A processing unit (13) for providing secondary images in a video display system (10) in accordance with a choice of scaling ratios. The processing unit (13) scales the luminance component of an analog input signal by first using an analog low pass filter (22) for anti-aliasing, and then sampling (23) the data at a rate appropriate for the selected scaling ratio. The sampled data is processed by a digital filter (24), on a line-by-line basis, which provides weighted average values derived from the sampled data, on a line-by-line basis. A formatter (25) combines sampled chrominance data with the filtered luminance data, and selects lines for inclusion in the secondary image.

Patent
   5459528
Priority
Mar 31 1994
Filed
Mar 31 1994
Issued
Oct 17 1995
Expiry
Mar 31 2014
Assg.orig
Entity
Large
65
3
all paid
1. A processing unit for providing data for a secondary image in accordance with a selected one of at least two different scaling ratios, for use in a display system that receives an analog video input signal, comprising:
an analog filter for receiving a luminance component of said analog input signal, and for implementing an anti-aliasing function by filtering out frequencies above a predetermined frequency cutoff value;
an analog-to digital-converter for receiving the filtered signal from said analog filter, said analog-to-digital converter being programmable with at least two different sampling rates;
a digital filter for receiving sampled data from said analog-to-digital converter, on a line-by-line basis, and for providing values representing weighted averages of said sampled data, on said line-by-line basis; and
a formatter for receiving lines of data values from said digital filter and for selecting lines to be included in said secondary image, said formatter being selectable between at least two different formatting processes, and wherein said formatter combines said data values from said digital filter with scaled chrominance data values.
10. A method of providing data for a secondary picture scaled to a smaller size than a main image, in accordance with a choice of scaling ratios, to be displayed on a video display system, comprising the steps of:
selecting a scaling ratio;
receiving an analog input signal having luminance and chrominance components;
filtering the analog luminance component of said signal with an analog filter that implements an anti-aliasing filter function, thereby providing a filtered analog luminance signal;
sampling said filtered analog luminance signal at a rate determined by said scaling ratio, thereby providing sampled luminance values;
filtering said sampled luminance values, on a line-by-line basis, with a digital filter, thereby providing weighted average lines of said sampled luminance values;
sampling from said chrominance signal at said rate determined by said horizontal scaling ratio, thereby providing sampled chrominance values;
combining said weighted average lines of said sampled luminance values and said sampled chrominance value, thereby providing Y/C weighted average lines; and
selecting from said Y/C weighted average lines, lines for use in said secondary image, in accordance with a formatting process that is determined by said scaling ratio.
17. A processing unit for providing a secondary image in accordance with a selected one of at least two different scaling ratios, for use in a display system that receives an analog video input signal, comprising:
an analog filter for receiving a luminance component of said analog input signal, and for implementing an anti-aliasing function by filtering out frequencies above a high frequency cutoff value;
an first analog-to digital-converter for receiving the filtered signal from said analog filter, said analog-to-digital converter being programmable with at least two different sampling rates;
a digital filter for receiving sampled data from said first analog-to-digital converter, on a line-by-line basis, and for providing values representing weighted averages of said sampled data, on said line-by-line basis, said digital filter operating on sets of three adjacent lines and having a first-in, first-out memory for storing a previous line and a second previous line, and wherein said digital filter implements a function having at least one coefficient of 1/2, which is implemented by dropping a least significant bit of said sampled data;
a second analog-to-digital converter for receiving the chrominance component of said input signal, said second analog-to digital converter being programmable with at least two different sampling rates; and
a formatter for combining lines of data values from said digital filter and lines of data values from said second analog-to digital converter, and for selecting lines to be included in said secondary image, said formatter being programmable with at least two different formatting processes.
2. The processing unit of claim 1, wherein said analog filter further implements a peaking function for increasing the amplitude of selected components below said predetermined frequency cutoff value, wherein said components are selected based upon frequency of those components.
3. The processing unit of claim 1, wherein said predetermined frequency cutoff value is determined by the greater of said at least two different sampling rates.
4. The processing unit of claim 1, wherein said input data is interlaced field data, and wherein said formatter selects said lines according to whether they are in even or odd fields.
5. The processing unit of claim 1, wherein said digital filter provides values representing weighted averages of the sampled data on three adjacent lines.
6. The processing unit of claim 5, wherein said digital filter alternatively provides values representing weighted averages of the sampled data on two adjacent lines.
7. The processing unit of claim 1, wherein said digital filter implements a filtering function having coefficients of 1/2 and 1/4 and wherein said coefficients are implemented by dropping a least significant bit of said sampled data.
8. The processing unit of claim 1, wherein said digital filter comprises a single first-in, first-out memory for storing previous line and second previous line values, and two adders.
9. The processing unit of claim 1, further comprising a second analog-to-digital converter for receiving the chrominance component of said input signal, said second analog-to digital converter being programmable with at least two different sampling rates.
11. The method of claim 10, wherein said analog filter of said filtering step further implements a peaking function for raising the amplitude of selected frequencies of said filtered analog luminance signal.
12. The method of claim 10, wherein said analog filter of said filtering step implements an anti-aliasing function that filters out frequencies above a cutoff value determined by the largest horizontal scaling ratio of said scaling ratios.
13. The method of claim 10, wherein said digital filter of said filtering step implements a filtering function having at least one coefficient of 1/2 and wherein said filtering is accomplished by dropping the least most significant bit of said sampled luminance values.
14. The method of claim 10, wherein said digital filter of said filtering step provides weighted average lines derived from sets of three adjacent lines.
15. The method of claim 14, wherein said digital filter is implemented with a first-in, first-out memory and two adders.
16. The method of claim 14, wherein said digital filter alternatively provides weighted average lines derived from sets of two adjacent lines.

