A well completion system comprises production tubing (5) extending downhole from wellhead equipment (2) to a plurality of completion systems (7, 8, 9). A well testing facility comprising a test loop (26) with flow metering equipement (27) is included in the wellhead equipment. Each of a plurality of independently adjustable flow control means (57) is operable to stop the flow of fluid from a respective one of the completion assemblies into the production tubing. The downhole completion assemblies (7, 8, 9) are mounted on a common fluid and electrical supply means (4) comprising tubular electrical conductor means (42) and tubing (41, 45, 46) defining fluid paths.

Patent
   5447201
Priority
Nov 20 1990
Filed
Aug 20 1993
Issued
Sep 05 1995
Expiry
Sep 05 2012
Assg.orig
Entity
Large
140
14
all paid
1. A well completion system comprising:
a plurality of downhole completion assemblies,
supply means carrying a fluid and an electrical supply, said supply means comprising three concentric tubular electrical conductors, dielectric sleeves between said tubular conductors, and tubing concentric with said tubular conductors defining at least one fluid supply path, and
means mounting said completion assemblies in communication with said supply means.
3. A well completion system comprising:
wellhead equipment,
at least one downhole completion assembly,
production tubing extending between said wellhead equipment and said at least one completion assembly,
power tubing extending within said production tubing between said wellhead equipment and said at least one completion assembly, said power tubing comprising at least one tubular electrical conductor, and
at least one of a logging and a monitoring means carried by said power tubing in operative association with said wellhead equipment by way of said tubular electrical conductor.
2. The well completion system of claim 1 wherein each of said downhole completion assemblies comprises a fluid flow control means for controlling flow of fluid through said assembly and operator means for selective adjustment of said flow control means.
4. The well completion system of claim 3 further comprising a selectively adjustable flow control device for controlling flow of production fluid into said production tubing to any selected one of a variety of substantial flow rates, and a control unit for controlling said control device, said control unit being carried by said power tubing.

The invention relates to a well completion system and is concerned with the provision of such a system incorporating features providing enhanced production from the well.

The invention accordingly provides a well completion system comprising at least one downhole completion assembly for receiving fluid from a reservoir, selectively adjustable flow control means in the completion assembly, and a fluid flow booster downstream of the completion assembly, whereby the fluid extraction rate can be optimised.

The system can include a plurality of completion assemblies in series, each incorporating a respective flow control means, typically a choke device, for individual adjustment of fluid inflow from respective reservoirs associated with the completion assemblies or from a single reservoir at spaced intervals at which the assemblies are located. The extracted fluid can comprise liquid or gas or a mixture of the two, and a submersible pump or a compressor is selected as the flow or production booster accordingly.

The production booster functions to expose the reservoir or reservoirs to a higher drawdown pressure differential than is available from the natural reservoir drive, thereby providing artificial lift. A single production booster can be operated in conjunction with a plurality of completion assemblies which can be individually tuned to a drawdown appropriate to the respective associated reservoirs or reservoir intervals, the adjustments being within a pressure range corresponding to the differential provided by the booster.

The invention thus also provides a completion assembly for a well completion system comprising tubing for receiving well effluent and for guiding the received well effluent through a variable choke device, together with control means for varying the choke device flow aperture. The choke device is preferably operable to close off the effluent flow completely.

Such a completion assembly can be employed in various forms of well completion system and the control means can be operated in response to sensed local conditions or in the context of overall system management in a system incorporating plural completion assemblies.

The invention also provides a well completion system comprising a plurality of completion assemblies each having a selectively variable choke device, wellhead equipment including a well testing facility, and control means for operating the choke devices so as to permit testing at the wellhead of individual wells, or of individual production intervals of a single well.

The wellhead equipment can thus include a test loop with metering facilities. Where the system comprises plural wells tied back to common flowlines, individual wells can be tested without interruption to production from other wells. The system can but need not include a production booster downstream of the completion assemblies, so as to provide for optimised production as described above.

