A method and apparatus for making cuvettes. The cuvette comprises two optically transparent liquid impermeable plastic sheets. A third "sticky" sheet is inserted between the two transparent plastic sheets and the three sheets are pressure sealed together. The thickness of the "sticky" sheet defines the optical pathlength of the turbid media. The "sticky" sheet has cut outs defining the contour of an optical chamber, inlet port and vent port.

Patent
   5430542
Priority
Apr 10 1992
Filed
Apr 10 1992
Issued
Jul 04 1995
Expiry
Jul 04 2012
Assg.orig
Entity
Large
79
14
all paid
1. A method for producing an optical cuvette comprising:
forming a cut-out for defining an optical chamber of selected volume and shape in a plastic film having adhesive layers in both sides thereof and having a selected thickness that defines an optical pathlength perpendicular to the longitudinal axis of said film; and
assembling two optically transparent substantially flat sheets of plastic with said plastic film disposed intermediate said transparent sheets in a sandwich relationship such that said adhesive layers on the sides of said plastic film secure said two transparent flat sheets together to provide a liquid tight seal and wherein the resulting assembly comprises an optical cuvette having an optical chamber of selected volume and shape, and an optical pathlength equal to the thickness of said plastic film.
2. A method for producing an optical cuvette as set forth in claim 1 wherein the step of forming the cut-out for defining an optical chamber comprises die cutting a portion of said plastic film to form a removable piece defining a selected shape and size for said optical chamber.
3. A method of producing an optical cuvette as set forth in claim 2 wherein said step of assembly comprises:
removing said die cut piece before adhesively securing said plastic film to one of said two optically transparent flat sheets; and
adhesively securing the other side of said plastic film to the other of said two optically transparent flat sheets.
4. A method for producing an optical cuvette as set forth in claim 2 wherein said cut-out in said plastic film defines an optical chamber, a vent port, an inlet port, and a pathway connecting said one optical chamber and said ports.
5. A method for producing an optical cuvette as set forth in claim 4 further comprising:
securing a vent plug formed of a material that is impermeable to aqueous liquids over said vent port.
6. A method for producing an optical cuvette as set forth in claim 5 wherein said vent plug is formed of a material that is permeable to air.
7. A method for producing an optical cuvette as set forth in claim 2 further comprising:
providing said two optically transparent, substantially flat sheets and said plastic film in a size permitting the production of a plurality of cuvettes;
pattern die cutting a plurality of adjacent configurations in said plastic film, each configuration having at least one cut-out defining an optical chamber having an optical pathlength perpendicular to the longitudinal axis of said plastic film;
adhesively securing said plastic film to one of said two optically transparent, substantially flat sheets;
adhesively securing the other side of said plastic film to the other of said two optically transparent, substantially flat sheets thereby forming a sandwich assembly wherein said plastic film is sandwiched between said two optically transparent flat sheets and wherein the thickness of said plastic film defines the optical pathlength of the cuvette; and
cutting the sandwich assembly to produce a plurality of individual cuvettes.
8. The method of producing an optical cuvette as set forth in claim 7 further comprising:
flat pressing the sandwich assembly to uniformly seal said two optically transparent substantially flat sheets to both sides of said plastic
9. A method for producing an optical cuvette as set forth in claim 8 wherein said configurations are perforatedly joined to adjacent configurations.
10. A method for producing an optical cuvette as set forth in claim 8 wherein said cut-outs defining said optical chambers are removed after said plastic film is adhesively secured to one of said two optically transparent substantially flat sheets, but before said plastic film is adhesively secured to the other of said two optically transparent substantially flat sheets.
11. A method for producing an optical cuvette as set forth in claim 8 wherein said cut-outs defining said optical chambers are removed before said plastic film is first adhesively secured to one of said two optically transparent substantially flat sheets.

The work leading to the present invention was partially supported by SBIR Grant No. 1 R43 HL47273-01. The United States Government may hold rights in any patent issuing therefrom.

1. Field of the Invention

The present invention relates to a new and improved optical cuvette. The cuvette of the present invention allows the making of improved spectrophotometric measurements in turbid media such as whole blood.

2. BACKGROUND OF THE INVENTION

The present invention relates to a disposable optical cuvette #or making spectrophotometric measurements in turbid media such as whole blood and a method of constructing the cuvette. Spectrophotometric measurements on certain compounds that absorb light strongly or those on turbid samples that scatter light appreciably, require a relatively short optical pathlength. The optical pathlength from one cuvette to the next must be consistent for spectrophotometric measurements to be accurate. Therefore, the method of construction of cuvettes must be uniformly controlled.

