The present invention reliably computes cardiac output with a noninvasive procedure. The system measures the electrical impedance of a patient's body, during a time interval of interest. The system then obtains frequency transforms of various time segments of the first derivative of the impedance signal. Each such transform is integrated over a frequency range of interest, and the values of the integrals are plotted as a function of time. The graph so derived has characteristic extrema which can be used to identify critical points in the impedance derivative signal. These critical points can be used to determine parameters which are used in a calculation of stroke volume and cardiac output.

Patent
   5423326
Priority
Sep 12 1991
Filed
May 14 1993
Issued
Jun 13 1995
Expiry
Jun 13 2012

TERM.DISCL.
Assg.orig
Entity
Small
222
36
all paid

REINSTATED
7. A method of measuring cardiac output of a patient, the method comprising the steps of:
a) measuring electrical impedance of the patient's body, and computing a first graph of said impedance as a function of time,
b) computing a plurality of definite integrals of a transform of a signal represented in said first graph, over a frequency range of interest, and deriving a second graph by plotting said definite integrals as a function of time, and
c) comparing said first graph with said second graph, said second graph having a recognizable pattern of extrema, wherein the extrema of the second graph identify points on the first graph which determine parameters from which one can calculate cardiac output, and using said parameters to calculate cardiac output.
10. Apparatus for measuring cardiac output of a patient, the apparatus comprising:
a) means for comparing a first graph derived by measuring electrical impedance of the patient's body, with a second graph having extrema, wherein the extrema of the second graph identify points on the first graph which determine parameters from which one can calculate cardiac output, and means for using said parameters to calculate cardiac output, and
b) means for plotting a definite integral of a transform of a signal represented in said first graph, over a frequency range of interest, as a function of time, the plotting means having an output, the plotting means including means for connecting said output to the comparing means wherein the second graph is obtained from said means for plotting.
4. A method of measuring cardiac output, the method comprising the steps of:
a) obtaining a signal corresponding to a first derivative of electrical impedance of a patient, with respect to time,
b) deriving, for each moment in time, a function which relates intensity of the signal to its frequency, and deriving a graph corresponding to said function,
c) computing a definite integral of each graph derived in step (b), over a frequency range of interest, and plotting said computed definite integrals as a function of time to form another graph,
d) comparing extrema of the graph formed in step (c) with the signal obtained in step (a) to identify points on the signal of step (a) which determine a maximum impedance derivative and a ventricular ejection time, and
e) computing cardiac output from knowledge of the maximum impedance derivative and the ventricular ejection time
12. Apparatus for determining cardiac output of a patient, the apparatus comprising:
a) at least one pair of electrodes connectable to the patient, a source of electric current connected to the electrodes, and means for determining instantaneous body impedance of the patient connected to the electrodes,
b) computer means for receiving and processing data from the impedance determining means,
c) wherein the computer means comprises means for calculating a plurality of frequency transforms of a first derivative of the impedance, for each of a plurality of periods of time, generating a graph formed by plotting definite integrals of said frequency transforms, over a frequency range of interest, against times corresponding to said frequency transforms, comparing the graph with the first derivative of the impedance to determine parameters necessary to calculate cardiac output, and using said parameters to calculate cardiac output.
1. A method of measuring cardiac output of a patient, the method comprising the steps of:
a) measuring electrical impedance between two locations on the patient, for a predetermined first time interval, thereby obtaining an impedance signal over said first time interval,
b) differentiating said impedance signal to obtain a signal representative of a first derivative of said impedance signal over said first time interval,
c) computing a frequency transform of said first derivative of said impedance signal, for each of a plurality of discrete second time intervals, each second time interval being at least an order of magnitude shorter than said first time interval, each of said frequency transforms comprising a function of power versus frequency at one of said second time intervals,
d) computing a plurality of,definite integrals of each of said frequency transforms, the definite integrals being taken over a predetermined range of frequencies,
e) assembling a graph having an abscissa which comprises time, and an ordinate comprising one of said definite integrals which corresponds to a time represented by the abscissa,
f) identifying points in time at which extrema appear in the graph produced in step (e), and determining corresponding points in time in said first derivative of said impedance signal,
g) using said points in the first derivative of said impedance signal to determine a maximum excursion of said first derivative of said impedance signal and to determine a time interval corresponding to ventricular ejection time of the patient, and
h) calculating cardiac output according to the maximum first derivative of said impedance signal and the ventricular ejection time determined in step (g).
2. The method of claim 1, wherein the frequency transform in step (c) comprises a Fourier transform.
3. The method of claim 1, further comprising the steps of measuring an electrocardiogram of the patient, and using the electrocardiogram to determine a time at which said first time interval begins.
5. The method of claim 4, wherein the function derived in step (b) comprises a Fourier transform.
6. The method of claim 4, further comprising the steps of measuring an electrocardiogram of the patient, and using the electrocardiogram to select a time at which the impedance derivative signal is considered to begin.
8. The method of claim 7, wherein the transform of step (b) comprises a Fourier transform.
9. The method of claim 7, further comprising the steps of measuring an electrocardiogram of the patient, and using the electrocardiogram to select a time at which said first graph begins.
11. The apparatus of claim 10, wherein the comparing means comprises a programmable computer.

This is a continuation-in-part of the application Ser. No. 08/061,793 of Xiang Wang and Hun H. Sun entitled "System and Method of Impedance Cardiography Monitoring", filed May 13, 1993, which is a continuation-in-part of application Ser. No. 07/834,425, filed Feb. 12, 1992 now U.S. Pat. No. 5,309,917, which is a continuation-in-part of application Ser. No. 07/758,034, filed Sep. 12, 1991 now abandoned. The present application hereby incorporates by reference the disclosures of all of the above-identified applications.

The present invention relates to impedance cardiography. Impedance cardiography is a method of using the measured electrical impedance of the body to determine cardiac output.

When electrodes are connected at two locations on the human body, and an alternating electric current is made to flow through the body, from one electrode to the other, one finds that the body has a measurable impedance which varies with time. If the electrodes are placed such that the current flows through the thorax, the changes in impedance result from changes in the amount of blood flowing in the vessels in the region between the electrodes. In general, the effective impedance of the portion of the body between the electrodes varies inversely with the amount of blood in these vessels. Thus, in theory, one can determine the amount of blood in the thoracic vessels, at a given time, from a measurement of electrical impedance of the body. Such impedance is called "bioimpedance" because it comprises impedance of a set of biological tissues.

The instantaneous amount of blood in the vessels is directly related to the performance of the heart. When blood is pumped out of the heart, the vessels in the thorax become momentarily filled with blood, and the impedance in the thorax decreases rapidly. After the ventricular contraction is complete, the impedance increases to its former level. Analysis of bioimpedance can therefore provide information on cardiac output.