The invention also provides a well completion system comprising a plurality of downhole equipment units on a common core or spine constituted by electrical and/or fluid supply means. The supply means can be constructed as power tubing extending centrally along the production tubing of the system.

The power tubing preferably includes plural conductors for the transmission of electric power and also control signals downhole from the wellhead. The conductors also transmit test and monitoring signals from the downhole equipment up to data acquisition and treatment equipment at the wellhead. Multiplexing can be employed. The power tubing also preferably incorporates fluid passage means extending between the wellhead and the downhole equipment. Plural conduits can be provided for conveying or circulating for example barrier fluid for providing overpressure protection, hydraulic fluid for operation of downhole equipment, as by way of local power units, and for the supply of chemical additives or inhibitors to be injected into the production fluid. Each unit of the downhole equipment accordingly has its respective electrical and/or fluid connections to the power tubing.

The invention also provides a well completion system comprising monitoring means at the wellhead, plural well completion assemblies, and variable flow control device responsive to signals from the monitoring unit at each completion assembly, sensor means at each completion assembly supplying signals to the monitoring means to permit continuous interactive control of production.

Such tuning of the system requires information about the performance of, and the conditions at, the (or each) completion assembly. The invention therefore also provides a well completion system including instrumentation associated with downhole equipment, means communicating the instrumentation with control equipment located at the wellhead, to permit monitoring and control of the system.

The sensor means can include sensors for logging reservoir and production flow parameters such as temperature, pressure, composition, and flow rates. Where the downhole equipment includes spaced completion assemblies receiving fluid from respective reservoirs or from respective locations in a single reservoir, the sensors can be arranged to log parameters of the respective fluid flows at the respective assemblies as well as of the combined or commingled flow downstream of the assemblies and/or at the wellhead. Where a booster pump or compressor is provided downstream of the (or each) completion assembly, this also can incorporate appropriate sensors at least for metering the flow and its characteristics. Data provided by the downhole sensor means is conveyed, conveniently, by way of the power tubing described above, if employed, to the monitoring unit at which the data is received, stored and treated to provide information for automatic or manual control functions to be exercised from the wellhead on the various units of the downhole equipment. To optimise performance of the system in dependence on sensed variations in reservoir characteristics. The downhole equipment can be controlled as a whole or selectively in respect of its various units.

Where fluid is being extracted from a plurality of reservoirs, the conditions of each can be sensed independently, by way of the instrumentation included in the associated completion assembly. By continuous or selective monitoring of the well characteristics and the performance of the downhole equipment, optimum control can be achieved by remote control without disturbing the functioning of the system and without the need to perform intervention operations.

A well completion system according to the invention can include for example heaters spaced along it to maintain temperature control of the well effluent for example to prevent deposition and solidification of particles, which might restrict the production flow. The or each completion assembly can include a heater for aiding production of heavy oils, and means for injection of chemicals and additives to function as inhibitors to prevent scaling or dehydration can be provided, for example, at the or each completion assembly. One or more downhole steam generators can be included for cyclic stimulation and subsequent extraction for example of heavy oils.

A well completion system incorporating the invention will be understood to be very advantageously employed in subsea wells and horizontal wells as well as subterrain wells, particularly in complex reservoir situations and in reservoirs with thin pay zones.

The invention is further described below, by way of example, with reference to the accompanying drawings, in which:

FIG. 1 schematically illustrates a well completion system in accordance with the invention;

FIG. 2 is a schematic sectional side view on a larger scale of a downhole completion assembly included in the system of FIG. 1;

FIGS. 3 & 4 are cross-sectional views on lines III--III and IV--IV of FIG. 2 respectively; and

FIG. 5 is a cross-sectional view on line V--V of FIG. 1.

The illustrated well completion system comprises, as shown in FIG. 1, wellhead equipment 2 including a completion and production tree from which power tubing 4 extends downwardly within production tubing 5 to a production booster 6 and then to downhole completion equipment constituted here by three completion assemblies 7,8,9 spaced along the power tubing and connected in series to it. The system is shown in operative condition within a well bore containing a production casing 11 extending down from the wellhead to a production casing shoe 12.