Numerous approaches have been taken to resolve the problem of uniformly constructing cuvettes with a short optical pathlengths. U.S. Pat. 4,753,776 to Hillman discloses a cuvette for separating plasma from blood by filtration to resolve the light scattering problem when measuring whole blood. The reason Hillman separates whole blood into plasma and red blood cells is that red blood cells scatter and absorb light and could adversely affect a measurement of either reflected or transmitted light of a diagnostic test relying on either of these measurement techniques.

The optical distance through the sample of interest, i.e., width dimension, in an optical chamber is the optical pathlength, and the amount of light absorbed by the sample is directly proportional to the optical pathlength. Therefore, the optical pathlength varies from one cuvette to another, varying degrees of light absorbance and light scattering will induce error in spectrophotometric measurements.

Attempts to control light scattering by utilizing a defined volume chamber is disclosed in U.S. Pat. Nos. 4,963,498 and 4,756,884 to Hillman, et al. Hillman, et al., rely upon injection molding of a multi-layered cuvette to define the optical chamber. The multi-layered cuvette is then ultrasonically welded together. Assembling Hillmanz's cuvette is a multi-step operation involving repeated ultrasonic bonding of each surface to its adjoining surface. This particular construction technique limits the lower limit of the optical pathlength due to the shrinkage found in the component parts of a multi-layer cuvette after injection molding. Hillman, et al., disclose an optical pathlength to be equal to or greater than 180 micrometers.

Another approach to control the optical pathlength is disclosed by U.S. Pat. No. 4,585,561 to Thornton, et al. This patent discloses a cuvette with two chambers. One chamber holds the sample of interest, i.e., whole blood and a second is an over-flow chamber. The first chamber that holds the sample of interest has an optical pathlength of 0.2 cm. That lower optical pathlength is achieved by vacuum forming a portion of the optical chamber. The over-flow chamber is an attempt to remove air bubbles from the sample. Those air bubbles will cause inconsistent readings when making spectrophotometric measurements on whole blood.

The general type and construction of cuvettes disclosed in '498 and '561 are also disclosed in U.S. Pat. Nos. 3,690,836, 4,761,381 and 4,762,798. All the patents have as one of their objectives the measurement of turbid media by optical means, all with varying degrees of success. Whole blood both scatters and absorbs light making optical measurements difficult at best. Past methods have unsuccessfully attempted to remedy this problem by injection molding, and vacuum forming sample volume cavities, thereby controlling the optical pathlength.

The problem of producing a consistent, very low optical pathlength through turbid media, such as whole blood, has not been solved.

The technique the present invention uses to achieve a consistent, very short optical pathlength in making spectrophotometric measurements is to optimize Beer's law. Beer's law in part states, the shorter the optical pathlength, the less the absorption of light. By reducing the optical pathlength and thus the optical density of the sample, the present invention enables one skilled in the art of spectrophotometry to make accurate measurements directly on whole blood without the need for dilution or hemolysis. The reduced concentration of whole blood also has the effect of reducing reflections of light due to the reduced concentration of red blood cells in the whole blood sample.

To implement Beer's law the present invention utilizes a thin film with an adhesive coating on both sides, i.e., a double-back "sticky" sheet. The thickness of the "sticky" sheet corresponds to the desired optical pathlength as required to implement Beer's law and is preferably in the range of 80 to 130 micrometers. The medial portions of the "sticky" sheet is pattern die stamped to the peripheral configuration of a cuvette. Then the "sticky" sheet is mounted to a similarly shaped liquid impermeable, transparent plastic sheet. Once mounted, the excess material formed by the die cut pattern is removed from the sticky sheet leaving only the required material to form the desired optical chamber and required pathways connecting the optical chamber with vent and inlet ports. A second substantially rectangular liquid impermeable transparent plastic sheet is placed over the first sheet. The residual portion of the "sticky" sheet thus resides between the first and second sheets of transparent plastic. The completed assembly is flat pressed, uniformly sealing both sides of the "sticky" sheet to the juxtaposed surfaces of the two transparent plastic sheets, thus defining a cuvette of desired very short optical pathlength.