This invention relates to video display systems, and more particularly to providing a secondary image, such as a picture-in-picture, with a main display screen of a digital display system.

A feature of many video display systems is the ability to display a picture-in-picture (PIP), which is a small frame within the main image frame, usually of a scaled down image from a different signal. Other types of secondary images are also possible. For example, some display screens are sized for an image having a 16:9 aspect ratio. However, if such a screen is used to display an image with a 4:3 aspect ratio, the remaining area on the side could be used to display a "stack" of small images. This latter feature is sometimes referred to as a picture-on-picture (POP) display.

For displaying these secondary images, a signal that would otherwise be displayed as the main image is scaled down to a smaller size. Typical ratios of the size of the secondary image to the size of the main image are 1:9 and 1:16. For 1:9 scaling, the vertical size and horizontal size are each reduced to 1/3 of the main image size. Likewise, for 1:16 scaling, the vertical and horizontal sizes are each reduced to 1/4 of the main image size. If the same display system is to provide both levels of scaling, conventional systems use expensive processors to implement different digital filtering functions, or they use different hardware for different filters.

One aspect of the invention is a processing unit for providing data for a secondary image in accordance with a selected scaling ratio. The processing unit is used in a display system that receives an analog video input signal having luminance and chrominance components. An analog filter receives the luminance component of said input signal and implements an anti-aliasing function by filtering out frequencies above a predetermined value. A first analog-to digital-converter receives the filtered signal from the analog filter, and is programmable with at least two different sampling rates, each corresponding to a scaling ratio. A digital filter receives sampled data from the first analog-to-digital converter, on a line-by-line basis, and provides values representing weighted averages of said sampled data on adjacent lines. A second analog-to-digital converter receives the chrominance component of the input signal and is also programmable with at least two different sampling rates. A formatter combines the Y and C data by selecting lines of data values from the digital filter and lines of data values from the second analog-to digital converter. The formatter is programmable with at least two different formatting processes, each corresponding to a different scaling ratio.

A technical advantage of the invention is that it provides data for secondary images with a minimum of hardware, while maintaining picture quality. The same hardware can be used for a variety of different scaling ratios, including the widely used 1:9 and 1:16 scaling ratios.

FIG. 1 is a block diagram of a display system having a secondary image processor in accordance with the invention.

FIG. 2 is a block diagram of the secondary image processor of FIG. 1.

FIGS. 3 and 4 illustrate a response of one implementation of the analog filter of FIG. 2.

FIG. 5 illustrates the digital filter of FIG. 2.

FIG. 6 illustrates how data from the filter of FIG. 5 is formatted for 1:9 scaling.

FIG. 7 illustrates how data from the filter of FIG. 5 is formatted for 1:16 scaling.

FIG. 8 illustrates how data from the filter of FIG. 5 is formatted for 1:4 scaling.

FIG. 9 illustrates a different embodiment of the digital filter of FIG. 5, used to provide data for 1:4 scaling as well as 1:9 and 1:16 scaling.

FIG. 10 illustrates how data from the digital filter of FIG. 9 is formatted for 1:4 scaling.

FIG. 11 illustrates an implementation of the formatter of FIG. 2.