The production tubing 5 extends down to the booster 6 which is located just below the production casing shoe 12. Beyond the booster, a production liner 14 extends through three reservoirs 15,16 & 17.

The wellhead production tree is designed to accommodate all system requirements. Thus besides structural integrity, the production tree provides for the supply of electric power from a source 21, and fluids, such as hydraulic and barrier fluids and chemical additives, from sources 22, along the power tubing 4. The tree is also arranged to facilitate retrieval and workover. Also included in the wellhead equipment 2 is an electronic data handling and control unit 24 at which is collected data from sensors located downhole and from which are transmitted command signals for controlling operation of the downhole equipment. The data and command signals are multiplexed for transmission along power conductors of the power tubing and are taken from and supplied to these conductors at 25.

The equipment 2 also provides a production test loop 26 with metering equipment 27 which can be employed to test separate remote wells tied back to common flowlines by way of subsea manifold installations. Each well may be tested individually without interrupting the production from other wells. Because of the nature of the downhole equipment, each reservoir or reservoir interval may be tested individually without intervention operations.

The power tubing 4 is preferably of concentric configuration and as shown in FIG. 5 can comprise outer protective tubing 41 having received within it with spacing to provide a first fluid conduit 44 a tubular conductor assembly. The conductor assembly consists of three concentric tubular electrical conductors 42, electrically insulated by intervening sleeves of dielectric material. Inner and outer concentric spaced tubes 45 & 46 are received within the conductor assembly to provide three further fluid conduits 47.

The power tubing can comprise sections of appropriate length, typically 9-15 meters, connected together by appropriate joint means 49 indicated schematically in FIG. 5. The power tubing equipment is run into the well bore by conventional techniques during installation, and provides for continuous distribution of electrical and fluid supplies through the entire system, as well as for conveyance of test, measurement and control signals between the wellhead control unit 24 and the various units downhole.

Referring now to the three downhole completion assemblies 7, 8 & 9, these are employed because the drainhole section of the well bore penetrates the three separate reservoirs 15, 16 & 17, but plural assemblies could be employed where a long drainhole section in a single reservoir is divided into individual production locations. Each of the completion assemblies 7, 8 & 9 controls the well inflow from the associated reservoir which it supplies into a mixed or commingled flow which is moved into the production tubing 5 by way of the booster 6.

FIGS. 2-4 show the uppermost completion assembly 7 of FIG. 1 received within the production liner 14 which has perforations or slots along it over the length of the assembly to permit fluid communication between the assembly and the reservoir. The production liner 14 is sealed to the bore by packers 51 (or conventionally by cementing) which serve to separate the slotted or perforated liner sections communicating with one reservoir from those communicating with another.

The completion assembly 7 has been set in position, after installation, by inflatable completion seals 52 which serve to isolate the inflow from the downstream reservoirs 16 & 17. The assembly comprises tubing 54 concentrically surrounding the power tubing 4 to provide therewith an annular conduit for the mixed or commingled flow from the upstream assemblies through apertured upper and lower annular end walls 55,56. At the downstream end of the assembly, between the tubing 54 and the upper seal 52, a production choke 57 is provided to control the production flow from the adjacent reservoir. The flow through the choke 57 mixes with the flow through the end wall 55 in the space between the production liner 14 and the power tubing 4 and moves upwardly to the downhole production booster 6.

The production choke 57 provides a fixed annular series of flow apertures 58, the effective area of which can be selectively adjusted by rotation of a similarly apertured annulus between a fully open position, in which the fixed apertures coincide with those of the annulus, and a fully closed position, as shown in FIG. 4, in which the fixed apertures coincide with the solid portions of the annulus between its apertures. The production choke 57 is thus adjustable to control the quantity of the well effluent flowing into the commingled flow upstream of the assembly 7. The choke 57 can be employed to tune the completion assembly production and is drawn down to provide optimum reservoir extraction characteristics and to control the pressure of the common production flow.