If desired, an adaptor is inserted over one end of the individual cuvette to accommodate a syringe that will hold the sample of interest. An alternate adaptor would be one that is sufficiently tapered to accommodate the tapered portion of the syringe, commonly called a Luer adaptor. A vent plug permeable to air but impermeable to red blood cells is installed over the other end of the cuvette. An alternate vent plug that is not air permeable may be used instead of a preferred air permeable vent plug. However, this vent plug must be punctured to allow air to escape during tile filling of a cuvette. With or without the aforementioned adaptors, the cuvette is ready to use with an optical pathlength completely determined by the very low thickness of a double backed "sticky" sheet.

An alternate assembly process would use large substantially rectangular transparent liquid impermeable plastic sheets and a similar size "sticky" sheet concurrently to produce a plurality of individual cuvettes.

A further advantage of this invention will be readily apparent to those skilled in the art from the following detailed description, taken in conjunction with the annexed sheets of drawings, a preferred embodiment of the invention.

FIG. 1 is a plan view of the three sheet elements from which a cuvette embodying this invention is assembled.

FIG. 2 is a side elevational view of a cuvette assembled from the sheet elements of FIG. 1.

FIG. 3 is a sectional view taken on the plane 3--3 of FIG. 2.

FIG. 4 is an environmental illustration of a cuvette of FIG. 1.

Referring to FIG. 1, an optical cuvette constituting a preferred embodiment of the present invention is shown generally at 10. Optical cuvette 10 comprises two transparent, liquid impermeable, substantially flat sheets 12 and 14 (FIG. 1). Those sheets are preferably made from optically transparent plastic, sold under the trade mark Lexan®. Although the sheets are shown to be in substantially rectangular form for the preferred embodiment, the actual shape may be varied. Sheets 12 and 14 are adhesively secured together by a double back "sticky" sheet 16 sold under the trade mark Arcare® 7840 and 3M® 415 having a thickness corresponding to a desired optical pathlength for the cuvette, which, for purposes of tile present explanation is preferably 80 to 130 micrometers thick.

The method of construction of cuvette 10 involves the pattern die cutting of the double-backed "sticky" sheet 16 as indicated at 16a, to provide a readily removable piece 16b, having the desired contour of an optical chamber 17 and pathways 16c and 16d, connecting an inlet port 26 and a vent port 24 to the optical chamber 17.

The "sticky" sheet 16 is then applied to one of the flat sheets 12 and 14, the removable die cut piece 16b is then peeled off. The other flat sheet is then applied over the sticky sheet 16. The remainder of the sticky sheet 16 will hold the two transparent flat streets together providing a liquid tight seal and will form an optical chamber of defined volume, shape, and optical pathlength.

Preferably foam gaskets 18a and 18b are adhesively attached to each end of cuvette 10. The foam gaskets 18a and 18b are air permeable but impermeable to red blood cells. On one end of cuvette 10, there is attached a preferred syringe needle adapter 20, commonly called a Luer adapter. The Luer adapter 20 is preferably form fitted to tile one end of the cuvette 10. A porous polyethylene vent plug 22 is preferably adhesively attached to the foam gasket 18a at the end of the cuvette opposite to the Luer tapered adapter 20.

FIG. 2 shows a cuvette 10 completely assembled with all of the preferred embodiments of the present invention. The transparent plastic sheets 12 and 14 are mounted to the "sticky" sheet 16. The foam gasket 18a and 18b are adhesively attached to each end of the cuvette 10. The Luer adapter 20 is form fitted to one end of cuvette 10. The porous polyethylene vent plug 22 is adhesively attached to the foam gaskets 18a at the end of cuvette 10 opposite to the Luer adapter 20.

The preferred manufacturing process of the present invention enables a plurality of cuvettes to be produced from two large sheets of transparent plastic, such as Lexan®. The plastic sheet may be of commercial variety provided it is substantially flat on both surfaces. A double-backed "sticky" sheet that is the same area as the plastic sheets is preferably patterned die-cut to produce a plurality of adjacent configurations corresponding to "sticky" sheet 16. Each configuration may be perforatedly joined to the adjacent configuration. This large patterned sheet of double-backed "sticky" sheet is adhesively attached to a surface of one of the large plastic sheets. The cut-out portions are removed from the "sticky" sheet. The second large sheet of transparent plastic is placed over the first sheet containing the "sticky" sheet. The sticky sheet, which determines the optical pathlength of all cuvettes formed, therefore resides between the first and second sheets of transparent plastic. The entire assembly is then flat pressed to uniformly seal both large plastic sheets to sides of the "sticky" sheet surfaces.