Other investigators have developed mathematical models which express cardiac output as a function of certain parameters which can be derived from measurements of bioimpedance. Examples of such models are found in Re. U.S. Patent No. 30,101 (Kubicek) and U.S. Pat. No. 4,450,527 (Sramek). The disclosures of both of the above-cited patents are incorporated by reference into this specification. The Sramek patent also describes another model published by Kubicek in 1974, after the issuance of the original Kubicek patent. Both the model disclosed by the Sramek patent, and the model developed by Kubicek in 1974 require measurement of two critical parameters to determine stroke volume (and hence cardiac output). The first parameter is the maximum excursion of the first derivative of the impedance signal, starting at a time corresponding to the opening of the aortic valve. The second parameter is the ventricular ejection time (VET), which is equivalent to the time interval between the opening and subsequent closing of the aortic valve.

The technique of using bioimpedance measurements to determine cardiac output has great allure, because it enables the physician to obtain important information on heart function with an entirely noninvasive procedure. Alternative methods of determining cardiac output require heart catheterization, which carries an inherent risk, and which is relatively expensive.

Unfortunately, the bioimpedance techniques of the prior art have not been very successful in reliably measuring cardiac output. The primary problem with bioimpedance measurements is separating the "true" signal from spurious signals, or "artifacts". For example, the breathing of a patient is known to affect the impedance profile of the body. Some investigators have suggested taking impedance measurements while the subject briefly stops breathing. Obviously, the latter solution is not desirable and not usually very practical. Others have suggested taking an arithmetic average of several measurements to compensate for the so-called respiratory artifact. This averaging technique has not yielded satisfactory results. Still others have proposed ensemble averaging techniques which include superimposing a plurality of waveforms and obtaining information from a derived "average" waveform. But ensemble averaging techniques are not valid if the underlying signal is not strictly periodic.

In general, it is very difficult to analyze the signal representing the derivative of impedance. Various artifacts mask the critical features of this signal, and there has been no easy method of reliably extracting from the impedance signal the information needed for calculation of cardiac output.

The present invention provides an improved method and apparatus for measuring cardiac output, and overcomes the problems described above. The method of the present invention provides a reliable means of deriving meaningful data from bioimpedance measurements, while eliminating the effects of artifacts in the impedance signal.

In brief, the method of the present invention includes deriving a graph which contains an unambiguous pattern of extreme points, which graph can be used to identify the critical points in the impedance derivative signal necessary for calculation of cardiac output.

According to this method, one first obtains a measurement of thoracic impedance, during a time interval of interest. From this impedance measurement, one derives a signal representing the first derivative of the impedance signal. Next, one divides the above-mentioned time interval of interest into a large number of short time intervals. For each such short time interval, one computes a frequency transform (such as a Fourier transform, a Fast Fourier transform, or the like), each frequency transform being capable of being represented by a graph showing power or intensity as a function of frequency. All of the frequency transforms can be assembled into one three-dimensional graph which relates time, frequency, and intensity.

Next, one converts the three-dimensional graph into a two-dimensional graph, in the following manner. For each point in time, one computes a definite integral of the frequency transform over a frequency range of interest. Each such definite integral yields a number which is plotted against time. The resulting two-dimensional graph contains unambiguous extrema which form a recognizable and repeating pattern. The two-dimensional graph is then compared with a graph of the signal representing the first derivative of impedance. One can use the extrema from the above-described two-dimensional graph to identify the critical points on the impedance derivative signal, which critical points define parameters which are used in making an accurate calculation of cardiac output.

The above-described method is preferably implemented with a digital computer, so that the impedance signal can be quickly analyzed and the results obtained in real-time.

The present invention therefore has the primary object of providing an improved method and apparatus for performing impedance cardiography.

The invention has the further object of providing a method and apparatus which overcomes the problem of interpreting an impedance signal in the presence of noise or artifacts in the signal.

The invention has the further object of improving the accuracy and reliability of impedance cardiography.

The invention has the further object of providing a reliable, accurate, and entirely noninvasive technique for measuring cardiac output.

The reader skilled in the art will recognize other objects and advantages of the invention, from a reading of the following brief description of the invention, the detailed description of the invention, and the appended claims.

FIG. 1 provides a graph showing a typical signal representing the inverted first derivative of thoracic impedance of a patient.

FIG. 2 provides a graph showing the division of the impedance derivative signal into a plurality of segments corresponding to small intervals of time.

FIG. 3 provides a graph showing a hypothetical frequency transform of the impedance derivative signal, taken for a particular short interval of time.

FIG. 4 shows a portion of a three-dimensional graph derived by assembling a plurality of frequency transforms of the type shown in FIG. 3.

FIG. 5 shows a two-dimensional graph derived from the three-dimensional graph of FIG. 4, the two-dimensional graph being used to interpret the relevant portions of the impedance derivative signal.

FIG. 6 provides a block diagram of the apparatus made according to the present invention, and includes front and side views of a patient.

FIG. 7 provides a flow chart illustrating the essential steps of the method of the present invention.

The essence of the method of the present invention is the derivation of a graph which unambiguously locates certain critical points on an impedance derivative signal, which critical points enable the computation of cardiac output. The latter graph, produced by the steps outlined below, virtually eliminates artifacts from the impedance derivative signal.

The first step in the method of the present invention is to measure thoracic impedance. The measurement can be done in any conventional manner, and the details of such measurement will be known to the reader skilled in the art. The result of the measurement is a signal representing thoracic impedance as a function of time, over a time interval of interest. The interval of interest usually begins at or before the beginning of a stroke of the heart and ends after the stroke is completed.

The next step is to differentiate the impedance signal with respect to time. FIG. 1 shows a graph of a signal representing the first derivative of the impedance. When the aortic valve opens, and blood fills the vessels in the thorax, the electrical impedance rapidly decreases. Thus, the major excursion of the impedance derivative signal is negative. For convenience of interpretation, it is customary to change the sign of the impedance derivative, to create a positive-going signal. Thus, FIG. 1 shows the negative of the impedance derivative signal. The vertical distance from point B to point C is called |(dZ/dt)max |. Whether one uses the impedance derivative signal, or the negative of the impedance derivative signal (as shown in FIG. 1) does not significantly affect the method of the present invention, or the apparatus used to practice the method. In FIG. 1, the units on the vertical axis are arbitrary. The units on the horizontal axis are such that 500 units equal one second. Of course, the scale can be changed. The graph below the graph of the impedance signal in FIG. 1 represents heart sounds, and will be discussed later.

The impedance derivative signal has certain characteristic points, represented by the letters A, B, C, F, X, and O in FIG. 1. Point B corresponds to the moment at which the aortic valve opens, and point X corresponds to the closing of that valve. The excursion of the signal from point B to point C (|)(dZ/dt)max |) comprises the change in the impedance derivative signal from the time of opening of the aortic valve to the time at which the impedance derivative is at a minimum. The time between point B and point X represents the ventricular ejection time (VET). As noted above, |(dZ/dt)max | and VET are the parameters necessary to calculate stroke volume, and hence cardiac output, in the models described by Kubicek and Sramek.

