A blockstop which is formed by kneading a curable, water-resistant kneading compound tightly onto the end of the cable and then covering the compound with a shrinkable envelope. Preferably the kneading compound is applied in three layers and the shrinkable envelope is a cold shrinkable tape wound onto the outer layer.
|
8. A blockstop for a longitudinal sealing on an end of a cable comprising a plurality of layers of a curable, water-resistant kneading compound and said plurality of layers being covered by a shrinkable envelope.
1. A method for producing a blockstop for a longitudinal sealing of a cable, said method comprising providing a curable, water-resistant kneading compound, kneading the compound tightly onto an end of the cable to be sealed and then subsequently applying a shrinkable envelope thereon.
2. A method according to
3. A method according to
4. A method according to
5. A method according to
6. A method according to
7. A method according to
11. A blockstop according to
12. A blockstop according to
13. A blockstop according to
14. A blockstop according to
15. A blockstop according to
16. A blockstop according to
|
The present invention is directed to a method for producing a blockstop or closure for longitudinally sealing a cable, particularly a light waveguide cable.
Blockstops or end closures must be attached to the ends of the cables when there is a risk that water could spread in a longitudinal direction within the cable. For example, such a method for producing a blockstop is disclosed in German Published Application 26 08 768. In this disclosure, blockstops are produced of a casting resin. Since the casting resin, however, is initially presented in liquid form, an appropriate mold must be arranged at the end of the cable and must be filled with the resin. This mold cannot be removed until the casting resin has been completely cured. The production of such a blockstop is, thus, extremely complicated and requires a correspondingly long time as a consequence of the curing time for the casting resin.
The object of the present invention is to provide an improved method for producing a blockstop and to provide an improved blockstop for the end of a cable, particularly a light waveguide cable.
These objects are obtained with a method wherein the blockstop is composed of a curable, water-resistant kneading compound which is kneaded tightly onto the end of the cables to be sealed and then has a shrinkable envelope applied thereto.
The object is also inventively achieved with a blockstop that is composed of a plurality of layers of curable, water-resistant kneading compound and of a shrinkable envelope layer lying thereover.
Since a mold no longer needs to be available and, since one must no longer wait for the material of which the blockstop is formed to cure, these are great advantages of the method of the invention for producing the blockstop. Thus, a curable, initially plastically deformable material in the form of a kneading compound is employed here, which is applied to the end of a cable, particularly a light waveguide cable, in the way to be set forth in greater detail hereinbelow and it requires no additional apparatus. This kneading compound is preferably composed of two components that are brought together when required and are uniformly mixed with one another. The kneading compound is then applied and an envelope layer of, preferably, a cold-shrinkable material is placed thereover, this effecting that the kneading compound lying therebelow is compressed and is pressed into the cavities that are still open. Since the kneading compound will cure on its own, no additional or further measures are, therefore, required. An example of a desired kneading compound to be used is a compound that is an ISO epoxy resin designated and sold under the tradename M-SEAL by Mahindra Engineering Chemical Products Limited of Bombay, India.
Other advantages and features of the invention will be readily apparent from the following description of the preferred embodiments, the drawings and claims.
FIG. 1 is a side view of an end of a cable illustrating the first step in the method in accordance with the present invention;
FIG. 2 is a side view of the end of the cable after a first step of applying a first layer of kneading compound and embedding the tensile threads of the light waveguide cable therein;
FIG. 3 side view illustrating the addition of a second layer of a kneading compound in accordance with the present invention;
FIG. 4 illustrates the step of applying a third layer of kneading compound on the end face of the cable; and
FIG. 5 is a side view showing the blockstop provided with the envelope layer.
The principles of the present invention are particularly useful when forming a blockstop, which is illustrated in FIG. 5, for an end of a cable K.
To accomplish this process, the first step for the production of the blockstop of the present invention is to prepare an end of the cable K, as illustrated in FIG. 1, which cable is a light waveguide cable having an outer cladding KA. In the first step, the cladding KA is stripped from the end of a cable so that the lead sheaths or cladded sheaths AH and a center element ZE, as well as tensile threads KE and potential copper leads KU are exposed. The tensile threads KE, which are preferably Kevlar threads, are shortened preferably to a length of approximately 30 mm for the implementation and forming of the blockstop and the end of a cable cladding KA is cleaned and roughened over an annular region AB, preferably having the length of approximately 40 mm. The lead sheaths AH and the Kevlar threads KE and the center element ZE are thereby also cleaned, for example with a solvent such as naphtha. The lead sheaths AH can subsequently be smoothed with a hot-air blower. If shielding connections are still to be potentially produced, then the shielding connection terminals required for this purpose are likewise produced.