The assembly is then preferable die-cut to produce a plurality of individual cuvettes 10. Foam gaskets 18a and 18b are placed over each end of each cuvette 10. A vent plug 22 is secured to one end of the cuvette 10. A Luer tapered adapter 20 is secured, by form fitting to the other end of the cuvette 10. The results of the preferred manufacturing process are a ready-to-use disposable optical cuvette 10 with a consistent very short optical pathlength.

The utilization of cuvette 10 follows the standard procedures found in the diagnostic environment, as schematically shown in FIG. 4. A syringe 40 is filled with a sample of interest, such as whole blood. The syringe's Luer tip 42 is inserted into the Luer tapered adapter 20, and the plunger 44 of the syringe is depressed. That action forces the fluid out of the syringe and into the optical chamber 17 of cuvette 10. Simultaneously air is forced out through the vent plug 22, leaving only liquid wholly contained within the chamber 17 cuvette 10.

Normally, to make a spectrophotometric measurement on a turbid sample 32, a light source 30 provides the necessary light beam 34 that passes through the sample 32 and is received by the detector 28. The distance the light travels through the turbid media sample 32 is the optical pathlength. Once the optical pathlength through the sample 32 has been established, the detector 28 is calibrated to the optical pathlength. Unfortunately, optical pathlengths vary from one cuvette to another. This varying optical pathlength will disturb the calibration of the detector 28 and thereby produce a detected measurement that is in error. If particles, such as red blood cells are present, scattering of the light will result, but such light scattering can be minimized if the optical pathlength is reduced to the range of 80 to 130 micrometers.

The present invention solves the problem of producing cuvettes with consistent very short optical pathlengths by using a combination of two techniques. The first technique is to minimize the optical pathlength to a range of 80 to 130 micrometers. The second technique is to set the optical pathlength by using a "sticky" sheet 16 that is of uniform thickness and to construct the cuvette by the methods above mentioned. Making spectrophotometric measurements utilizing the present invention will yield more consistent measurements due to low absorption of light, minimal light scattering by turbid samples, and consistent optical pathlengths.

The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the invention as set forth herein.

Shepherd, A. P.

