For a vertical DMOS power transistor or a high voltage bipolar transistor, an edge termination at the perimeter of the die surrounding the active transistor cells includes multiple spaced apart field rings. A trench is located between each adjacent pair of field rings and is insulated either by oxide formed on the sidewalls thereof or by an oxide filling. The insulated trenches allow the field rings to be very closely spaced together. Advantageously the trenches may be formed in the same process steps as are the trenched gate electrodes of the active portion of the transistor. This structure eliminates the necessity for fabricating thick field oxide underlying a conventional field plate termination, and hence allows fabrication of a transistor without the need for a field plate termination, and in which the multiple field rings are suitable for a transistor device having a breakdown voltage in the range of 20 to 150 volts. The trenches advantageously eliminate the process sensitivity of using multi field ring terminations with low resistivity semiconductor material.

Patent
   5430324
Priority
Jul 23 1992
Filed
Jul 23 1992
Issued
Jul 04 1995
Expiry
Jul 23 2012
Assg.orig
Entity
Large
144
7
all paid
11. A high voltage transistor structure including at least one transistor having at least two doped regions formed in a substrate, and a gate electrode, and comprising:
at least a first field ring and a second field ring spaced apart from the first field ring, both field rings being formed in the substrate and both laterally surrounding the transistor; and
an insulated trench formed in the substrate in the space between the first and second field rings, the insulated trench laterally surrounding the transistor;
wherein the transistor is a field effect transistor and also includes a deep body region, and said gate electrode of the transistor is formed in a gate trench, wherein the depth and doping level of the field rings are the same as that of the deep body region, and the depth and width of the insulated trench are the same as that of the gate trench.
1. A high voltage transistor structure including at least one transistor having at least two doped regions formed in a substrate, and a gate electrode, and comprising:
at least a first field ring and a second field ring of similar width and depth as the first field ring and spaced apart from the first field ring, both field rings being formed in the substrate and both laterally surrounding the transistor;
a first insulated trench formed in the substrate in the space between the first and second field rings, the first insulated trench laterally surrounding the transistor;
a deep body region formed in the substrate; and
a gate electrode formed in a gate trench in the substrate;
wherein a depth and doping level of the first and second field rings are the same as that of the deep body region, and the depth and width of the first insulated trench are the same as that of the gate trench.
2. The device of claim 1, wherein an insulating layer is formed on the sidewalls of the first insulated trench and the first insulated trench is filled with a conductive material.
3. The device of claim 1, wherein the first and second field rings extend into the substrate to a depth greater than that of the first insulated trench.
4. The device of claim 1, further comprising a conductive guard ring formed overlying the substrate and laterally surrounding both field rings.
5. The device of claim 1, wherein both field rings are doped regions.
6. The device of claim 1, further comprising:
a third field ring formed in the substrate and laterally surrounding the first and second field rings; and
a second insulated trench formed in the substrate between the third field ring and the second field ring.
7. The device of claim 6, wherein the first insulated trench is at least partially filled with a conductive material and an insulating layer is formed on the sidewalls of the first insulated trench.
8. The device of claim 1, wherein the first insulated trench has sidewalls vertical with respect to a principal surface of the substrate, and respectively adjacent to vertical sides of the first and second field rings.
9. The device of claim 1, wherein the first insulated trench has a width of 1 to 2 microns.
10. The device of claim 1, wherein the device has a breakdown voltage in the range of 20 to 150 volts.

This invention is directed to high voltage transistors and especially to field effect power transistors having terminations around the edge of the die to increase breakdown voltage.

Power field effect transistors are well known. Such transistors are often for instance DMOS transistors which are field effect transistors formed in a substrate on which is grown an epitaxial layer and including a doped source region, a doped body region, and a gate electrode of conductive polysilicon formed in a trench. Typically a number of such transistors (cells) connected in parallel are formed on one die for power applications, i.e. for handling power greater than 1 watt or for other high voltage applications. It is well known in this vertical DMOS technology to use edge termination techniques to terminate junctions (doped regions) at the edge of the silicon die on which the transistors are formed, such that the breakdown voltage at the edge will be higher than that of the active transistor cells in the central portions of the die.

In order to achieve higher breakdown voltage than the limited breakdown provided by the junction (doped region) depths, it is known to use a field plate 10 as shown in FIG. 1. Field plate 10 enhances breakdown voltage as a result of high electric fields at the edge 12 of the die. Field plate 10 is a conductive structure overlapping the edge 14 of the doped region 16 in substrate 17. The field plate 10, which is electrically connected to the last active junction helps adjust the depletion layer shape at the underlying doped region 16. As shown, field plate 10 (surrounded by insulating layer 20) includes doped polysilicon portion 11 and metal contact 22 to doped region 16.

A second approach to achieve higher breakdown voltage used in conjunction with or in place of a field plate is a diffused field ring 32 as in FIG. 2. Field ring 32 is a doped region formed surrounding the transistor cells such as doped region 30 contacted by metallization 34 and located towards the edge 12 of the die. Field rings are typically floating (not connected to any external source of voltage) from the active portion 30 of the transistor and located relatively close thereto. Field rings such as 32 are typically fabricated simultaneously with portions such as 30 of the active transistor, i.e. in the same processing step, by creating an extra diffusion window in the mask that surrounds the active portions of the transistor. Typically therefore the diffusion depth and doping level of the field ring 32 is identical to that of a corresponding region 30 of the active part of the transistor.