The following description is in terms of a video display system that uses a spatial light modulator (SLM) rather than a cathode ray tube (CRT) to generate images. However, the invention could also be used with a CRT display system, or any other display system that receives analog video data and processes the data digitally.

A comprehensive description of a DMD-based digital display system is set out in U.S. Pat. No. 5,079,544, entitled "Standard Independent Digitized Video System", and in U.S. Pat. Ser. No. 08/147,249, entitled "Digital Television System" and in U.S. patent Ser. No. 08/146,385, entitled "DMD Display System", each assigned to Texas Instruments Incorporated, and each incorporated by reference herein.

U.S. patent Ser. No. 07/678,761, entitled "DMD Architecture and Timing for Use in a Pulse-Width Modulated Display System" (Atty Dkt No. TI-15721), describes a method a formatting video data for use with a DMD-based display system and a method of modulating bit-planes of data to provide varying pixel brightness. The general use of a DMD-based display system with a color wheel to provide sequential color images is described in U.S. patent Ser. No. 07/809,816 (Atty Dkt No. TI-16573), entitled "White Light Enhanced Color Field Sequential Projection". These patent applications are assigned to Texas Instruments Incorporated, and are incorporated herein by reference.

FIG. 1 is a block diagram of a display system 10, which receives an analog video signal, such as a broadcast television signal. In the example of this description, an NTSC signal, which is interlaced in even-row and odd-row fields, is assumed. It is also assumed that the input signal is a "color difference" signal, having a luminance component and a color difference component, or some signal other than an RGB signal.

Display system 10 could be any type of equipment for receiving an analog video signal, sampling the signal, processing pixel data, and displaying images represented by the sampled data. Only those components significant to main-screen and secondary-screen data processing are shown. Other components, such as might be used for processing synchronization and audio signals or for features such as closed captioning, are not shown.

As an overview of the operation of display system 10, signal interface 11 receives an analog video signal and separates video, synchronization, and audio signals. For secondary image displays, signal interface 11 obtains the signal for the main image, and for the secondary image. Although for purposes of example, the rest of this description is in terms of PIP images, the same concepts apply to picture-on-picture (POP) images, which are located beside the main picture rather than overlaid on top of it, or for any other secondary picture which is derived from the video signal and displayed with a reduced size.

Signal interface 11 delivers the video signal for the main image to A/D converter 12a and Y/C separator 12b, which convert the data into pixel-data samples and which separate the luminance ("Y") data from the chrominance ("C") data, respectively. In FIG. 1, the signal is converted to digital data before Y/C separation, but in other embodiments, Y/C separation could be performed before A/D conversion, using analog filters.

Signal interface 11 delivers the video signal for the secondary image to secondary image processor 13. This signal may come from a second tuner for a television signal or from an input from another device such as a video camera/recorder (VCR). As explained below in connection with FIGS. 2-10, secondary image processor 13 scales the data to the desired number of rows and pixels per row. It then delivers the secondary image data to a control unit 14, which inserts the secondary image data into the main image data in the proper location.

Processor system 15 prepares the data for display, by performing various pixel data processing tasks. Processor system 15 includes various memory devices for storing pixel data during processing, such as field and line buffers. The tasks performed by processor system 15 may include linearization, colorspace conversion, and line generation. The line generation process converts interlaced fields having 240 odd-rows or 240 even-rows of data into display frames having 480 rows. The order in which these tasks are performed may vary.

Display memory 16 receives processed pixel data from processor system 15. Display memory 16 formats the data, on input or on output, into "bit-plane" format, and delivers the bit-planes to SLM 16 one at a time. The bit-plane format permits each pixel element of SLM 16 to be turned on or off in response to the value of 1 bit of data at a time. In a typical display system 10, display memory 16 is a "double buffer" memory, which means that it has a capacity for at least two display frames. The buffer for one display frame can be read out to SLM 17 while the buffer another display frame is being written. The two buffers are controlled in a "ping-pong" manner so that data is continuously available to SLM 17.

SLM 17 may be any type of SLM. Although this description is in terms of a DMD-type of SLM 17, other types of SLMs could be substituted into display system 10 and used for the invention described herein. For example, SLM 17 could be an LCD-type SLM. Details of a suitable SLM 17 are set out in U.S. Pat. No. 4,956,619, entitled "Spatial Light Modulator", which is assigned to Texas Instruments Incorporated, and incorporated by reference herein. In the example of this description, SLM 17 has a 640×480 array of mirror elements, each of which is individually addressable. When addressed, the direction in which each mirror tilts, on or off, results in a reflected image.