As explained above, the above-described parameters are usually not apparent from observation of the impedance derivative signal. Artifacts in the signal, due to breathing, motion, noise, or other factors, obscure the basic information contained in the signal. Such artifacts may make it difficult or impossible, for example, to determine when the maximum impedance excursion occurs, or when the ventricular ejection period occurs. The present invention therefore performs the following steps to extract the desired information.

First, as indicated symbolically in FIG. 2, the time domain of the impedance derivative signal is divided into a large number of segments Δt, each having a finite width. In general, Δt is at least an order of magnitude less than the time domain of the impedance derivative signal (which is of the order of magnitude of the time required for one heartbeat). Next, one derives a frequency transform for each corresponding segment of the impedance derivative signal, for each indicated segment of time.

For example, in FIG. 2, one considers the function comprising the line extending from point 1 to point 2, with the remainder of the function equal to zero. One then computes a frequency transform of that function. One would then consider the function defined by the line extending from point 2 to point 3, over the time interval Δt to 2*Δt, with the function equal to zero for all other intervals, and would obtain a similar transform. One repeats this process, isolating each finite segment of the impedance derivative signal and computing the frequency transform for each segment.

Instead of computing the frequency transform for non-overlapping short time intervals, as discussed above, one could instead use overlapping intervals. The latter method is preferred because it increases the resolution of the process, and thus improves the reliability of the results. In using overlapping intervals, one "moves" the short time interval of interest by a small amount, which amount is less (or substantially less) than the width of the interval itself, until transforms have been computed for segments covering the entire underlying function. The use of overlapping intervals tends to compensate for the fact that each interval must have a nonzero width.

The term "frequency transform" is intended to include all mathematical procedures which convert a given function of time into a function of power or energy versus frequency. The basic transform of this kind is the Fourier transform, or the Fast Fourier transform, but many other kinds of similar transforms have been developed in the field of applied mathematics. The important common feature of such transforms is that they are functions which relate power (or energy) to frequency. Such transforms show the relative power or intensity of each frequency component of an underlying signal.

FIG. 3 represents a hypothetical frequency transform, taken for one of the time intervals of the signal shown in FIG. 2. In FIG. 3, the abscissa is frequency and the ordinate is power, which is equivalent to intensity. It is important to remember that the function shown in FIG. 3 represents the frequency transform of a signal comprising just one small piece of the signal of FIG. 2, with the remainder of that signal momentarily set to zero. The vertical axis of FIG. 3 is labeled PSD, for "power spectrum density". The values on the vertical axis are normalized so that the maximum value is unity.

Note that the frequency transform is said to be taken at one particular time. Actually, as explained above, each frequency transform is computed for a segment of the impedance derivative over a finite interval of time, i.e. an interval having a nonzero width. The single "time" associated with a particular frequency transform can be defined as the beginning, the end, the middle, or some other point in the short time interval. As long as the latter definition is applied consistently for each such transform, the method will be valid.

As noted above, one computes the frequency transform for each segment of the impedance derivative signal. One can present the results in the form of a three-dimensional graph showing power as a function of frequency and time. A portion of such a graph is shown in FIG. 4. This graph is sometimes called a "spectrogram". One can best understand the spectrogram by visualizing "slices" of the function taken at particular moments in time. For each such "slice", the function becomes a two-dimensional graph of power versus frequency, similar to the frequency transform shown in FIG. 3.

The next step is to produce a two-dimensional graph from the three-dimensional spectrogram, in the following manner. For each value of time, one computes a definite integral of the power versus frequency function, over a finite range of frequencies. The value of this definite integral becomes the ordinate, and the corresponding value of time is the abscissa. In computing each definite integral, the limits of integration comprise a range of frequencies of interest. Frequencies lying outside this range are ignored.

By assembling the results of the above-described process, one obtains a two-dimensional graph. A hypothetical result is shown in FIG. 5. The horizontal axis represents time, while the vertical axis is a scale representing the value of the definite integrals described above. One is not concerned with the dimensions of the definite integrals; rather, one is concerned only with the pattern defined by the two-dimensional graph. Thus, one may scale the values of the ordinates, so that they fit conveniently on the graph.

What is important about the graph of FIG. 5 is that it shows a repeating and unambiguous pattern of extrema. In FIG. 5, one observes a pattern having two sharp peaks, the first peak being higher than the second, followed by a group of shorter peaks. The first two peaks of each pattern are labeled B and C in FIG. 5. The next highest peak is labeled X. The designations B, C, and X correspond to similarly labeled points of FIG. 1. It turns out that the points B, C, and X correspond exactly to the times at which points B, C, and X of FIG. 1 occur. Thus, by comparing a graph similar to FIG. 5, with the impedance derivative signal similar to FIG. 1, one can locate the points B, C, and X, and thus can deduce valuable information about the impedance derivative signal.

More specifically, one can note the times at which points B and C occur in FIG. 5, and can mark off these times on the graph of FIG. 1. The difference between the value of the impedance derivative at point B and its value at point C is the maximum impedance derivative, which is one of the parameters used in calculating cardiac output. Similarly, by noting the time at which point X occurs in FIG. 5, and by marking this time on the graph of FIG. 1, one can directly compute the time between points B and X, which is the ventricular ejection time (VET), which is also needed in the models discussed above.

Thus, the present invention produces a two-dimensional graph, derived by integrating various frequency transforms of the impedance derivative signal, over a frequency range of interest, and compares that graph with the impedance derivative signal to identify significant points of that signal. Knowledge of the significant points of the impedance derivative signal is sufficient to compute stroke volume and cardiac output. Cardiac output is computed by multiplying the stroke volume by the heart rate.

In the explanation given above, it was assumed that time began at some arbitrary zero value. In practice, it is desirable to know when to start the analysis. Failure to begin the analysis at an appropriate time could lead to erroneous results, because one might mistakenly focus on an entirely irrelevant portion of the impedance derivative signal. Thus, one preferably uses a conventional electrocardiogram (EKG) signal to determine the time over which the impedance signal will be measured. The EKG signal has well-known and recognizable features. One can monitor the EKG and activate the impedance measuring equipment upon detection of a selected portion of the EKG. Note, however, that the EKG itself plays no direct role in the computation of stroke volume according to the present invention. However, since a calculation of cardiac output requires knowledge of the heart rate, one could use the EKG signal to determine heart rate. But other means of measuring heart rate could be used instead, and one could also provide some alternative means of timing the start of the analysis, so the EKG signal is not absolutely necessary to the practice of the present invention.

Consideration must be given to the frequency range of interest, over which the frequency transforms will be integrated. It turns out that the frequency range of interest is approximately 30-55 Hz. The latter range can be determined empirically by analyzing impedance signals from many patients. One can approximately identify the portions of the impedance signals which contain the events of interest (i.e. the opening and closing of the aortic valve) by comparing the impedance signal with an observed pattern of heart sounds, or with an EKG. The bottom portion of FIG. 1 shows a graph (called a "phonocardiogram") representing typical sounds made by the heart. Note that the discernible sound spikes are well-correlated with points B and X on the impedance derivative signal, i.e. with the opening and closing of the aortic valve.