The choke 57 is controlled from the wellhead equipment by signals from the control unit 24 carried by the power tubing 4 and is actuated by a local hydraulic power pack 59 supplied by the hydraulic supplies within the power tubing.

Besides the power pack 59, the assembly 7 includes instrumentation 60 with sensors for logging and monitoring operation of the assembly. The sensor outputs are supplied to the wellhead control unit 24 by means of the power tubing 4 through a data acquisition and transmission unit 61. Means 62 for injection into the production flow of an inhibitor or other chemical additive from the source 22 can be provided, as can a heater 64 for local production stimulation.

A downhole steam generator 65, which can be operated to enhance production particularly of heavy oils, is provided downstream of the completion assemblies, and one or more production flow heaters 66 (FIG. 1) can be located at spaced positions between the booster 6 and the wellhead to maintain optimum production temperatures and prevent waxing, scaling etc. The additional downhole equipment described is controlled and powered from the wellhead by way of the power tubing 4.

Each of the completion assemblies 8 & 9 is similar in function and configuration to the assembly 7 and neither is therefore further described. Between adjacent assemblies, an annular chamber 70 between the production liner 14 and the power tubing 4 serves as a mixing chamber for the flow from the adjacent assembly and the assembly or assemblies upstream. As for the production booster 6, a downhole submersible pump may be employed where the production fluid is a liquid or primarily a liquid, but the booster can be constituted by a compressor where the completion system is applied to a gas producing reservoir or reservoirs.

The booster 6 serves as a common booster for all three of the completion assemblies 7, 8 & 9. It adds an additional drawn down capacity to the natural flow conditions which is selected in accordance with the calculations based on tests of the reservoir inflow performance. The production booster 6 and chokes 57 of the completion assemblies thus are operated to tune the extraction process and provide optimum production rates of the commingled production flow through the production tubing.

The invention can of course be embodied in a variety of ways other than as specifically described and illustrated.