Display unit 18 has optical components for receiving the image from SLM 17 and for illuminating an image plane such as a display screen. For color displays, the bit-planes for each color could be sequenced and synchronized to a color wheel that is part of display unit 18. Or, the data for different colors could be concurrently displayed on three SLMs and combined by display unit 18. Master timing unit 19 provides various system control functions.

FIG. 2 is a block diagram of secondary image processor 13, which receives an analog Y/C signal representing the secondary image from signal interface 11. As explained below, the same secondary image processor 13 may be used to scale data in accordance with a number of different scaling ratios, with control inputs to an analog filter 22 and a digital filter 24 to select between scaling modes.

Y/C separator 21 separates the Y component of the signal from the C component. If, in the signal path for the main image, as illustrated in FIG. 1, Y/C separator 12a operates on the analog signal rather than on digital data after sampling, the functions of Y/C separator 12a and Y/C separator 21 could be combined in a single unit that operates on both the main image signal and the secondary image signal.

Analog filter 22 receives the Y signal. A feature of the invention is that filter 22 incorporates an anti-aliasing function and a peaking function.

For anti-aliasing, filter 22 filters out high frequency components of the Y signal. For a scaling ratio of 1:16, the horizontal scaling ratio is 1:4. As compared to "smaller" horizontal scaling ratio, such as the 1:3 horizontal ratio for 1:9 scaling, the 1/4 ratio is a "maximum" ratio. The value of the high frequency cut-off is no greater than 1/4 the high frequency cutoff value for the main image, as determined by Nyquist sampling rates. This satisfies the Nyquist requirements for 1:16 reduction, and permits a single horizontal filter 22 to be used for all anti-aliasing where the horizontal scaling factor is less than 1:4.

For peaking, the higher frequencies of the non-filtered part of the signal are amplified. The optimum amount and range of peaking are somewhat subjective, and may be experimentally derived.

A suitable analog filter 22 is specified with the following function: ##EQU1## FIGS. 3 and 4 illustrate the amplitude and frequency response of this implementation of filter 22. The maximum peaking is approximately 150% and is at the mid-frequency range of the low-passed signal.

Referring again to FIG. 2, the low-pass filtered Y signal is received by A/D converter 23. A/D converter 23 has at least two sampling frequencies, one for 1:9 scaling and one for 1:16 scaling. It could also have other selectable sampling frequencies, depending on how many horizontal scaling factors are desired to be supported. As indicated by the CTL input to A/D converter 23, the desired sampling frequency can be varied by selecting a clock input. The sampling frequency, assuming one sample per pixel, can be determined from the scaling ratio, the number of pixels per line in the main image, and the line rate. For example, for a display having a main image of 640 pixels per line, a 1:9 scaling ratio has a horizontal scaling ratio of 1:3, for 213 (640/3) samples per line. This value is multiplied by the line rate (lines per second), to obtain the sample frequency (samples per second). For 1:9 and 1:16 scaling, A/D converter 23 runs at 1/3 or 1/4 the frequency of A/D converter 12b, respectively.

The effect of low pass filter 22 and A/D converter 23 is that of a "horizontal decimation filter" such that the Y signal is now represented by the correctly scaled number of samples per line. However, at this point, the data represents an unscaled number of lines per field. Each even or odd field of data has the same number of lines as the main image, as determined by the horizontal sync signals.

For vertical scaling, the data is received by digital filter 24, which implements a vertical filtering function. Filter 24 operates on sets of three adjacent lines of data. For every input line, filter 24 provides an output line that is a weighted average of that line, the line above it, and the line below it. If incoming video signal represents interlaced fields, vertical filter 24 operates on sets of three successive odd lines of an odd field or three successive even lines of an even field.

A transfer function for a suitable filter 24 is:

F(z)=1/4z0 +1/2z-1 +1/4z-2,

where exponents of the values, z0, z-1 and z-2 represent the time-delays of the three adjacent lines. The current line is represented by a set of values with a delay of 0, a previous line is represented by a set of values with a delay of -1, and a second previous line is represented by a set of values with a delay of -2. This filter function is referred to herein as a "three-line average" filter function.