By computing a frequency transform over the portions of the impedance signal containing the events of interest, one can determine what frequencies account for most of the power in the signal. Note that the frequency range of 30-55 Hz is considered constant, and is applied consistently throughout each iteration of the method, in computing the definite integrals of the frequency transforms.

The phonocardiogram is not practical for routine use in determining stroke volume because it is very sensitive to noise and it requires sensors which are difficult to attach reliably to the human body. The present invention could use the phonocardiogram as a one-time means of determining the frequency range of interest. But the phonocardiogram is not a practical substitute for the method of the present invention.

FIG. 6 provides a block diagram of the apparatus which can be used to practice the present invention. The system of FIG. 6 includes an outer pair of electrodes 21 and 24 and an inner pair of electrodes 22 and 23. Electrode 21 is a strip electrode; electrode 24 is a band electrode. Electrodes 22 and 23 are spot-type skin electrodes. Electrodes 21 and 24 could instead be a pair of spot electrodes; the present invention can be practiced with varying arrangements. Electrodes 25a and 25b are conventional EKG electrodes.

The electrodes are connected to a signal generation and pickup device 26. Device 26 generates a voltage which is applied to the body. Device 26 also includes means for measuring the various electrical parameters of interest. As indicated on FIG. 6, the pickup device can measure the base electrical impedance of the thorax Zo, the change in impedance ΔZ, the derivative of impedance with respect to time (dZ/dt), and the electrocardiogram. The pickup device is connected to an analog-to-digital converter 28, the output of which is connected to processor 30. Processor 30 can be a microprocessor, or any equivalent computing device. Processor 30 is connected to display 32 and to printer 34.

The arrangement shown in FIG. 6 is only exemplary and not limiting. Other arrangements and numbers of electrodes can be used. The peripheral devices used with the processor can also be varied within the scope of the invention. What is necessary is that a means be provided for measuring bioimpedance and for performing calculations based on the measured signals.

FIG. 7 provides a flow chart showing the essential steps performed by the microprocessor in the present invention. In block 50, the processor receives the digitized impedance and EKG signals. It is assumed that the processor also receives a digitized impedance derivative signal. Alternatively, the processor could digitally differentiate the impedance signal with respect to time, from analysis of the raw data from the impedance measurement.

In block 52, the processor selects a point in time on the EKG signal, and uses this point as the starting reference point for analysis of the impedance derivative signal.

In block 54, the processor calculates frequency transforms for each segment of the impedance derivative signal. To separate the impedance derivative signal into segments, it is convenient to use a time window function. Such a function could have a value of unity over the time interval of interest and a value of zero elsewhere. Other window functions could be used, such as the Hamming window function. The latter function has smoother edges which result in fewer transients or "spikes" in the frequency transform. The Hamming window function otherwise serves the same purpose as the simple step function described above.

One can thus multiply the function to be analyzed (the impedance derivative signal) by the window function, and can then obtain the frequency transform of this product. For each calculation of the frequency transform, the interval over which the window function has a value of unity is changed. Of course, one can accomplish the same result without using a window function, and the invention should not be deemed limited to use of a window function.

In block 56, the processor computes definite integrals of each frequency transform, obtained for each small interval of time. The definite integrals are taken over a frequency range of interest.

In block 58, the processor computes a two-dimensional graph of the above-described definite integrals as a function of time. The computer can transmit the graphical data to the display device, so that the operator can directly compare the graph with a similar graphical representation of the impedance derivative signal. But preferably, the computer will analyze the graphical data automatically to compute the times at which the extreme points B, C, and X (of FIG. 5) occur, as indicated in block 60. The processor then uses these times to compute the maximum excursion of dZ/dt and the ventricular ejection time (VET), from the impedance derivative signal itself. In block 62, the computed parameters are then inserted into the known formulas for stroke volume and cardiac output. If a display or printout of the graphical data are not needed, the processor can do the computations without actually assembling a graph. That is, the processor can simply scan the data to determine the locations of the extrema shown in the example of FIG. 5.

It is apparent that the invention can be varied in many ways. The invention is not limited to a particular frequency transform, for example. While a fast Fourier transform may be preferred, other similar transforms can be used to analyze the data. The placement of electrodes, the arrangement of the computer and peripherals, and other such details can also be varied considerably. The steps of computing transforms, performing definite integrals, assembling a two-dimensional graph, and interpreting that graph could be compressed into fewer steps, especially where the operator does not want or need to see a display of intermediate results. The invention is also not necessarily limited to use in measuring cardiac output. One could analyze other biological signals by the same technique described above. These and other modifications, which will be apparent to those skilled in the art, should be considered within the spirit and scope of the following claims.