Mohn, Frank

Patent Priority Assignee Title
10539128, Dec 15 2011 CLEANTEK INDUSTRIES INC Horizontal and vertical well fluid pumping system
5823263, Apr 26 1996 Camco International Inc. Method and apparatus for remote control of multilateral wells
5918669, Apr 26 1996 Camco International, Inc.; CAMCO INTERNATIONAL INC Method and apparatus for remote control of multilateral wells
5927401, Apr 26 1996 Camco International Inc. Method and apparatus for remote control of multilateral wells
5960874, Sep 17 1997 Camco International Inc. Apparatus for remote control of multilateral wells
6112815, Oct 30 1995 Altinex AS Inflow regulation device for a production pipe for production of oil or gas from an oil and/or gas reservoir
6237683, Apr 26 1996 Camco International Inc.; CAMCO INTERNATIONAL INC Wellbore flow control device
6241015, Apr 20 1999 Schlumberger Technology Corporation Apparatus for remote control of wellbore fluid flow
6308783, Apr 26 1996 Schlumberger Technology Corporation Wellbore flow control device
6481500, Aug 10 2001 ConocoPhillips Company Method and apparatus for enhancing oil recovery
6484800, Apr 01 1996 Baker Hughes Incorporated Downhole flow control devices
6494264, Apr 26 1996 Schlumberger Technology Corporation Wellbore flow control device
6619402, Sep 15 1999 Shell Oil Company System for enhancing fluid flow in a well
6631769, Feb 26 1999 Enventure Global Technology, LLC Method of operating an apparatus for radially expanding a tubular member
6633164, Jan 24 2000 Shell Oil Company Measuring focused through-casing resistivity using induction chokes and also using well casing as the formation contact electrodes
6633236, Jan 24 2000 Shell Oil Company Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters
6634431, Nov 16 1998 Enventure Global Technology, LLC Isolation of subterranean zones
6662875, Jan 24 2000 Shell Oil Company Induction choke for power distribution in piping structure
6679332, Jan 24 2000 Shell Oil Company Petroleum well having downhole sensors, communication and power
6684947, Feb 26 1999 Enventure Global Technology, LLC Apparatus for radially expanding a tubular member
6705395, Feb 26 1999 Enventure Global Technology, LLC Wellbore casing
6712154, Nov 16 1998 Enventure Global Technology Isolation of subterranean zones
6715550, Jan 24 2000 Shell Oil Company Controllable gas-lift well and valve
6725919, Dec 07 1998 Enventure Global Technology, LLC Forming a wellbore casing while simultaneously drilling a wellbore
6739392, Dec 07 1998 Halliburton Energy Services, Inc Forming a wellbore casing while simultaneously drilling a wellbore
6745845, Nov 16 1998 Enventure Global Technology, LLC Isolation of subterranean zones
6758277, Jan 24 2000 Shell Oil Company System and method for fluid flow optimization
6758278, Dec 07 1998 Enventure Global Technology, LLC Forming a wellbore casing while simultaneously drilling a wellbore
6817412, Jun 28 2001 Shell Oil Company Method and apparatus for the optimal predistortion of an electromagnetic signal in a downhole communication system
6823937, Dec 07 1998 Enventure Global Technology, LLC Wellhead
6840316, Feb 09 2000 Shell Oil Company Tracker injection in a production well
6840317, Mar 02 2000 Shell Oil Company Wireless downwhole measurement and control for optimizing gas lift well and field performance
6843316, Mar 29 2000 AquaStream Method for improving well quality
6851481, Mar 02 2000 Shell Oil Company Electro-hydraulically pressurized downhole valve actuator and method of use
6868040, Mar 02 2000 Shell Oil Company Wireless power and communications cross-bar switch
6892819, Dec 07 1998 ENVENTURE GLOBAL TECHNOLOGY, INC F K A ENVENTURE GLOBAL TECHNOLOGY, L L C Forming a wellbore casing while simultaneously drilling a wellbore
6945331, Jul 31 2002 Schlumberger Technology Corporation Multiple interventionless actuated downhole valve and method
6966370, Feb 26 1999 Enventure Global Technology, LLC Apparatus for actuating an annular piston
6968618, Apr 26 1999 Enventure Global Technology, LLC Expandable connector
6981553, Jan 24 2000 Shell Oil Company Controlled downhole chemical injection