FIG. 5 is a block diagram of a vertical filter 24 that implements the transfer function in the preceding paragraph. For purposes of example, it is assumed that the data has been sampled as 6-bit values. A feature of the invention is the implementation of the filter coefficients (1/2 and 1/4) by dropping the least significant bit (LSB) along the data path. Thus, at various points in the filter, as indicated by the "1/2" function, a LSB is dropped. Where 6-bit data is ordered from LSB to MSB, dropping the LSB results in retention of the "last" 5 bits. Likewise, this same 5-bit value can be further divided by 1/2 by retaining its "last" 4 bits.

A 9-bit first-in first-out (FIFO) memory 51 stores the last 5 bits of each sample of a previous line in a 5-bit memory area. FIFO 51 also stores the last 4 bits of each sample of a second previous line in a 4-bit memory area. Two adders 53a and 53b sum values derived from each of the three lines.

In operation, for each current line's cycle, filter 24 divides the 6-bit data samples of that line by 2, thereby providing 5-bit current-line values. These 5-bit current-line values are delivered to FIFO 51, where they are stored for the next cycle's previous line values. Meanwhile, the 5-bit previous-line values in FIFO 51 become 4-bit second-previous-line values after being divided by 2 and stored in the 4-bit area of FIFO 51.

At the filter input, the 5-bit current line values are further divided by 2 to become 4-bit current line values and delivered to adder 53a as the first term of the filter function. The 5-bit previous-line values are moved from FIFO 51 to adder 53b as the second term of the filter function. The 4-bit second-previous-line values are moved from FIFO 51 to adder 53a as the third term of the filter function.

The output of filter 24 is a set of 6-bit values representing weighted averages of the input lines. As stated above, every input line results in an output line. Because the reduction of the number of lines is performed after the filtering, the same vertical filter 24 is used for various levels of scaling.

Referring again to FIG. 2, the filtered data is delivered to formatter 25. Formatter 25 also receives chrominance data, which has been sampled at a rate appropriate for the scaling level. There are various methods for handling the chrominance data. FIG. 2 illustrates a simple method, in which the chrominance data is sampled by a separate A/D converter 28. Although not illustrated, alternative methods for handling chrominance data might include filtering the signal for anti-aliasing, and using a single A/D converter for both luminance and chrominance data.

Formatter 25 determines which lines of data are to be included in the secondary image. It also spatially aligns the data so as to provide a substantially even spacing between lines. As explained below in connection with FIGS. 6-8 and FIG. 10, different scaling ratios call for different formatting processes. A CTL input determines which formatting process formatter 25 will perform. As is clear from the following descriptions of these processes, formatter 25 may be implemented with scaled-down field memory and selectable timing means that count the desired number of line intervals. An example of an implementation of formatter 25 is described below in connection with FIG. 11.

FIG. 6 illustrates the formatting process for 1:9 scaling. For even fields, formatter 25 selects the first output line, which represents the weighted average of lines 0, 2, and 4. Thereafter, formatter 25 selects every third succeeding output line. The result is a set of weighted average lines, which includes the lines that more heavily weight lines 2, 8, 14 . . . For odd fields, formatter 25 selects the second output line, which represents the weighted average of lines 3, 5, and 7. Thereafter, formatter 25 selects every third succeeding output line. The result is a set of output lines, which includes the lines that more heavily weight lines 5, 11, 17, . . .

FIG. 7 illustrates the formatting process for 1:16 scaling. For even fields, formatter 25 selects the first output line and every fourth succeeding output line. For odd fields, formatter 25 selects the third output line and every fourth succeeding output line.

FIG. 8 illustrates an alignment process for 1:4 scaling, which uses the output of filter 24. For even fields, formatter 25 selects the first output line and every other succeeding output line. For odd fields, formatter 25 selects the first output line and every other succeeding output line.

The selected lines of Y/C data from formatter 25 are delivered to secondary image control unit 14 on a scaled-down field-by-field basis. Control unit 14 may include memory to correct any temporal disparity between incoming fields of the main image and the secondary image.

FIG. 9 illustrates an alternative embodiment of filter 24, especially modified to provide data for 1:4 scaling. The filter 24' operates in the same manner as the filter 24 of FIG. 5, but has a multiplexer 91 to permit the filter output to be data representing either the three-line average function described above or the following two-line average function:

H(z)=1/2z0 +1/2z-1.

FIG. 10 illustrates the alignment process performed by formatter 25 for 1:4 scaling when the filter 24' of FIG. 9 is used. For even fields, formatter 25 uses the two-line average data, and selects the first output line and every other succeeding output line. For odd fields, formatter 25 uses the three-line average data, and selects the first output line and every other succeeding output line.

