharge)
May 16 1999patent expiry (for year 4)
May 16 20012 years to revive unintentionally abandoned end. (for year 4)
May 16 20028 years fee payment window open
Nov 16 20026 months grace period start (w surcharge)
May 16 2003patent expiry (for year 8)
May 16 20052 years to revive unintentionally abandoned end. (for year 8)
May 16 200612 years fee payment window open
Nov 16 20066 months grace period start (w surcharge)
May 16 2007patent expiry (for year 12)
May 16 20092 years to revive unintentionally abandoned end. (for year 12)