Patent Priority Assignee Title
10019760, Mar 20 2015 Bank of America Corporation System for utilizing a retirement score to receive benefits
10032223, Mar 20 2015 Bank of America Corporation System for account linking and future event integration into retirement score calculation
10049406, Mar 20 2015 Bank of America Corporation System for sharing retirement scores between social groups of customers
10093957, Jul 01 2013 S.D. Sight Diagnostics Ltd. Method, kit and system for imaging a blood sample
10176565, May 23 2013 S D SIGHT DIAGNOSTICS LTD Method and system for imaging a cell sample
10201303, Jul 20 2009 OptiScan Biomedical Corporation Fluid analysis system
10249003, Mar 20 2015 Bank of America Corporation System for sharing retirement scores between social groups of customers
10262372, Mar 20 2015 Bank of America Corporation System for utilizing a retirement score to receive benefits
10383561, Oct 06 2005 OptiScan Biomedical Corporation Fluid handling cassette system for body fluid analyzer
10482595, Aug 27 2014 S D SIGHT DIAGNOSTICS LTD System and method for calculating focus variation for a digital microscope
10488644, Sep 17 2015 S D SIGHT DIAGNOSTICS LTD Methods and apparatus for detecting an entity in a bodily sample
10499841, Nov 08 2001 OptiScan Biomedical Corporation Analyte monitoring systems and methods
10568555, Feb 14 2005 OptiScan Biomedical Corporation Fluid handling cassette
10568556, Feb 14 2005 OptiScan Biomedical Corporation Bodily fluid composition analyzer with disposable cassette
10628887, Mar 20 2015 Bank of America Corporation System for account linking and future event integration into retirement score calculation
10640807, Dec 29 2011 S D SIGHT DIAGNOSTICS LTD Methods and systems for detecting a pathogen in a biological sample
10660557, Jul 20 2009 OptiScan Biomedical Corporation Fluid analysis cuvette with coupled transparent windows
10663712, Sep 17 2015 S.D. Sight Diagnostics Ltd. Methods and apparatus for detecting an entity in a bodily sample
10831013, Aug 26 2013 S D SIGHT DIAGNOSTICS LTD Digital microscopy systems, methods and computer program products
10843190, Dec 29 2010 S D SIGHT DIAGNOSTICS LTD Apparatus and method for analyzing a bodily sample
11099175, May 11 2016 S D SIGHT DIAGNOSTICS LTD Performing optical measurements on a sample
11100634, May 23 2013 S.D. Sight Diagnostics Ltd. Method and system for imaging a cell sample
11100637, Aug 27 2014 S.D. Sight Diagnostics Ltd. System and method for calculating focus variation for a digital microscope
11199690, Sep 17 2015 S.D. Sight Diagnostics Ltd. Determining a degree of red blood cell deformity within a blood sample
11262571, Sep 17 2015 S.D. Sight Diagnostics Ltd. Determining a staining-quality parameter of a blood sample
11295440, May 23 2013 S.D. Sight Diagnostics Ltd. Method and system for imaging a cell sample
11307196, May 11 2016 S D SIGHT DIAGNOSTICS LTD Sample carrier for optical measurements
11371093, Oct 05 2007 Life Technologies Corporation Biological analysis systems, devices, and methods
11434515, Jul 01 2013 S.D. Sight Diagnostics Ltd. Method and system for imaging a blood sample
11573411, Nov 14 2017 S.D. Sight Diagnostics Ltd. Sample carrier for microscopy measurements
11584950, Dec 29 2011 S.D. Sight Diagnostics Ltd. Methods and systems for detecting entities in a biological sample
11609413, Nov 14 2017 S.D. Sight Diagnostics Ltd. Sample carrier for microscopy and optical density measurements
11614609, Nov 14 2017 S.D. Sight Diagnostics Ltd. Sample carrier for microscopy measurements
11721018, Aug 27 2014 S.D. Sight Diagnostics Ltd. System and method for calculating focus variation for a digital microscope
11733150, Mar 30 2016 S D SIGHT DIAGNOSTICS LTD Distinguishing between blood sample components
11788043, Dec 21 2018 Cell culture plate, assembly and methods of use
11796788, Sep 17 2015 S.D. Sight Diagnostics Ltd. Detecting a defect within a bodily sample
11803964, May 23 2013 S.D. Sight Diagnostics Ltd. Method and system for imaging a cell sample
11808758, May 11 2016 S.D. Sight Diagnostics Ltd. Sample carrier for optical measurements
11914133, Sep 17 2015 S.D. Sight Diagnostics Ltd. Methods and apparatus for analyzing a bodily sample
6188474, May 13 1998 Siemens Healthcare Diagnostics Inc Optical spectroscopy sample cell
6426213, Feb 19 1998 M E S MEDICAL ELECTRONIC SYSTEMS LTD Sperm analysis system
6552784, Apr 23 1999 PPD Biomarker Discovery Sciences, LLC Disposable optical cuvette cartridge
6771993, Aug 16 2001 OptiScan Biomedical Corporation Sample adapter
6841132, May 12 1999 Covidien LP Sample tab
6937330, Apr 23 1999 PPD Biomarker Discovery Sciences, LLC Disposable optical cuvette cartridge with low fluorescence material
6958809, Nov 08 2001 OptiScan Biomedical Corporation Reagent-less whole-blood glucose meter
6983177, Jan 06 2003 OptiScan Biomedical Corporation Layered spectroscopic sample element with microporous membrane
6991762, Apr 26 1996 ARKRAY, Inc. Device for analyzing a sample
7050157, Nov 08 2001 OptiScan Biomedical Corporation Reagent-less whole-blood glucose meter
7197401, Aug 24 2001 CAPRION PROTEOMICS, INC Peak selection in multidimensional data