7011161, Dec 07 1998 Enventure Global Technology, LLC Structural support
7036582, Dec 07 1998 Shell Oil Company Expansion cone for radially expanding tubular members
7040396, Feb 26 1999 Shell Oil Company Apparatus for releasably coupling two elements
7044221, Feb 26 1999 Enventure Global Technology, LLC Apparatus for coupling a tubular member to a preexisting structure
7048062, Dec 07 1998 Enventure Global Technology, LLC Method of selecting tubular members
7048067, Nov 01 1999 Enventure Global Technology, LLC Wellbore casing repair
7055592, Jan 24 2000 Shell Oil Company Toroidal choke inductor for wireless communication and control
7055608, Mar 11 1999 ENVENTURE GLOBAL TECHNOLOGY, INC Forming a wellbore casing while simultaneously drilling a wellbore
7063142, Feb 26 1999 Enventure Global Technology, LLC Method of applying an axial force to an expansion cone
7063162, Feb 19 2001 SHELL USA, INC Method for controlling fluid flow into an oil and/or gas production well
7073594, Mar 02 2000 Shell Oil Company Wireless downhole well interval inflow and injection control
7075454, Mar 02 2000 Shell Oil Company Power generation using batteries with reconfigurable discharge
7077211, Dec 07 1998 ENVENTURE GLOBAL TECHNOLOGY, INC Method of creating a casing in a borehole
7077213, Dec 07 1998 Shell Oil Company Expansion cone for radially expanding tubular members
7100684, Jul 28 2000 Enventure Global Technology Liner hanger with standoffs
7100685, Oct 02 2000 Shell Oil Company Mono-diameter wellbore casing
7108061, Dec 07 1998 Shell Oil Company Expander for a tapered liner with a shoe
7108072, Nov 16 1998 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
7114561, Jan 24 2000 Shell Oil Company Wireless communication using well casing
7121337, Dec 07 1998 Enventure Global Technology, LLC Apparatus for expanding a tubular member
7121352, Nov 16 1998 Enventure Global Technology Isolation of subterranean zones
7146702, Oct 02 2000 Enventure Global Technology, LLC Method and apparatus for forming a mono-diameter wellbore casing
7147053, Feb 11 1999 Enventure Global Technology, LLC Wellhead
7147059, Mar 02 2000 Shell Oil Company Use of downhole high pressure gas in a gas-lift well and associated methods
7159665, Dec 07 1998 ENVENTURE GLOBAL TECHNOLOGY, INC Wellbore casing
7159667, Feb 26 1999 Shell Oil Company Method of coupling a tubular member to a preexisting structure
7168496, Jul 06 2001 Eventure Global Technology Liner hanger
7168499, Nov 16 1998 Shell Oil Company Radial expansion of tubular members
7170424, Mar 02 2000 Shell Oil Company Oil well casting electrical power pick-off points
7172019, Oct 02 2000 Enventure Global Technology, LLC Method and apparatus for forming a mono-diameter wellbore casing
7172021, Jan 22 2003 Enventure Global Technology, LLC Liner hanger with sliding sleeve valve
7172024, Oct 02 2000 Enventure Global Technology, LLC Mono-diameter wellbore casing
7174964, Dec 07 1998 Shell Oil Company Wellhead with radially expanded tubulars
7195061, Dec 07 1998 Enventure Global Technology, LLC Apparatus for expanding a tubular member
7195064, Dec 07 1998 Enventure Global Technology Mono-diameter wellbore casing
7198100, Dec 07 1998 Shell Oil Company Apparatus for expanding a tubular member
7201223, Oct 02 2000 Shell Oil Company Method and apparatus for forming a mono-diameter wellbore casing
7204007, Jun 13 2003 Enventure Global Technology, LLC Method and apparatus for forming a mono-diameter wellbore casing
7216701, Dec 07 1998 Enventure Global Technology, LLC Apparatus for expanding a tubular member
7231985, Nov 16 1998 Shell Oil Company Radial expansion of tubular members
7234518, Sep 04 2002 Shell Oil Company Adjustable well screen assembly
7234531, Dec 07 1998 Enventure Global Technology, LLC Mono-diameter wellbore casing
7240728, Dec 07 1998 Enventure Global Technology, LLC Expandable tubulars with a radial passage and wall portions with different wall thicknesses
7240729, Dec 07 1998 ENVENTURE GLOBAL TECHNOLOGY, INC Apparatus for expanding a tubular member
7246667, Nov 16 1998 Enventure Global Technology, LLC Radial expansion of tubular members