Sun, Hun H., Wang, Xiang

Patent Priority Assignee Title
10016609, Feb 07 2007 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
10052487, Jan 25 2005 Cameron Health, Inc. Methods and devices for adapting charge initiation for an implantable defibrillator
10070800, Aug 09 2007 Impedimed Limited Impedance measurement process
10183171, May 29 2003 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
10220219, Mar 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
10307074, Apr 20 2007 Impedimed Limited Monitoring system and probe
10433735, Jul 25 2011 Baxter International Inc; BAXTER HEALTHCARE SA Method and system for monitoring hemodynamics
10448841, Jul 25 2011 Baxter International Inc; BAXTER HEALTHCARE SA Method and system for monitoring hemodynamics
10456047, Jul 25 2011 Baxter International Inc; BAXTER HEALTHCARE SA Method and system for monitoring hemodynamics
10470718, Aug 17 2005 OSYPKA MEDICAL GMBH Method for digital demodulation and further processing of signals obtained in the measurement of electrical bioimpedance or bioadmittance in a human subject
10512405, Jul 25 2011 Baxter International Inc; BAXTER HEALTHCARE SA Method and system for monitoring hemodynamics
10575740, May 26 2006 CAMERON HEALTH INC. Systems and methods for sensing vector selection in an implantable medical device
10588577, Jan 29 2015 SIEMENS HEALTHINEERS AG Patient signal analysis based on affine template matching
10617322, Feb 15 2005 Baxter International Inc; BAXTER HEALTHCARE SA System, method and apparatus for measuring blood flow and blood volume
10709379, May 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
10758138, Aug 14 2014 Cameron Health, Inc. Use of detection profiles in an implantable medical device
10842386, Aug 13 2007 Baxter International Inc; BAXTER HEALTHCARE SA Dynamically variable filter
10974058, Mar 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
11020602, May 29 2003 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
11045100, Aug 26 2002 WEST AFFUM HOLDINGS DAC Pulse detection using patient physiological signals
11083897, Jan 25 2005 Cameron Health, Inc. Methods and devices for adapting charge initiation for an implantable defibrillator
11344720, May 06 2013 Medtronic, Inc. Substernal electrical stimulation system
11344737, May 06 2013 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
11389070, Jul 25 2011 Baxter International Inc; BAXTER HEALTHCARE SA Method and system for monitoring hemodynamics
11413468, Mar 07 2008 Cameron Health, Inc. Accurate cardiac event detection in an implantable cardiac stimulus device
11419508, Sep 02 2003 WEST AFFUM HOLDINGS DAC Pulse detection using patient physiological signals
11524157, May 06 2013 Medtronic, Inc. Substernal leadless electrical stimulation system
11612332, Oct 11 2005 Impedimed Limited Hydration status monitoring
11642088, Aug 17 2005 OSYPKA MEDICAL GMBH Method and apparatus for digital demodulation and further processing of signals obtained in the measurement of electrical bioimpedance or bioadmittance in an object
11660013, Jul 01 2005 Impedimed Limited Monitoring system
11737678, Jul 01 2005 Impedimed Limited Monitoring system
11857779, May 06 2013 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
5503157, Mar 17 1995 HEMO SAPIENS, INC System for detection of electrical bioimpedance signals
5529072, Mar 17 1995 HEMO SAPIENS, INC System for detection of electrical bioimpedance signals
5685316, Apr 08 1996 RHEO-GRAPHIC PTE LTD Non-invasive monitoring of hemodynamic parameters using impedance cardiography
5971934, Oct 04 1996 Trustees of the University of Pennsylvania Noninvasive method and apparatus for determining cardiac output
6014583, Sep 11 1997 YAMAKOSHI, KENICHI Hemodynamics monitor
6022322, Feb 06 1998 Intermedics Inc Non-invasive cardiorespiratory monitor with synchronized bioimpedance sensing
6090047, Nov 04 1996 Johns Hopkins University, School of Medicine Assessing cardiac contractility and cardiovascular interaction
6161038, Apr 08 1996 Rheo-Graphic Pte Ltd. Non-invasive monitoring of hemodynamic parameters using impedance cardiography
6322518, Dec 06 1993 Heska Corporation Method and apparatus for measuring cardiac output
6339722, Sep 26 1995 A. J. van Liebergen Holding B.V. Apparatus for the in-vivo non-invasive measurement of a biological parameter concerning a bodily fluid of a person or animal
6370424, Feb 06 1998 Intermedics Inc. Non-invasive cardiorespiratory monitor with synchronized bioimpedance sensing
6438400, Dec 06 1993 Heska Corporation Electrode for evaluating cardiac functions via esophagus
6511438, Apr 03 2001 OSYPKA MEDICAL GMBH Apparatus and method for determining an approximation of the stroke volume and the cardiac output of the heart
6561986, Jan 17 2001 FUJIFILM SONOSITE, INC Method and apparatus for hemodynamic assessment including fiducial point detection
6647289, Feb 06 1998 Intermedics Inc. Non-invasive cardiorespiratory monitor with synchronized bioimpedance sensing
6647292, Sep 18 2000 CAMERON HEALTH, INC Unitary subcutaneous only implantable cardioverter-defibrillator and optional pacer
6721597, Sep 18 2000 CAMERON HEALTH, INC Subcutaneous only implantable cardioverter defibrillator and optional pacer
6778860, Nov 05 2001 CAMERON HEALTH, INC Switched capacitor defibrillation circuit
6866044, Sep 18 2000 CAMERON HEALTH, INC Method of insertion and implantation of implantable cardioverter-defibrillator canisters
6937907, Sep 18 2000 CAMERON HEALTH, INC Subcutaneous electrode for transthoracic conduction with low-profile installation appendage and method of doing same
6950705, Sep 18 2000 CAMERON HEALTH, INC Canister designs for implantable cardioverter-defibrillators
6952610, Sep 18 2000 CAMERON HEALTH, INC Current waveforms for anti-tachycardia pacing for a subcutaneous implantable cardioverter- defibrillator
6986744, Feb 02 1999 Transonic Systems, Inc.; TRANSONIC SYSTEMS, INC Method and apparatus for determining blood flow during a vascular corrective procedure
6988003, Sep 18 2000 CAMERON HEALTH, INC Implantable cardioverter-defibrillator having two spaced apart shocking electrodes on housing
7039459, Sep 18 2000 CAMERON HEALTH, INC Cardioverter-defibrillator having a focused shocking area and orientation thereof
7039465, Sep 18 2000 CAMERON HEALTH, INC Ceramics and/or other material insulated shell for active and non-active S-ICD can
7043293, Dec 24 2002 FUJIFILM SONOSITE, INC Method and apparatus for waveform assessment
7043299, Sep 18 2000 CAMERON HEALTH, INC Subcutaneous implantable cardioverter-defibrillator employing a telescoping lead
7065407, Sep 18 2000 CAMERON HEALTH, INC Duckbill-shaped implantable cardioverter-defibrillator canister and method of use
7065410, Sep 18 2000 CAMERON HEALTH, INC Subcutaneous electrode with improved contact shape for transthorasic conduction
7069080, Sep 18 2000 CAMERON HEALTH, INC Active housing and subcutaneous electrode cardioversion/defibrillating system
7076294, Sep 18 2000 Cameron Health, Inc. Method of implanting ICD and subcutaneous lead
7090682, Sep 18 2000 CAMERON HEALTH, INC Method and apparatus for extraction of a subcutaneous electrode
7092754, Sep 18 2000 CAMERON HEALTH, INC Monophasic waveform for anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator
7120495, Sep 18 2000 CAMERON HEALTH, INC Flexible subcutaneous implantable cardioverter-defibrillator
7120496, Sep 18 2000 Cameron Health, Inc. Radian curve shaped implantable cardioverter-defibrillator canister
7181274, Sep 18 2000 Cameron Health, Inc. Methods for inducing fibrillation utilizing subcutaneous electrodes
7186219, Oct 11 2001 OSYPKA MEDICAL GMBH Calibration of a doppler velocimeter for stroke volume determination
7194302, Sep 18 2000 CAMERON HEALTH, INC Subcutaneous cardiac stimulator with small contact surface electrodes
7194309, Sep 18 2000 CAMERON HEALTH, INC Packaging technology for non-transvenous cardioverter/defibrillator devices
7239925, Sep 18 2000 Cameron Health, Inc. Subcutaneous electrode for transthoracic conduction with improved installation characteristics
7248921, Jun 02 2003 CAMERON HEALTH, INC Method and devices for performing cardiac waveform appraisal
7261697, Jun 16 2004 Apparatus for determination of stroke volume using the brachial artery
7274962, Sep 18 2000 Cameron Health, Inc. Subcutaneous electrode with improved contact shape for transthoracic conduction
7289854, Sep 18 2000 Cameron Health, Inc. Unitary subcutaneous only implantable cardioverter-defibrillator and optional pacer
7299092, Sep 18 2000 Cameron Health, Inc. Subcutaneous electrode for transthoracic conduction with low profile installation appendage
7299097, Sep 18 2000 Cameron Health, Inc. Subcutaneous electrode for transthoracic conduction with insertion tool
7302300, Sep 18 2000 Cameron Health, Inc. Subcutaneous electrode for transthoracic conduction with highly maneuverable insertion tool
7330757, Nov 21 2001 CAMERON HEALTH, INC Method for discriminating between ventricular and supraventricular arrhythmias
7359754, Sep 18 2000 Cameron Health, Inc. Optional use of a lead for a unitary subcutaneous implantable cardioverter-defibrillator
7363083, Sep 18 2000 Cameron Health, Inc. Flexible subcutaneous implantable cardioverter-defibrillator
7376458, Nov 29 2004 CAMERON HEALTH, INC Method for defining signal templates in implantable cardiac devices
7379772, Nov 21 2001 Cameron Health, Inc. Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator
7392085, Nov 21 2001 CAMERON HEALTH, INC Multiple electrode vectors for implantable cardiac treatment devices
7392095, Jul 22 1998 Cardiac Pacemakers, Inc. Extendable and retractable lead having a snap-fit terminal connector
7406350, Sep 18 2000 Cameron Health, Inc. Subcutaneous implantable cardioverter-defibrillator employing a telescoping lead
7412283, Nov 28 2001 CARDANAL PTY LTD Method and system for processing electrocardial signals
7428437, Sep 18 2000 Cameron Health, Inc. Canister designs for implantable cardioverter-defibrillators
7444182, Nov 21 2001 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
7474918, Mar 24 2004 SEEMEDX, INC Thoracic impedance monitor and electrode array and method of use
7477935, Nov 29 2004 CAMERON HEALTH, INC Method and apparatus for beat alignment and comparison
7502645, Sep 18 2000 Cameron Health, Inc. Current waveforms for anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator
7536222, Sep 18 2000 Cameron Health, Inc. Nonvascular implantable defibrillator and method
7555338, Apr 26 2005 CAMERON HEALTH, INC Methods and implantable devices for inducing fibrillation by alternating constant current
7569019, Jun 16 2006 Analysis and use of cardiographic bioimpedance measurements
7570989, Nov 22 2004 FUJIFILM SONOSITE, INC Method and apparatus for signal assessment including event rejection
7623909, May 26 2006 Cameron Health, Inc.; CAMERON HEALTH, INC Implantable medical devices and programmers adapted for sensing vector selection
7623913, Aug 01 2006 Cameron Health, Inc.; CAMERON HEALTH, INC Implantable medical devices using heuristic filtering in cardiac event detection
7623916, Dec 20 2006 CAMERON HEALTH, INC Implantable cardiac stimulus devices and methods with input recharge circuitry
7623920, Nov 05 2001 Cameron Health, Inc. Low power A/D converter
7627367, Nov 21 2001 Cameron Health, Inc. Multiple electrode vectors for implantable cardiac treatment devices
7627375, Sep 18 2000 Cameron Health, Inc. Implantable cardiac stimulus methods
7655014, Dec 06 2004 CAMERON HEALTH, INC Apparatus and method for subcutaneous electrode insertion
7657311, Sep 18 2000 Cameron Health, Inc. Subcutaneous only implantable cardioverter-defibrillator and optional pacer
7657322, Sep 18 2000 Cameron Health, Inc. Subcutaneous electrode with improved contact shape for transthoracic conduction
7711422, Oct 16 2003 Sorin CRM SAS Adjusting the maximum ventricular stimulation frequency according to the hemodynamic state of the patient in an active implantable medical device
7720534, Sep 18 2000 Cameron Health, Inc. Transthoracic impedance measurement in a subcutaneous device
7740590, Jun 16 2004 CORDEUS, INC. Apparatus and method for determination of stroke volume using the brachial artery
7783340, Jan 16 2007 CAMERON HEALTH,INC Systems and methods for sensing vector selection in an implantable medical device using a polynomial approach
7806830, Jun 16 2004 CORDEUS, INC Apparatus and method for determination of stroke volume using the brachial artery
7813797, Sep 18 2000 Cameron Health, Inc. Cardioverter-defibrillator having a focused shocking area and orientation thereof
7822470, Oct 11 2001 OSYPKA MEDICAL GMBH Method for determining the left-ventricular ejection time TLVE of a heart of a subject
7877139, Sep 22 2006 Cameron Health, Inc. Method and device for implantable cardiac stimulus device lead impedance measurement
7904141, Oct 11 2001 OSYPKA MEDICAL GMBH System and apparatus for determining the left-ventricular ejection time TLVE of a heart of a subject
7917209, Sep 30 1999 PHYSIO-CONTROL, INC Pulse detection apparatus, software, and methods using patient physiological signals
7925340, Apr 13 2005 Tanita Corporation Trunk visceral fat measuring method and apparatus, trunk skeletal muscle amount measuring apparatus, trunk subcutaneous fat measuring method and apparatus, and trunk visceral and subcutaneous fat measuring method and apparatus
7991459, Nov 29 2004 Cameron Health, Inc. Method for defining signal templates in implantable cardiac devices
8000779, Sep 07 2006 CORREN MEDICAL, INC Impedance cardiography system and method
8014851, Sep 26 2006 Cameron Health, Inc. Signal analysis in implantable cardiac treatment devices
8068906, Jun 21 2004 Impedimed Limited Cardiac monitoring system
8092392, Sep 30 1999 PHYSIO-CONTROL, INC Pulse detection method and apparatus using patient impedance
8111152, Sep 21 2006 SEEMEDX, INC Relative positioning system and method
8116867, Aug 04 2005 Cameron Health, Inc. Methods and devices for tachyarrhythmia sensing and high-pass filter bypass
8134460, Sep 21 2006 SEEMEDX, INC Relative positioning system method
8135459, Sep 18 2000 Cameron Health, Inc. Unitary subcutaneous only implantable cardioverter-defibrillator and optional pacer
8135462, Aug 26 2002 Physio-Control, Inc. Pulse detection using patient physiological signals
8160686, Mar 07 2008 CAMERON HEALTH, INC Methods and devices for accurately classifying cardiac activity
8160687, May 07 2008 CAMERON HEALTH, INC Methods and devices for accurately classifying cardiac activity