It is well known to use multiple (three or more) field rings arranged concentrically and spaced apart, especially with transistor devices subject to voltages over 150 volts. The spaced-apart distance between adjacent field rings required for them to be effective is typically approximately in the range of 1 micrometer for the epitaxial layer resistivities typically used in such devices. Due to process variation of the doped region depths and alignment tolerances and line width control, however, conventional field rings are not reliable for breakdown voltages below 150 volts. This is because for semiconductor material resistivity used for devices with less than 150 volts breakdown voltage, the field rings have to be made very close to the source junction in order to shield electric field in that junction. The proximity becomes unpractical and unmanufacturable since it has to be a fraction of a micron. Hence for such devices the field plate termination is the only prior art alternative.

Disadvantageously, however, field plates require a relatively thick oxide insulating layer underlying the field plate to insulate the field plate from the underlying substrate. This is in order to support the needed voltage and decrease the surface electric fields in the silicon substrate which may undesirably cause hot electron injection into the insulating oxide, making the oxide unstable in the avalanche condition of the transistor. Formation of this thick oxide layer requires an additional masking step and a relatively long oxidation step. Undesirably these steps increase cost and complication of the fabrication of the transistor device. However if these steps were to be eliminated, the oxide underneath the field plate of necessity would be the gate oxide only which is a relatively thin layer approximately 0.05 micrometers thick. Such a thickness of oxide insulating layer underneath the field plate would be useful only for a breakdown voltage of 20 volts or less. Hence such a structure would not be suitable for typical DMOS transistor voltages of 20 volts and greater.

Thus in the range of breakdown voltages of about 20 volts to about 150 volts, conventional field rings are not effective and the conventional field plates are useful only with the complication of the extra masking and oxidation steps.

Thus there is a need for a termination structure suitable for transistors operating especially in the 20 volt to 150 volt range, where the termination structure does not require an extra masking or other fabrication step. Such would be possible if the field rings could be more closely spaced apart; however of necessity the prior art field rings must be spaced well apart since if they overlap, i.e. the doped areas of adjacent field rings intersect, the benefit of multiple field rings is lost and the field rings are effectively reduced to being a single field ring, with much of the increased breakdown voltage benefit being lost. It would thus be extremely useful if a process could be found for making field rings located very close to one another. No such structure or process is known in the prior art.

In accordance with the invention, a transistor edge termination structure includes multiple field rings which are spaced more closely together than in the prior art, adjacent field rings being separated by insulating regions which are trenches lined with an insulating material such as silicon dioxide. These trenches allow the field rings to be spaced as close together as the width of the trenches, and hence multiple field rings may be used.

The described embodiment herein is for this termination used with a field effect transistor; this termination is also useful for a high voltage bipolar transistor.

The trenches prevent the overlap of adjacent diffused junctions (which are the field rings or a transistor cell), and also allow the spacing of the field rings at a constant distance. This advantageously eliminates the process sensitivity of using multi field ring terminations for low resistivity semiconductor material. The trenches may be completely filled with an insulating material such as an oxide material, or alternatively the trench sidewalls may be lined with an oxide or other insulator and the remainder portion of the trench filled with for instance doped polysilicon. A trench filled with doped polysilicon may be electrically connected to the gate contact of the active portion of the transistor device.

Typically the field rings (as is conventional) are formed in the same process step as for instance are the deep body regions of the active transistor cells. The trenches are formed in the same process step as are the gate trenches of the active transistor cells, and the remaining steps of oxidizing and filling the trenches also are performed simultaneously with identical steps in the formation of the transistor cell gate electrodes.

Typically the depth of the field rings is greater than that of the trenches. The relative depth is dependent on the fabrication process and the resistivity of the semiconductor epitaxial layer and/or substrate. Generally the trench depth is such that given the maximum process variations in terms of trench etching and field ring diffusion, the field ring diffusion will always be deeper in the substrate than is the bottom of the trench.

Thus the effect of the trench is to enable placement of the field rings at much closer spacing at the surface of the substrate than is possible in the prior art. The trenches may be formed either before or after implantation and diffusion of the field rings. In addition to provision of the trenches separating the field rings, it is also possible to provide a field plate in accordance with the invention. This field plate is conventional (but need not be formed on a thick oxide layer) and is located to extend outside the perimeter of the outermost field ring.

Thus advantageously one may provide a termination structure which does not require formation of a thick oxide insulating layer as required for a prior art field plate, but which improves breakdown voltage for multiple field rings, especially for devices in the 20 volt to 150 volt breakdown voltage range. This structure is relatively economical to fabricate and provides the needed performance in terms of breakdown voltage. Also, elimination of the thick oxide layer underneath a field plate allows the other process steps to be more self aligned, thus improving fabrication yields.

FIG. 1 shows in cross section a prior art field plate.

FIG. 2 shows in cross section a prior art field ring.