7248360, Apr 02 2004 PPD Biomarker Discovery Sciences, LLC Polychronic laser scanning system and method of use
7253404, Nov 27 2000 CAPRION PROTEOMICS, INC Median filter for liquid chromatography-mass spectrometry data
7259845, Apr 23 1999 PPD Biomarker Discovery Sciences LLC Disposable optical cuvette cartridge with low fluorescence material
7336812, Jul 21 1999 PPD Biomarker Discovery Sciences, LLC System for microvolume laser scanning cytometry
7449339, Nov 23 1999 Covidien LP Spectroscopic method and apparatus for total hemoglobin measurement
7480032, Nov 08 2001 OptiScan Biomedical Corporation Device and method for in vitro determination of analyte concentrations within body fluids
7485454, Mar 10 2000 BIOPROCESSORS CORP Microreactor
7628914, May 09 2002 CAPRION PROTEOMICS, INC Methods for time-alignment of liquid chromatography-mass spectrometry data
7701581, Apr 01 2005 EKF-DIAGNOSTIC GMBH Device for determining of properties in a fluid and/or constituents thereof
7738085, Nov 08 2001 OptiScan Biomedical Corporation Device and method for in vitro determination of analyte concentration within body fluids
7740804, Apr 12 2005 CHROMEDX LTD Spectroscopic sample holder
7816124, May 12 2006 CHROMEDX LTD Diagnostic whole blood and plasma apparatus
7872734, Nov 08 2001 OptiScan Biomedical Corporation In vitro determination of analyte levels within body fluids
7999927, Nov 08 2001 OptiScan Biomedical Corporation In vitro determination of analyte levels within body fluids
8101404, May 12 2006 CHROMEDX LTD Plasma extraction apparatus
8197770, Feb 14 2005 OptiScan Biomedical Corporation Fluid handling cassette having a spectroscopic sample cell
8206650, Apr 12 2005 CHROMEDX LTD Joint-diagnostic spectroscopic and biosensor meter
8597190, May 18 2007 INSULET CORPORATION Monitoring systems and methods with fast initialization
8928877, Jul 06 2011 OptiScan Biomedical Corporation Sample cell for fluid analysis system
9091676, Jun 09 2010 OptiScan Biomedical Corporation Systems and methods for measuring multiple analytes in a sample
9267876, Jun 23 2011 I-SENS, INC Detection cell for optical analysis of liquid sample
9404852, Nov 08 2001 OptiScan Biomedical Corporation Analyte monitoring systems and methods
9554742, Jul 20 2009 OptiScan Biomedical Corporation Fluid analysis system
9830660, Mar 20 2015 Bank of America Corporation System for augmenting a retirement score with health information
9883829, Feb 14 2005 OptiScan Biomedical Corporation Bodily fluid composition analyzer with disposable cassette
9883830, Oct 06 2005 OptiScan Biomedical Corporation Fluid handling cassette system for body fluid analyzer
9907504, Nov 08 2001 OptiScan Biomedical Corporation Analyte monitoring systems and methods
D391373, Apr 04 1996 Biometric Imaging, Inc. Cuvette for laboratory sample
Patent Priority Assignee Title
3690836,
3751173,
4088448, Sep 29 1975 MIGRATA U K LIMITED, A U K COMPANY Apparatus for sampling, mixing the sample with a reagent and making particularly optical analyses
4405235, Mar 19 1981 Liquid cell for spectroscopic analysis
4753776, Oct 29 1986 Roche Diagnostics Operations, Inc Blood separation device comprising a filter and a capillary flow pathway exiting the filter
4756884, Aug 05 1985 Roche Diagnostics Operations, Inc Capillary flow device
4761381, Sep 18 1985 MILES INC Volume metering capillary gap device for applying a liquid sample onto a reactive surface
4762798, Dec 31 1985 Marshall Diagnostics, Inc. Device and method for determining a characteristic of a fluid sample
4963498, Aug 05 1985 Roche Diagnostics Operations, Inc Capillary flow device
5064282, Sep 26 1989 Artel, Inc. Photometric apparatus and method for measuring hemoglobin
5088816, Sep 19 1989 TOA Medical Electronics Co., Ltd. Process and apparatus for analyzing cells
GB2228800,
JP116243,
RE28801, Sep 20 1972 Akro-Medic Engineering, Inc. Apparatus for evaluation of biological fluid
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 27 1992SHEPHERD, A P A-VOX SYSTEMS, INC , A CORP OF TXASSIGNMENT OF ASSIGNORS INTEREST 0061230054 pdf
Apr 10 1992Avox Systems, Inc.(assignment on the face of the patent)
Dec 27 1994AVOX SYSTEMS, INC NATIONAL INSTITUTES OF HEALTH, THECONFIRMATORY LICENSE SEE DOCUMENT FOR DETAILS 0079310540 pdf
Date Maintenance Fee Events
Dec 14 1998M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Nov 27 2002M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Jan 04 2007M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Jan 04 2007STOL: Pat Hldr no Longer Claims Small Ent Stat


Date Maintenance Schedule
Jul 04 19984 years fee payment window open
Jan 04 19996 months grace period start (w surcharge)
Jul 04 1999patent expiry (for year 4)
Jul 04 20012 years to revive unintentionally abandoned end. (for year 4)
Jul 04 20028 years fee payment window open
Jan 04 20036 months grace period start (w surcharge)
Jul 04 2003patent expiry (for year 8)
Jul 04 20052 years to revive unintentionally abandoned end. (for year 8)
Jul 04 200612 years fee payment window open
Jan 04 20076 months grace period start (w surcharge)
Jul 04 2007patent expiry (for year 12)
Jul 04 20092 years to revive unintentionally abandoned end. (for year 12)