8160697, Jan 25 2005 CAMERON HEALTH, INC Method for adapting charge initiation for an implantable cardioverter-defibrillator
8160699, Sep 18 2000 Cameron Health, Inc. Cardioverter-defibrillator having a focused shocking area and orientation thereof
8160703, Sep 30 1999 PHYSIO-CONTROL, INC Apparatus, software, and methods for cardiac pulse detection using a piezoelectric sensor
8200341, Feb 07 2007 CAMERON HEALTH, INC Sensing vector selection in a cardiac stimulus device with postural assessment
8209035, Jul 22 1998 Cardiac Pacemakers, Inc. Extendable and retractable lead having a snap-fit terminal connector
8229563, Jan 25 2005 CAMERON HEALTH, INC Devices for adapting charge initiation for an implantable cardioverter-defibrillator
8233974, Jun 22 1999 Impedimed Limited Method and device for measuring tissue oedema
8239024, Sep 30 1999 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
8265737, Oct 27 2009 CAMERON HEALTH, INC Methods and devices for identifying overdetection of cardiac signals
8265749, Mar 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
8388545, Feb 15 2005 Baxter International Inc; BAXTER HEALTHCARE SA System, method and apparatus for measuring blood flow and blood volume
8412320, Sep 18 2000 Cameron Health, Inc. Nontransvenous and nonepicardial methods of cardiac treatment and stimulus
8414498, May 12 2003 Baxter International Inc; BAXTER HEALTHCARE SA System, method and apparatus for measuring blood flow and blood volume
8447398, Sep 18 2000 CAMERON HEALTH, INC Subcutaneous implantable cardioverter-defibrillator placement methods
8494630, Jan 18 2008 CAMERON HEALTH, INC Data manipulation following delivery of a cardiac stimulus in an implantable cardiac stimulus device
8509886, Jun 21 2004 Impedimed Limited Cardiac monitoring system
8523777, Apr 19 2007 Baxter International Inc; BAXTER HEALTHCARE SA Method, apparatus and system for predicting electromechanical dissociation
8532766, Sep 30 1999 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
8548573, Jan 18 2010 Cameron Health, Inc. Dynamically filtered beat detection in an implantable cardiac device
8562538, Oct 11 2001 OSYPKA MEDICAL GMBH System for determining the left-ventricular ejection time TLVE of a heart of a subject
8565878, Mar 07 2008 CAMERON HEALTH, INC Accurate cardiac event detection in an implantable cardiac stimulus device
8588896, Mar 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
8591425, Aug 26 2002 Physio-Control, Inc. Pulse detection using patient physiological signals
8600489, May 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
8626280, Mar 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
8626285, Jun 02 2003 Cameron Health, Inc. Method and devices for performing cardiac waveform appraisal
8660629, Jul 01 2005 Impedimed Limited Apparatus for connecting impedance measurement apparatus to an electrode
8663121, Dec 06 2001 PHYSIO-CONTROL, INC Pulse detection method and apparatus using patient impedance
8692717, Sep 21 2006 SEEMEDX, INC Antenna for thoracic radio interrogation
8700121, Dec 14 2011 Impedimed Limited Devices for determining the relative spatial change in subsurface resistivities across frequencies in tissue
8700152, Jan 18 2008 Cameron Health, Inc. Data manipulation following delivery of a cardiac stimulus in an implantable cardiac stimulus device
8712523, Dec 12 2008 CAMERON HEALTH, INC Implantable defibrillator systems and methods with mitigations for saturation avoidance and accommodation
8718793, Aug 01 2006 CAMERON HEALTH, INC Electrode insertion tools, lead assemblies, kits and methods for placement of cardiac device electrodes
8744555, Oct 27 2009 CAMERON HEALTH, INC Adaptive waveform appraisal in an implantable cardiac system
8744577, Sep 30 1999 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
8761870, May 30 2006 Impedimed Limited Impedance measurements
8764667, Mar 07 2007 Baxter International Inc; BAXTER HEALTHCARE SA Method and system for monitoring sleep
8781551, Jul 01 2005 Impedimed Limited Apparatus for connecting impedance measurement apparatus to an electrode
8781602, Feb 07 2007 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
8788023, May 26 2006 Cameron Health, Inc.; CAMERON HEALTH, INC Systems and methods for sensing vector selection in an implantable medical device
8790267, Aug 13 2007 Baxter International Inc; BAXTER HEALTHCARE SA Dynamically variable filter
8798715, May 01 2003 ASPECT IMAGING LTD Method for non-invasive measurement of cardiac output
8876725, Feb 23 2007 Baxter International Inc; BAXTER HEALTHCARE SA Method and system for estimating exercise capacity
8880161, May 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
8929977, Mar 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
8942802, May 29 2003 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
8965491, Oct 27 2009 Cameron Health, Inc. Adaptive waveform appraisal in an implantable cardiac system
8965530, Feb 07 2007 Cameron Health, Inc. Implantable cardiac devices and methods using an x/y counter
8992432, Aug 26 2002 Physio-Control, Inc. Pulse detection using patient physiological signals
9022962, Nov 22 2000 Boston Scientific Scimed, Inc. Apparatus for detecting and treating ventricular arrhythmia
9050016, Feb 10 2009 PIXART IMAGING INC System for heart performance characterization and abnormality detection
9079035, Dec 12 2008 Cameron Health, Inc. Electrode spacing in a subcutaneous implantable cardiac stimulus device
9095271, Aug 13 2007 Baxter International Inc; BAXTER HEALTHCARE SA Dynamically variable filter
9138589, Nov 21 2001 Cameron Health, Inc. Apparatus and method for identifying atrial arrhythmia by far-field sensing
9144683, Sep 18 2000 Cameron Health, Inc. Post-shock treatment in a subcutaneous device
9149225, Dec 14 2011 Impedimed Limited Methods for determining the relative spatial change in subsurface resistivities across frequencies in tissue
9149637, Jun 29 2009 CAMERON HEALTH, INC Adaptive confirmation of treatable arrhythmia in implantable cardiac stimulus devices
9149645, Mar 11 2013 Cameron Health, Inc. Methods and devices implementing dual criteria for arrhythmia detection
9155485, May 29 2003 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
9162074, Mar 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
9216001, Aug 26 2002 Physio-Control, Inc. Pulse detection using patient physiological signals
9216284, Aug 01 2006 Cameron Health, Inc. Electrode insertion tools, lead assemblies, kits and methods for placement of cardiac device electrodes
9242112, Jan 18 2008 Cameron Health, Inc. Data manipulation following delivery of a cardiac stimulus in an implantable cardiac stimulus device
9248306, Sep 03 1999 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
9265432, May 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
9297874, May 01 2003 ASPECT IMAGING LTD.; ASPECT IMAGING LTD Apparatus and method for non-invasive measurement of cardiac output
9320445, May 17 2011 PIXART IMAGING INC System for cardiac condition detection responsive to blood pressure analysis
9339662, Mar 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
9357969, Feb 07 2007 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