FIG. 3 shows in cross section an edge termination including field rings and trenches in accordance with the invention.

FIG. 4a shows in cross section another embodiment of field rings and trenches in accordance with the invention.

FIG. 4b shows in cross section another embodiment of field rings and trenches in accordance with the invention.

FIG. 4c shows in cross section another embodiment of a field ring, trench, and a field plate in accordance with the invention.

FIG. 5a to 5j show in cross section process steps in accordance with the invention.

FIG. 3 shows a field effect transistor termination structure in accordance with the invention. Formed in epitaxial layer 40 of a semiconductor substrate are field rings 42, 44, and deep body region 46 of the outer active cell of the transistor, which includes a dummy (inactive) cell in the left hand portion of deep body region 46. Regions 42, 44, 46 are each a doped region approximately 7 microns wide at the principal surface 48 of the substrate 40 and approximately 2.5 microns deep. The field rings 42, 44 have a conductivity type opposite to that of the surrounding epitaxial layer 40 and have a doping concentration at the surface 48 of approximately 1018 to 1019 ion/cm3. (In FIGS. 3, 4a, 4b, 4c the edge of the die is at the left hand portion of the figure. In FIGS. 5a to 5j the edge of the die is at the right hand portion of the figure.)

Formed respectively between adjacent field rings 42, 44 and between field ring 44 and deep body region 46 is a trench 50, 52 approximately 1 to 2 microns deep and approximately one to two microns wide. Each trench 50, 52 is lined with a layer 54 of silicon dioxide approximately 500 to 1,000 Å thick and filled with doped polysilicon 58. As shown, trench 50, 52 is electrically connected to respectively polysilicon electrode 62, 62 immediately over the center portion of trench 50, 52 which contacts the doped polysilicon filling 58 of trench 50, 52. Electrode 62 e.g. is formed in a insulating layer 63. Conventional source metallization 64 contacts deep body region 46.

Field rings 42, 44 are floating. The innermost trench 52 may be electrically connected via its electrode 62 to the gate contact (not shown) of the active transistor cells.

Also shown is a conventional conductive guard ring 66 at the outermost edge portion of the transistor die. It is to be understood that in FIG. 3 the active transistor cells (except for deep body region 46) are not shown. However, they are conventional in shape and typically are square cells in plan. The trenches 50, 52 allow the field rings 42, 44 to be formed quite close together and also close to active cell region 46; the trenches eliminate any overlapping of adjacent diffused regions due for instance to process variations. This advantageously allows the diffusions to be spaced as close together as the width of the trenches.

FIGS. 4a, 4b, and 4c show other embodiments of the invention.

FIG. 4a shows a structure identical to that of FIG. 3 except that two additional doped regions 70, 72 are present in the left hand portion of the deep body region 46. Regions 70, 72 are respectively a source and body region of an active transistor cell. Thus no dummy cell is present here, unlike FIG. 3.

FIG. 4b shows another embodiment similar to that of FIG. 3 with an additional field ring 76 and trench 78 for improved breakdown voltage performance.

FIG. 4c shows another embodiment with field ring 44 separated by a trench 52 from active cell deep body region 46. Field ring 44 includes an additional shallow body region 80 which is formed at the same as the shallow body region (not shown) of the active transistor cells. Field ring 44 is electrically contacted by a field plate 82 including doped polysilicon portion 84 and metal portion 86. The advantage of shallow body region 80 in the field ring 44 is that for certain field ring junction depths and doping it can enhance the breakdown voltage of the field ring.

As suggested above, structures in accordance with the invention may be used for both gated channels in trenches or for gates which are formed on the surface of the substrate. The outermost cell of the active portion of the transistor may be active or nonactive (dummy). The innermost trench may electrically contact the active transistor gate electrodes by depositing a second polysilicon or metal layer thereover which is in contact with the gate electrode of the active portion of the transistor.

The number of field rings may be from one up to any number necessary to achieve the breakdown voltage that is required. Where there is only one field ring the trench is used to closely space the single field ring from the outermost active cell of the transistor. The number of field rings is only limited by the breakdown voltage for the resistivity of the semiconductor substrate material. The trench dimensions as to both depth and width may vary according to the junction depth of the field rings, and their lateral extent and in accordance with the resistivity of the semiconductor substrate material.

Advantageously, the structures and methods in accordance with the invention eliminate one masking step as required with a conventional field plate and one high temperature step, i.e. formation of a thick gate oxide, and yet still achieve edge breakdown voltage far in excess of that of the active cell transistor portion of the transistor breakdown voltage. These characteristics are especially beneficial when high breakdown voltages are required and shallow junctions are required in accordance with high cell density.

A process for forming the trench structures in accordance with the invention and using six masking steps is described hereinafter. It will be appreciated that this is only one possible process for forming these structures. This process is also disclosed in copending U.S. Pat. No. 5,316,959 issued on May 31, 1994, and commonly owned, having attorney docket No. M-2139 and entitled "Trenched DMOS Transistor Process Using Six Masks", inventors Sze-Hon Kwan, Iuan Hshieh, Mike Chang, Yueh-Se Ho, and King Owyang, incorporated herein by reference.