In the next step, as illustrated in FIG. 2, the two components of the kneading compounds are first intimately blended with one another and kneaded until a uniform color of the kneading compound has been achieved. A first layer of kneading compound KMS1 is then applied to the prepared cable cladding KA over a portion B1 of a length of preferably 25 mm so that the end of the cable cladding remains free in a space AS of a length of approximately 5 mm. The tensile threads KE are then bent back into this coated region B1 and embedded therein.
In the next step, a second layer of kneading compound KMS2 is then applied on the first layer KMS1 and onto the bent back tensile threads KE so that the second layer covers the region B2 that is larger than the first and is preferably 30 mm long and extends up to the end of the cable cladding KA of the cable K. The tensile threads KE are completely covered and fixed in this manner.
In the next step, a third layer KMS3 (FIG. 4) is now applied, particularly on the end face, and is kneaded and worked in between the lead sheaths AH and the center element ZE and the copper leads KU. Also, if shielding connections are present, this material is kneaded therein so that a tight termination at the end face is formed. The layer KMS3 is thereby mutually kneaded tight with the layer KMS2 and a tight blockstop SST is formed after the curing of a kneaded compound, whereby one need not wait for the kneading compound to cure, since the follow-up work, such as, for example, the removal of a mold, is not necessary.
As illustrated in FIG. 5, the blockstop finally can have an envelope HS composed of a known material. Preferably, however, a cold shrinking tape having a length of approximately 400 mm is employed, and this is spirally wound on and fixed at its end with, for example, an adhesive tape KB.
Although various minor modifications may be suggested by those versed in the art, it should be understood that I wish to embody within the scope of the patent granted hereon all such modifications as reasonably and properly come within the scope of my contribution to the art.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4428790, | Jun 12 1980 | Raychem Corporation | Pleated heat-recoverable tape |
4545830, | Sep 17 1982 | Thomas & Betts International, Inc | Method of sealing pressurized electrical cable while under pressure |
4681986, | Feb 24 1986 | Royston Laboratories, Inc. | Splice construction for electrical cable and method for making the same |
4764232, | Sep 26 1986 | Raychem Corporation | Method of protecting a cable splice with a splice closure having pressure measuring means |
4767893, | Sep 17 1984 | Minnesota Mining and Manufacturing Company; MINNESOTA MINING AND MANUFACTURING COMPANY A COR P OF DE | Cable closing |
4788089, | Mar 06 1985 | Raychem Limited | Heat-recoverable article |
4788254, | Jul 26 1984 | Kanegafuchi Chemical Industry, Co., Ltd. | Curable polymer composition |
5039735, | Jun 13 1986 | Shin-Etsu Chemical Co., Ltd. | Room temperature vulcanizable organopolysiloxane composition for masking electric or electronic parts |
5118755, | Mar 29 1989 | Toshiba Silicone Co., Ltd. | Room temperature-curable polyorganosiloxane composition |
5168124, | Mar 28 1990 | Yazaki Corporation | Waterproof seal construction for wire harness |
5183966, | Nov 19 1990 | INOVA LTD | Termination assembly with improved waterblock |
5271081, | Jun 18 1992 | INOVA LTD | Apparatus and method of blocking water migration between stranded signal conduits |
5312690, | Dec 05 1989 | Shin-Etsu Chemical Co., Ltd. | Self-adhesive silicone rubber composition and silicone rubber coated-fabric material |
DE1285036, | |||
DE2608768, | |||
DE850308, | |||
EP330571, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 09 1993 | RXS Schrumpftechnik Garnituren GmbH | (assignment on the face of the patent) | / | |||
Dec 13 1993 | RICHARDT, UWE | RXS SCHRUMPFTECHNIK-GARNITUREN, GMBH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 006861 | /0645 |
Date | Maintenance Fee Events |
Jan 19 1999 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 14 1999 | ASPN: Payor Number Assigned. |
May 08 2000 | RMPN: Payer Number De-assigned. |
Feb 19 2003 | REM: Maintenance Fee Reminder Mailed. |
Aug 01 2003 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 01 1998 | 4 years fee payment window open |
Feb 01 1999 | 6 months grace period start (w surcharge) |
Aug 01 1999 | patent expiry (for year 4) |
Aug 01 2001 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 01 2002 | 8 years fee payment window open |
Feb 01 2003 | 6 months grace period start (w surcharge) |
Aug 01 2003 | patent expiry (for year 8) |
Aug 01 2005 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 01 2006 | 12 years fee payment window open |
Feb 01 2007 | 6 months grace period start (w surcharge) |
Aug 01 2007 | patent expiry (for year 12) |
Aug 01 2009 | 2 years to revive unintentionally abandoned end. (for year 12) |