9364677, May 26 2006 Cameron Health, Inc. Systems and methods for sensing vector selection in an implantable medical device
9380947, Jul 25 2011 Baxter International Inc; BAXTER HEALTHCARE SA Method and system for monitoring hemodynamics
9421390, Mar 11 2013 CAMERON HEALTH INC. Methods and devices implementing dual criteria for arrhythmia detection
9504406, Nov 30 2006 IMPEDIMED, LTD Measurement apparatus
9522283, Nov 21 2001 CAMERON HEALTH INC. Apparatus and method for identifying atrial arrhythmia by far-field sensing
9554714, Aug 14 2014 CAMERON HEALTH INC. Use of detection profiles in an implantable medical device
9555259, May 29 2003 CAMERON HEALTH INC. Method for discriminating between ventricular and supraventricular arrhythmias
9579065, Mar 12 2013 CAMERON HEALTH INC. Cardiac signal vector selection with monophasic and biphasic shape consideration
9585593, Nov 18 2009 Impedimed Limited Signal distribution for patient-electrode measurements
9615766, Nov 28 2008 Impedimed Limited Impedance measurement process
9615767, Oct 26 2009 Impedimed Limited Fluid level indicator determination
9636514, Jun 29 2009 Cameron Health, Inc. Adaptive confirmation of treatable arrhythmia in implantable cardiac stimulus devices
9724012, Oct 11 2005 Impedimed Limited Hydration status monitoring
9744366, Feb 07 2007 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
9763619, May 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
9802056, Mar 07 2008 Cameron Health, Inc. Accurate cardiac event detection in an implantable cardiac stimulus device
9844678, Mar 11 2013 Cameron Health, Inc. Methods and devices implementing dual criteria for arrhythmia detection
9878172, Mar 07 2008 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
9950178, Dec 06 2001 PHYSIO-CONTROL, INC Pulse detection method and apparatus using patient impedance
9968796, May 29 2003 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
9981142, Aug 19 2013 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
9993653, Nov 21 2001 Cameron Health, Inc. Apparatus and method for identifying atrial arrhythmia by far-field sensing
D625823, Aug 30 2007 Baxter International Inc; BAXTER HEALTHCARE SA Electrode
Patent Priority Assignee Title
3340867,
3452743,
3730171,
3742936,
3835839,
3835840,
3871359,
3874368,
3882851,
3976052, Apr 19 1974 Hewlett-Packard GmbH Respiration monitor
3994284, Dec 31 1975 NEW SD, INC , A CORP OF DE Flow rate computer adjunct for use with an impedance plethysmograph and method
3996925, May 05 1975 System for determining characteristics of blood flow
4137910, Sep 30 1976 Method and means for measuring cardiac pumping performance of left ventricle
4305400, Oct 15 1979 SPACELABS,INC A CORP OF CA Respiration monitoring method and apparatus including cardio-vascular artifact detection
4361049, Aug 18 1980 The Hospital for Sick Children Apparatus for calculating cardiac output
4422458, Apr 28 1980 Montefiore Hospital and Medical Center, Inc. Method and apparatus for detecting respiratory distress
4437469, Sep 29 1980 SADOVE, MAX S ,; DJORDJEVICH LJUBOMIR, System for determining characteristics of blood flow
4450527, Jun 29 1982 Cardiodynamics International Corporation Noninvasive continuous cardiac output monitor
4562843, Sep 29 1980 SADOVE, MAX S ,; DJORDJEVICH LJUBOMIR, System for determining characteristics of blood flow
4641260, Dec 03 1982 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD , OAZA KADOMA, KADOMA-SHI, OSAKA, JAPAN Digital signal processing apparatus for a blood flowmeter using ultrasound Doppler effect
4676253, Jul 18 1985 Doll Medical Research, Inc. Method and apparatus for noninvasive determination of cardiac output
4757824, Aug 21 1985 KONTRON INSTRUMENTS HOLDING N V Method and apparatus for monitoring respiration
4807638, Oct 21 1987 Cardiodynamics International Corporation Noninvasive continuous mean arterial blood prssure monitor
4862361, Jun 05 1985 MASSACHUSETTS INSTITUTE OF TECHNOLOGY, A CORP OF MASSACHUSETTS Methods and apparatus for monitoring cardiovascular regulation using heart rate power spectral analysis
4870578, Aug 19 1987 Cardiodynamics International Corporation Diastolic clamp for bioimpedance measuring device
4979110, Sep 22 1988 MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS A MA CORP Characterizing the statistical properties of a biological signal
5025784, Sep 05 1987 Harbin Polytechnic University Apparatus and method for detecting and processing impedance rheogram
5046504, Feb 01 1989 ARRHYTHMIA RESEARCH TECHNOLOGY, INC Method and apparatus for analyzing and interpreting electrocardiograms using spectro-temporal mapping
5101828, Apr 11 1991 Rutgers, The State University of NJ Methods and apparatus for nonivasive monitoring of dynamic cardiac performance
5103828, Jul 14 1988 Cardiodynamics International Corporation System for therapeutic management of hemodynamic state of patient
5109862, Mar 19 1990 Del Mar Avionics Method and apparatus for spectral analysis of electrocardiographic signals
5178151, Apr 20 1988 VIVOMETRICS, INC System for non-invasive detection of changes of cardiac volumes and aortic pulses
5178154, Sep 18 1990 CHF SOLUTIONS, INC Impedance cardiograph and method of operation utilizing peak aligned ensemble averaging
5309917, Sep 12 1991 SEEMEDX, INC System and method of impedance cardiography and heartbeat determination
DE2823880,
RE30101, Jun 23 1975 Regents of the University of Minnesota Impedance plethysmograph
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 14 1993Drexel University(assignment on the face of the patent)
Jun 21 1993WANG, XIANGDrexel UniversityASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0066880410 pdf
Jun 29 1993SUN, HUN H Drexel UniversityASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0066880410 pdf
Apr 01 2004Drexel UniversityNONINVASIVE MEDICAL TECHNOLOGIES, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0152150449 pdf
May 31 2020NONINVASIVE MEDICAL TECHNOLOGIES, INC CALDWELL SIMPSON LLCASSET PURCHASE AGREEMENT0640500008 pdf
Jun 05 2024CALDWELL SIMPSON GROUP, LLCSEEMEDX, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0677070034 pdf
Date Maintenance Fee Events
Jan 05 1999REM: Maintenance Fee Reminder Mailed.
Oct 15 1999M188: Surcharge, Petition to Accept Pymt After Exp, Unintentional.
Oct 15 1999M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Oct 15 1999PMFP: Petition Related to Maintenance Fees Filed.
Dec 14 1999PMFG: Petition Related to Maintenance Fees Granted.
May 15 2003M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
May 15 2003M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity.
Jul 07 2006M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Jun 13 19984 years fee payment window open
Dec 13 19986 months grace period start (w surcharge)
Jun 13 1999patent expiry (for year 4)
Jun 13 20012 years to revive unintentionally abandoned end. (for year 4)
Jun 13 20028 years fee payment window open
Dec 13 20026 months grace period start (w surcharge)
Jun 13 2003patent expiry (for year 8)
Jun 13 20052 years to revive unintentionally abandoned end. (for year 8)
Jun 13 200612 years fee payment window open
Dec 13 20066 months grace period start (w surcharge)
Jun 13 2007patent expiry (for year 12)
Jun 13 20092 years to revive unintentionally abandoned end. (for year 12)