In FIG. 5a an N-channel process in accordance with the invention uses an N- doped epitaxial layer 100 formed on an N+ doped substrate (not shown). A layer of thin silicon dioxide 102 is thermally grown on the principal surface of the substrate 100 and a mask layer of silicon nitride 104 is deposited thereon. Silicon nitride mask layer 104 is patterned and etched. Then boron is predeposited through the mask layer 104 and driven in to form a P+ deep body regions 106, 108 and P+ field rings 110, 112, 114. This is followed by local oxidation 118 of silicon in FIG. 5b followed by stripping of the nitride mask layer to form both the active transistor cells and the device termination as described above. (It is to be understood that in FIGS. 5a to 5j, unlike FIGS. 3 to 4, the device termination region is located at the right hand side of the figures and the central active cell portion of the transistor is at the left hand portion of the figures. Also, FIGS. 5a to 5j show the process steps schematically and do not accurately depict the actual shapes of the various depicted structures.)

Then in FIG. 5c a second LTO (low temperature oxide) mask layer (not shown) is patterned and the trenches 120, 124, 124, 126 are formed by anisotropic reactive ion dry etching. Trenches 120, 122 serve as the gate electrode trenches and trenches 124,126 separate the field rings. After the trench walls are smoothed by sacrificial oxide growth and stripping of the sacrificial oxide, the gate oxide layer 130 is conventionally grown on the sidewalls of the trenches 120, . . . , 126.

Then in FIG. 5d the trenches are planarized by the deposition of a layer of polycrystalline silicon 132 which is at least as thick as the width of each trench. This relatively thick polysilicon layer 132 is partially etched down and doped to planarize the surface before the masking and polysilicon etching is performed, to form the structure in FIG. 5d. This is followed in FIG. 5e by a blanket P+ body implant and diffusion forming doped regions 134, 136, 138 and an N+source implant and diffusion in FIG. 5f forming regions 140, 142.

Then in FIG. 5g a layer of boro-phosphosilicate glass 146 is deposited over the entire structure. Then in FIG. 5h boro-phosphosilicate glass layer 140 is masked and patterned to define the electrical contact openings 150, 152, 154, 156 to the transistor structure. The polysilicon layer 132a at the edge termination is also defined by this mask step.

Then in FIG. 5i a layer of metal 160 (e.g. aluminum) is deposited over the entire structure and etched using a conventional metal mask. The polysilicon 132a at the edge termination as previously defined by the contact mask is also etched in this same step. Then in FIG. 5j a passivation layer 162 is deposited and by a mask step bonding pads (not shown) for the gate and source area are opened therethrough.

It is to be understood that the above-described process is for an N-channel vertical DMOS transistor device. By reversal of the polarities to the opposite type, a P-channel vertical DMOS transistor structure may also be formed.

The above description is illustrative and not limiting; further modifications will be apparent to one skilled in the art in light of this specification and the appended claims.