7258168, Jul 27 2001 Enventure Global Technology Liner hanger with slip joint sealing members and method of use
7259688, Jan 24 2000 Shell Oil Company Wireless reservoir production control
7270188, Nov 16 1998 Enventure Global Technology, LLC Radial expansion of tubular members
7273106, Mar 28 2003 SHELL USA, INC Surface flow controlled valve and screen
7275601, Nov 16 1998 Enventure Global Technology, LLC Radial expansion of tubular members
7290605, Dec 27 2001 Enventure Global Technology Seal receptacle using expandable liner hanger
7290616, Jul 06 2001 ENVENTURE GLOBAL TECHNOLOGY, INC Liner hanger
7299881, Nov 16 1998 Enventure Global Technology, LLC Radial expansion of tubular members
7308755, Jun 13 2003 Enventure Global Technology, LLC Apparatus for forming a mono-diameter wellbore casing
7322410, Mar 02 2001 Shell Oil Company Controllable production well packer
7325602, Oct 02 2000 Enventure Global Technology, LLC Method and apparatus for forming a mono-diameter wellbore casing
7350563, Jul 09 1999 Enventure Global Technology, L.L.C. System for lining a wellbore casing
7350564, Dec 07 1998 Enventure Global Technology Mono-diameter wellbore casing
7357188, Dec 07 1998 ENVENTURE GLOBAL TECHNOLOGY, L L C Mono-diameter wellbore casing
7357190, Nov 16 1998 Enventure Global Technology, LLC Radial expansion of tubular members
7360591, May 29 2002 Enventure Global Technology, LLC System for radially expanding a tubular member
7363690, Oct 02 2000 Enventure Global Technology, LLC Method and apparatus for forming a mono-diameter wellbore casing
7363691, Oct 02 2000 Enventure Global Technology, LLC Method and apparatus for forming a mono-diameter wellbore casing
7363984, Dec 07 1998 Halliburton Energy Services, Inc System for radially expanding a tubular member
7377326, Aug 23 2002 Enventure Global Technology, L.L.C. Magnetic impulse applied sleeve method of forming a wellbore casing
7383889, Nov 12 2001 Enventure Global Technology, LLC Mono diameter wellbore casing
7398832, Jun 10 2002 Enventure Global Technology, LLC Mono-diameter wellbore casing
7404444, Sep 20 2002 Enventure Global Technology Protective sleeve for expandable tubulars
7410000, Jun 13 2003 ENVENTURE GLOBAL TECHONOLGY Mono-diameter wellbore casing
7416027, Sep 07 2001 Enventure Global Technology, LLC Adjustable expansion cone assembly
7419002, Mar 20 2001 Reslink AS Flow control device for choking inflowing fluids in a well
7419009, Apr 18 2003 Enventure Global Technology, LLC Apparatus for radially expanding and plastically deforming a tubular member
7424918, Aug 23 2002 Enventure Global Technology, L.L.C. Interposed joint sealing layer method of forming a wellbore casing
7434618, Dec 07 1998 ENVENTURE GLOBAL TECHNOLOGY, INC Apparatus for expanding a tubular member
7438132, Mar 11 1999 Enventure Global Technology, LLC Concentric pipes expanded at the pipe ends and method of forming
7438133, Feb 26 2003 Enventure Global Technology, LLC Apparatus and method for radially expanding and plastically deforming a tubular member
7503393, Jan 27 2003 Enventure Global Technology, Inc. Lubrication system for radially expanding tubular members
7513313, Sep 20 2002 Enventure Global Technology, LLC Bottom plug for forming a mono diameter wellbore casing
7516790, Dec 07 1998 Enventure Global Technology, LLC Mono-diameter wellbore casing
7552776, Dec 07 1998 Enventure Global Technology Anchor hangers
7556092, Feb 26 1999 Enventure Global Technology, LLC Flow control system for an apparatus for radially expanding tubular members
7559365, Nov 12 2001 ENVENTURE GLOBAL TECHNOLOGY, L L C Collapsible expansion cone
7571774, Sep 20 2002 Eventure Global Technology Self-lubricating expansion mandrel for expandable tubular
7603758, Dec 07 1998 Enventure Global Technology, LLC Method of coupling a tubular member
7665532, Dec 07 1998 ENVENTURE GLOBAL TECHNOLOGY, INC Pipeline
7712522, May 09 2006 Enventure Global Technology Expansion cone and system
7739917, Sep 20 2002 Enventure Global Technology, LLC Pipe formability evaluation for expandable tubulars