Bencuya, Izak

Patent Priority Assignee Title
10229893, Sep 09 2011 VISHAY-SILICONIX Dual lead frame semiconductor package and method of manufacture
10546840, Mar 14 2013 Vishay Siliconix, LLC Method for fabricating stack die package
10868113, Dec 08 2008 Semiconductor Components Industries, LLC Trench-based power semiconductor devices with increased breakdown voltage characteristics
5639676, Aug 15 1994 Siliconix Incorporated Trenched DMOS transistor fabrication having thick termination region oxide
5736418, Jun 07 1996 Bell Semiconductor, LLC Method for fabricating a field effect transistor using microtrenches to control hot electron effects
5883416, Jan 31 1997 ALPHA AND OMEGA SEMICONDUCTOR, LTD Gate-contact structure to prevent contact metal penetration through gate layer without affecting breakdown voltage
5949124, Oct 31 1995 GOOGLE LLC Edge termination structure
5952704, Dec 06 1996 INTELLECTUAL DISCOVERY CO LTD Inductor devices using substrate biasing technique
6025628, Jan 27 1997 Taiwan Semiconductor Manufacturing Company High breakdown voltage twin well device with source/drain regions widely spaced from fox regions
6103635, Oct 28 1997 Semiconductor Components Industries, LLC Trench forming process and integrated circuit device including a trench
6140193, May 12 1999 United Microelectronics Corp. Method for forming a high-voltage semiconductor device with trench structure
6429481, Nov 14 1997 Semiconductor Components Industries, LLC Field effect transistor and method of its manufacture
6445048, Jan 07 1999 Infineon Technologies AG Semiconductor configuration having trenches for isolating doped regions
6583487, Oct 23 1998 STMICROELECTRONICS S A Power component bearing interconnections
6620691, Jun 16 2000 General Semiconductor, Inc. Semiconductor trench device with enhanced gate oxide integrity structure
6683363, Jul 03 2001 Semiconductor Components Industries, LLC Trench structure for semiconductor devices
6710403, Jul 30 2002 Semiconductor Components Industries, LLC Dual trench power MOSFET
6710406, Nov 14 1997 Semiconductor Components Industries, LLC Field effect transistor and method of its manufacture
6710418, Oct 11 2002 Semiconductor Components Industries, LLC Schottky rectifier with insulation-filled trenches and method of forming the same
6803626, Jul 18 2002 Semiconductor Components Industries, LLC Vertical charge control semiconductor device
6828195, Nov 14 1997 Semiconductor Components Industries, LLC Method of manufacturing a trench transistor having a heavy body region
6831338, Oct 19 1998 STMICROELECTRONICS S A Power component bearing interconnections
6885061, Jun 26 2003 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
6916745, May 20 2003 Semiconductor Components Industries, LLC Structure and method for forming a trench MOSFET having self-aligned features
6936890, Sep 13 2001 NEXPERIA B V Edge termination in MOS transistors
6991977, Oct 17 2001 Semiconductor Components Industries, LLC Method for forming a semiconductor structure with improved smaller forward voltage loss and higher blocking capability
7033891, Oct 03 2002 Semiconductor Components Industries, LLC Trench gate laterally diffused MOSFET devices and methods for making such devices
7042048, Jun 26 2003 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
7061066, Oct 17 2001 Semiconductor Components Industries, LLC Schottky diode using charge balance structure
7078296, Jan 16 2002 Semiconductor Components Industries, LLC Self-aligned trench MOSFETs and methods for making the same
7132712, Nov 05 2002 Semiconductor Components Industries, LLC Trench structure having one or more diodes embedded therein adjacent a PN junction
7148111, Nov 14 1997 Semiconductor Components Industries, LLC Method of manufacturing a trench transistor having a heavy body region
7160793, Sep 13 2001 NXP B V Edge termination in MOS transistors
7265415, Oct 08 2004 Semiconductor Components Industries, LLC MOS-gated transistor with reduced miller capacitance
7265416, Feb 23 2002 Semiconductor Components Industries, LLC High breakdown voltage low on-resistance lateral DMOS transistor
7291894, Jul 18 2002 Semiconductor Components Industries, LLC Vertical charge control semiconductor device with low output capacitance
7301203, Nov 28 2003 Semiconductor Components Industries, LLC Superjunction semiconductor device
7319256, Jun 19 2006 Semiconductor Components Industries, LLC Shielded gate trench FET with the shield and gate electrodes being connected together
7344943, May 20 2003 Semiconductor Components Industries, LLC Method for forming a trench MOSFET having self-aligned features
7345342, May 20 2003 Semiconductor Components Industries, LLC Power semiconductor devices and methods of manufacture
7352036, Aug 03 2004 Semiconductor Components Industries, LLC Semiconductor power device having a top-side drain using a sinker trench
7368777, Dec 30 2003 Semiconductor Components Industries, LLC Accumulation device with charge balance structure and method of forming the same
7385248, Aug 09 2005 Semiconductor Components Industries, LLC Shielded gate field effect transistor with improved inter-poly dielectric
7429523, Oct 17 2001 Semiconductor Components Industries, LLC Method of forming schottky diode with charge balance structure
7446374, Mar 24 2006 Semiconductor Components Industries, LLC High density trench FET with integrated Schottky diode and method of manufacture
7473603, Jun 19 2006 Semiconductor Components Industries, LLC Method for forming a shielded gate trench FET with the shield and gate electrodes being connected together
7504306, Apr 06 2005 Semiconductor Components Industries, LLC Method of forming trench gate field effect transistor with recessed mesas
7511339, Nov 14 1997 Semiconductor Components Industries, LLC Field effect transistor and method of its manufacture
7518183, Jun 26 2003 Renesas Electronics Corporation Semiconductor device
7525122, Jun 29 2005 WOLFSPEED, INC Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
7534683, Oct 08 2004 Semiconductor Components Industries, LLC Method of making a MOS-gated transistor with reduced miller capacitance
7576388, Oct 03 2002 Semiconductor Components Industries, LLC Trench-gate LDMOS structures
7582519, Nov 05 2002 Semiconductor Components Industries, LLC Method of forming a trench structure having one or more diodes embedded therein adjacent a PN junction
7595524, May 20 2003 Semiconductor Components Industries, LLC Power device with trenches having wider upper portion than lower portion
7598144, Aug 09 2005 Semiconductor Components Industries, LLC Method for forming inter-poly dielectric in shielded gate field effect transistor
7598576, Jun 29 2005 WOLFSPEED, INC Environmentally robust passivation structures for high-voltage silicon carbide semiconductor devices
7605040, Feb 23 2002 Semiconductor Components Industries, LLC Method of forming high breakdown voltage low on-resistance lateral DMOS transistor
7625793, Dec 20 1999 Semiconductor Components Industries, LLC Power MOS device with improved gate charge performance
7638841, May 20 2003 Semiconductor Components Industries, LLC Power semiconductor devices and methods of manufacture
7652326, May 20 2003 Semiconductor Components Industries, LLC Power semiconductor devices and methods of manufacture
7655981, Nov 28 2003 Semiconductor Components Industries, LLC Superjunction semiconductor device
7696571, Nov 14 1997 Semiconductor Components Industries, LLC Method of manufacturing a trench transistor having a heavy body region
7696584, Jun 29 2005 WOLFSPEED, INC Reduced leakage power devices by inversion layer surface passivation
7713822, Mar 24 2006 Semiconductor Components Industries, LLC Method of forming high density trench FET with integrated Schottky diode
7732876, Aug 03 2004 Semiconductor Components Industries, LLC Power transistor with trench sinker for contacting the backside
7736978, Nov 14 1997 Semiconductor Components Industries, LLC Method of manufacturing a trench transistor having a heavy body region
7745289, Aug 16 2000 Semiconductor Components Industries, LLC Method of forming a FET having ultra-low on-resistance and low gate charge
7772668, Dec 26 2007 Semiconductor Components Industries, LLC Shielded gate trench FET with multiple channels
7799636, May 20 2003 Semiconductor Components Industries, LLC Power device with trenches having wider upper portion than lower portion
7800170, Jul 31 2009 Alpha & Omega Semiconductor, Inc Power MOSFET device with tungsten spacer in contact hole and method
7855401, Jun 29 2005 WOLFSPEED, INC Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
7855415, May 20 2003 Semiconductor Components Industries, LLC Power semiconductor devices having termination structures and methods of manufacture
7858460, Jun 29 2005 WOLFSPEED, INC Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
7859047, Jun 19 2006 Semiconductor Components Industries, LLC Shielded gate trench FET with the shield and gate electrodes connected together in non-active region
7936008, Jul 15 2004 Semiconductor Components Industries, LLC Structure and method for forming accumulation-mode field effect transistor with improved current capability
7977744, Jul 18 2002 Semiconductor Components Industries, LLC Field effect transistor with trench filled with insulating material and strips of semi-insulating material along trench sidewalls
7982265, May 20 2003 Semiconductor Components Industries, LLC Trenched shield gate power semiconductor devices and methods of manufacture
8013387, May 20 2003 Semiconductor Components Industries, LLC Power semiconductor devices with shield and gate contacts and methods of manufacture
8013391, May 20 2003 Semiconductor Components Industries, LLC Power semiconductor devices with trenched shielded split gate transistor and methods of manufacture
8026558, Aug 03 2004 Semiconductor Components Industries, LLC Semiconductor power device having a top-side drain using a sinker trench
8034682, May 20 2003 Semiconductor Components Industries, LLC Power device with trenches having wider upper portion than lower portion
8044463, Nov 14 1997 Semiconductor Components Industries, LLC Method of manufacturing a trench transistor having a heavy body region
8049276, Jun 12 2009 Semiconductor Components Industries, LLC Reduced process sensitivity of electrode-semiconductor rectifiers
8084327, Apr 06 2005 Semiconductor Components Industries, LLC Method for forming trench gate field effect transistor with recessed mesas using spacers
8101484, Aug 16 2000 Semiconductor Components Industries, LLC Method of forming a FET having ultra-low on-resistance and low gate charge
8105911, Sep 30 2008 Northrop Grumman Systems Corporation Bipolar junction transistor guard ring structures and method of fabricating thereof
8110868, Jul 27 2005 Infineon Technologies Austria AG Power semiconductor component with a low on-state resistance
8129245, May 20 2003 Semiconductor Components Industries, LLC Methods of manufacturing power semiconductor devices with shield and gate contacts
8143123, May 20 2003 Semiconductor Components Industries, LLC Methods of forming inter-poly dielectric (IPD) layers in power semiconductor devices
8143124, May 20 2003 Semiconductor Components Industries, LLC Methods of making power semiconductor devices with thick bottom oxide layer
8148233, Aug 03 2004 Semiconductor Components Industries, LLC Semiconductor power device having a top-side drain using a sinker trench
8148749, Feb 19 2009 Semiconductor Components Industries, LLC Trench-shielded semiconductor device
8174067, Dec 08 2008 Semiconductor Components Industries, LLC Trench-based power semiconductor devices with increased breakdown voltage characteristics
8193581, Dec 08 2008 Semiconductor Components Industries, LLC Trench-based power semiconductor devices with increased breakdown voltage characteristics
8198677, Oct 03 2002 Semiconductor Components Industries, LLC Trench-gate LDMOS structures
8227855, Feb 09 2009 Semiconductor Components Industries, LLC Semiconductor devices with stable and controlled avalanche characteristics and methods of fabricating the same