7740076, Apr 12 2002 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
7775290, Nov 12 2001 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
7793721, Mar 11 2003 Eventure Global Technology, LLC Apparatus for radially expanding and plastically deforming a tubular member
7819185, Aug 13 2004 ENVENTURE GLOBAL TECHNOLOGY, L L C Expandable tubular
7886831, Jan 22 2003 EVENTURE GLOBAL TECHNOLOGY, L L C ; ENVENTURE GLOBAL TECHNOLOGY, L L C Apparatus for radially expanding and plastically deforming a tubular member
7918284, Apr 15 2002 ENVENTURE GLOBAL TECHNOLOGY, INC Protective sleeve for threaded connections for expandable liner hanger
8061430, Mar 09 2009 Schlumberger Technology Corporation Re-settable and anti-rotational contraction joint with control lines
8079417, Aug 13 2008 ConocoPhillips Company Wireline retrievable dsg/downhole pump system for cyclic steam and continuous steam flooding operations in petroleum reservoirs
9038649, Feb 02 2010 Statoil Petroleum AS Flow control device and flow control method
9181774, Jan 10 2012 Otkrytoe Aktsionernoe Obschestvo “Tatneft” IM. V.D.Shashina Method and device for zonal isolation and management of recovery of horizontal well drained reserves
9228427, Oct 27 2011 Saudi Arabian Oil Company Completion method to allow dual reservoir saturation and pressure monitoring
9366108, Feb 02 2010 Statoil Petroleum AS Flow control device and flow control method
9863414, Dec 15 2011 CLEANTEK INDUSTRIES INC Horizontal and vertical well fluid pumping system
Patent Priority Assignee Title
2822757,
3283570,
3378069,
4424859, Nov 04 1981 Multi-channel fluid injection system
4465139, Apr 30 1982 BAKER OIL TOOLS, INC Valve and sensing device for well conduits
4494608, Dec 06 1982 OTIS ENGINEERING CORPORATION, A CORP OF DE Well injection system
4940094, Aug 19 1987 Institut Francais du Petrole Method and device to actuate specialized intervention equipment in a drilled well having at least one section highly slanted with respect to a vertical line
4942926, Jan 29 1988 Institut Francais du Petrole Device and method for carrying out operations and/or manipulations in a well
4945995, Jan 29 1988 Institut Francais du Petrole Process and device for hydraulically and selectively controlling at least two tools or instruments of a valve device allowing implementation of the method of using said device
5018574, Nov 15 1989 Atlantic Richfield Company; ATLANTIC RICHFIELD COMPANY, A CORP OF DE Tubing conveyed wellbore fluid flow measurement apparatus
5042297, Oct 14 1988 Institut Francais du Petrole Well-logging process and device in a non-flowing production well
5271467, Apr 02 1992 Univar Corporation Methods and systems for recovering subsurface materials
EP326492,
FR2659748,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 14 1993MOHN, FRANKFRAMO DEVELOPMENTS UK LIMITEDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0067370754 pdf
Aug 20 1993Framo Developments (UK) Limited(assignment on the face of the patent)
Jun 30 1997FRAMO DEVELOPMENTS UK LIMITEDFramo Engineering ASASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0086130411 pdf
Oct 01 1997Framo Engineering ASFramo Engineering ASCHANGE OF ADDRESS0087150901 pdf
Date Maintenance Fee Events
Sep 15 1995ASPN: Payor Number Assigned.
Feb 22 1999M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 21 2002M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Mar 26 2003REM: Maintenance Fee Reminder Mailed.
Feb 09 2007M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Sep 05 19984 years fee payment window open
Mar 05 19996 months grace period start (w surcharge)
Sep 05 1999patent expiry (for year 4)
Sep 05 20012 years to revive unintentionally abandoned end. (for year 4)
Sep 05 20028 years fee payment window open
Mar 05 20036 months grace period start (w surcharge)
Sep 05 2003patent expiry (for year 8)
Sep 05 20052 years to revive unintentionally abandoned end. (for year 8)
Sep 05 200612 years fee payment window open
Mar 05 20076 months grace period start (w surcharge)
Sep 05 2007patent expiry (for year 12)
Sep 05 20092 years to revive unintentionally abandoned end. (for year 12)