8258573, May 13 2005 Infineon Technologies AG Power semiconductor component with plate capacitor structure and edge termination
8304829, Dec 08 2008 Semiconductor Components Industries, LLC Trench-based power semiconductor devices with increased breakdown voltage characteristics
8319290, Jun 18 2010 Semiconductor Components Industries, LLC Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
8350317, May 20 2003 Semiconductor Components Industries, LLC Power semiconductor devices and methods of manufacture
8432000, Jun 18 2010 Semiconductor Components Industries, LLC Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
8461648, Jul 27 2005 Infineon Technologies Austria AG Semiconductor component with a drift region and a drift control region
8476133, Nov 14 1997 Semiconductor Components Industries, LLC Method of manufacture and structure for a trench transistor having a heavy body region
8492837, Jun 12 2009 Semiconductor Components Industries, LLC Reduced process sensitivity of electrode-semiconductor rectifiers
8518777, Jul 15 2004 Semiconductor Components Industries, LLC Method for forming accumulation-mode field effect transistor with improved current capability
8563377, Dec 08 2008 Semiconductor Components Industries, LLC Trench-based power semiconductor devices with increased breakdown voltage characteristics
8564024, Dec 08 2008 Semiconductor Components Industries, LLC Trench-based power semiconductor devices with increased breakdown voltage characteristics
8643086, Jul 27 2005 Infineon Technologies Austria AG Semiconductor component with high breakthrough tension and low forward resistance
8673700, Apr 27 2011 Semiconductor Components Industries, LLC Superjunction structures for power devices and methods of manufacture
8680611, Apr 06 2005 Semiconductor Components Industries, LLC Field effect transistor and schottky diode structures
8698232, Jan 04 2010 Infineon Technologies Americas Corp Semiconductor device including a voltage controlled termination structure and method for fabricating same
8709895, Nov 04 2010 Sinopower Semiconductor Inc. Manufacturing method power semiconductor device
8710584, Aug 16 2000 Semiconductor Components Industries, LLC FET device having ultra-low on-resistance and low gate charge
8716783, May 20 2003 Semiconductor Components Industries, LLC Power device with self-aligned source regions
8754468, May 13 2005 Infineon Technologies AG Power semiconductor component with plate capacitor structure having an edge plate electrically connected to source or drain potential
8772868, Apr 27 2011 Semiconductor Components Industries, LLC Superjunction structures for power devices and methods of manufacture
8786010, Apr 27 2011 Semiconductor Components Industries, LLC Superjunction structures for power devices and methods of manufacture
8786045, May 20 2003 Semiconductor Components Industries, LLC Power semiconductor devices having termination structures
8829641, Jan 30 2001 Semiconductor Components Industries, LLC Method of forming a dual-trench field effect transistor
8836028, Apr 27 2011 Semiconductor Components Industries, LLC Superjunction structures for power devices and methods of manufacture
8866218, Mar 29 2011 Semiconductor Components Industries, LLC Wafer level MOSFET metallization
8872278, Oct 25 2011 Semiconductor Components Industries, LLC Integrated gate runner and field implant termination for trench devices
8889511, May 20 2003 Semiconductor Components Industries, LLC Methods of manufacturing power semiconductor devices with trenched shielded split gate transistor
8928077, Sep 21 2007 Semiconductor Components Industries, LLC Superjunction structures for power devices
8932924, Dec 08 2008 Semiconductor Components Industries, LLC Trench-based power semiconductor devices with increased breakdown voltage characteristics
8936985, May 20 2003 Semiconductor Components Industries, LLC Methods related to power semiconductor devices with thick bottom oxide layers
8963212, Dec 08 2008 Semiconductor Components Industries, LLC Trench-based power semiconductor devices with increased breakdown voltage characteristics
8994073, Oct 04 2012 WOLFSPEED, INC Hydrogen mitigation schemes in the passivation of advanced devices
9024378, Feb 09 2013 Alpha and Omega Semiconductor Incorporated Device structure and manufacturing method using HDP deposited source-body implant block
9190511, Jul 27 2005 Infineon Technologies Austria AG Semiconductor component with a drift region and a drift control region
9224853, Dec 26 2007 Semiconductor Components Industries, LLC Shielded gate trench FET with multiple channels
9293524, May 02 2014 Infineon Technologies AG Semiconductor device with a field ring edge termination structure and a separation trench arranged between different field rings
9293526, Dec 08 2008 Semiconductor Components Industries, LLC Trench-based power semiconductor devices with increased breakdown voltage characteristics
9368587, May 20 2003 Semiconductor Components Industries, LLC Accumulation-mode field effect transistor with improved current capability
9391193, Dec 08 2008 Semiconductor Components Industries, LLC Trench-based power semiconductor devices with increased breakdown voltage characteristics
9431481, Apr 27 2011 Semiconductor Components Industries, LLC Superjunction structures for power devices and methods of manufacture
9589929, Mar 14 2013 VISHAY-SILICONIX Method for fabricating stack die package
9595503, Sep 09 2011 VISHAY-SILICONIX Dual lead frame semiconductor package and method of manufacture
9595596, Sep 21 2007 Semiconductor Components Industries, LLC Superjunction structures for power devices
9748329, Dec 08 2008 Semiconductor Components Industries, LLC Trench-based power semiconductor devices with increased breakdown voltage characteristics
9812338, Mar 14 2013 WOLFSPEED, INC Encapsulation of advanced devices using novel PECVD and ALD schemes
9966330, Mar 14 2013 VISHAY-SILICONIX Stack die package
9991399, Sep 26 2014 WOLFSPEED, INC Passivation structure for semiconductor devices
RE49167, Sep 26 2014 WOLFSPEED, INC Passivation structure for semiconductor devices
Patent Priority Assignee Title
3984859, Jan 11 1974 Hitachi, Ltd. High withstand voltage semiconductor device with shallow grooves between semiconductor region and field limiting rings with outer mesa groove
3994011, Sep 03 1973 Hitachi, Ltd. High withstand voltage-semiconductor device with shallow grooves between semiconductor region and field limiting rings
5072266, Dec 27 1988 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
5233215, Jun 08 1992 INTELLECTUAL VENTURES HOLDING 78 LLC Silicon carbide power MOSFET with floating field ring and floating field plate
JP3155167,
JP61137368,
JP63263769,
////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 23 1992Siliconix, Incorporated(assignment on the face of the patent)
Jul 23 1992BENCUYA, IZAKSILICONIX, INCORPORATED, A CORPORATION OF CAASSIGNMENT OF ASSIGNORS INTEREST 0061950288 pdf
Feb 12 2010VISHAY DALE ELECTRONICS, INC COMERICA BANK, AS AGENTSECURITY AGREEMENT0240060515 pdf
Feb 12 2010Vishay Intertechnology, IncCOMERICA BANK, AS AGENTSECURITY AGREEMENT0240060515 pdf
Feb 12 2010Siliconix IncorporatedCOMERICA BANK, AS AGENTSECURITY AGREEMENT0240060515 pdf
Feb 12 2010VISHAY MEASUREMENTS GROUP, INC COMERICA BANK, AS AGENTSECURITY AGREEMENT0240060515 pdf
Feb 12 2010VISHAY SPRAGUE, INC , SUCCESSOR IN INTEREST TO VISHAY EFI, INC AND VISHAY THIN FILM, LLCCOMERICA BANK, AS AGENTSECURITY AGREEMENT0240060515 pdf
Dec 01 2010COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION FORMERLY A MICHIGAN BANKING CORPORATION VISHAY MEASUREMENTS GROUP, INC , A DELAWARE CORPORATIONRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0254890184 pdf
Dec 01 2010COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION FORMERLY A MICHIGAN BANKING CORPORATION SILICONIX INCORPORATED, A DELAWARE CORPORATIONRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0254890184 pdf
Dec 01 2010COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION FORMERLY A MICHIGAN BANKING CORPORATION VISHAY INTERTECHNOLOGY, INC , A DELAWARE CORPORATIONRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0254890184 pdf
Dec 01 2010COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION FORMERLY A MICHIGAN BANKING CORPORATION VISHAY DALE ELECTRONICS, INC , A DELAWARE CORPORATIONRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0254890184 pdf
Dec 01 2010COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION FORMERLY A MICHIGAN BANKING CORPORATION VISHAY GENERAL SEMICONDUCTOR, LLC, F K A GENERAL SEMICONDUCTOR, INC , A DELAWARE LIMITED LIABILITY COMPANYRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0254890184 pdf
Dec 01 2010COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION FORMERLY A MICHIGAN BANKING CORPORATION VISHAY VITRAMON, INCORPORATED, A DELAWARE CORPORATIONRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0254890184 pdf
Dec 01 2010COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION FORMERLY A MICHIGAN BANKING CORPORATION YOSEMITE INVESTMENT, INC , AN INDIANA CORPORATIONRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0254890184 pdf
Dec 01 2010VISHAY SPRAGUE, INC JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0256750001 pdf
Dec 01 2010Siliconix IncorporatedJPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0256750001 pdf
Dec 01 2010VISHAY DALE ELECTRONICS, INC JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0256750001 pdf
Dec 01 2010Vishay Intertechnology, IncJPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0256750001 pdf
Dec 01 2010COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION FORMERLY A MICHIGAN BANKING CORPORATION VISHAY SPRAGUE, INC , SUCCESSOR-IN-INTEREST TO VISHAY EFI, INC AND VISHAY THIN FILM, LLC, A DELAWARE CORPORATIONRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0254890184 pdf
Jul 16 2019JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTSprague Electric CompanyRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0498260312 pdf
Jul 16 2019JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTVISHAY VITRAMON, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0498260312 pdf
Jul 16 2019JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTVISHAY EFI, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0498260312 pdf
Jul 16 2019JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTVishay Techno Components, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0498260312 pdf
Jul 16 2019JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTSiliconix IncorporatedRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0498260312 pdf
Jul 16 2019JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTVishay Intertechnology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0498260312 pdf
Jul 16 2019JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTDALE ELECTRONICS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0498260312 pdf
Jul 16 2019JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTVISHAY DALE ELECTRONICS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0498260312 pdf
Jul 16 2019JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTVISHAY SPRAGUE, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0498260312 pdf
Date Maintenance Fee Events
Dec 23 1998M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Jan 03 2003M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Feb 11 2003ASPN: Payor Number Assigned.
Jan 04 2007M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jul 04 19984 years fee payment window open
Jan 04 19996 months grace period start (w surcharge)
Jul 04 1999patent expiry (for year 4)
Jul 04 20012 years to revive unintentionally abandoned end. (for year 4)
Jul 04 20028 years fee payment window open
Jan 04 20036 months grace period start (w surcharge)
Jul 04 2003patent expiry (for year 8)
Jul 04 20052 years to revive unintentionally abandoned end. (for year 8)
Jul 04 200612 years fee payment window open
Jan 04 20076 months grace period start (w surcharge)
Jul 04 2007patent expiry (for year 12)
Jul 04 20092 years to revive unintentionally abandoned end. (for year 12)