FIG. 11 is a block diagram of one implementation of formatter 25. A dual ported memory 110 stores fields of Y, Cr, and Cb data, so that data from the same fields can be combined. Although the Cr and Cb data is shown as having separate field memories, one field memory could be eliminated if the Cr and Cb data is interleaved and properly subsampled (4:2:2). An address generator 112 receives vertical and horizontal sync signals, or signals derived therefrom via timing unit 19, and generates addresses so that memory 110 provides the proper data at the proper time. The Y/C data for a secondary image is delivered to secondary image controller 14, which insert the secondary image into the main image, or otherwise places it in the display frame, provides field data to processor 15.

Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the invention.

Pettitt, Gregory S.

Patent Priority Assignee Title
5625419, Jul 26 1994 SAMSUNG ELECTRONICS CO , LTD Vertical filter circuit for picture in picture display device of television system and method therefor
5808797, Apr 28 1992 Silicon Light Machines Method and apparatus for modulating a light beam
5838385, Aug 30 1996 Texas Instruments Incorporated Sampling analog video signal for secondary images
5841579, Jun 07 1995 Silicon Light Machines Corporation Flat diffraction grating light valve
5982553, Mar 20 1997 Silicon Light Machines Corporation Display device incorporating one-dimensional grating light-valve array
5986721, Jun 12 1996 Texas Instruments Incorporated Producing a rendered image version of an original image using an image structure map representation of the image
6046777, Sep 06 1996 Thomson Consumer Electronics, Inc. Apparatus for sampling and displaying an auxiliary image with a main image to eliminate a spatial seam in the auxiliary image during freeze frame operation
6088102, Oct 31 1997 Silicon Light Machines Corporation Display apparatus including grating light-valve array and interferometric optical system
6101036, Jun 23 1998 Silicon Light Machines Corporation Embossed diffraction grating alone and in combination with changeable image display
6130770, Jun 23 1998 Silicon Light Machines Corporation Electron gun activated grating light valve
6144415, Mar 07 1996 Thomson Licensing Apparatus for sampling and displaying an auxiliary image with a main image to eliminate a spatial seam in the auxiliary image
6215579, Jun 24 1998 Silicon Light Machines Corporation Method and apparatus for modulating an incident light beam for forming a two-dimensional image
6271808, Jun 05 1998 Silicon Light Machines Corporation Stereo head mounted display using a single display device
6307597, Mar 07 1996 THOMSON LICENSING DTV Apparatus for sampling and displaying an auxiliary image with a main image
6462902, Jun 05 1998 Seagate Technology LLC Independent clamping spacers in a disc drive assembly
6707591, Apr 10 2001 Silicon Light Machines Corporation Angled illumination for a single order light modulator based projection system
6712480, Sep 27 2002 Silicon Light Machines Corporation Controlled curvature of stressed micro-structures
6728023, May 28 2002 Silicon Light Machines Corporation Optical device arrays with optimized image resolution
6747781, Jun 25 2001 Silicon Light Machines Corporation Method, apparatus, and diffuser for reducing laser speckle
6764875, Jul 29 1998 Silicon Light Machines Corporation Method of and apparatus for sealing an hermetic lid to a semiconductor die
6767751, May 28 2002 Silicon Light Machines Corporation Integrated driver process flow
6782205, Jun 25 2001 Silicon Light Machines Corporation Method and apparatus for dynamic equalization in wavelength division multiplexing
6800238, Jan 15 2002 Silicon Light Machines Corporation Method for domain patterning in low coercive field ferroelectrics
6801354, Aug 20 2002 Silicon Light Machines Corporation 2-D diffraction grating for substantially eliminating polarization dependent losses
6806997, Feb 28 2003 Silicon Light Machines Corporation Patterned diffractive light modulator ribbon for PDL reduction
6813059, Jun 28 2002 Silicon Light Machines Corporation Reduced formation of asperities in contact micro-structures
6822797, May 31 2002 Silicon Light Machines Corporation Light modulator structure for producing high-contrast operation using zero-order light
6829077, Feb 28 2003 Silicon Light Machines Corporation Diffractive light modulator with dynamically rotatable diffraction plane
6829092, Aug 15 2001 Silicon Light Machines Corporation Blazed grating light valve
6829258, Jun 26 2002 Silicon Light Machines Corporation Rapidly tunable external cavity laser
6865346, Jun 05 2001 Silicon Light Machines Corporation Fiber optic transceiver
6872984, Jul 29 1998 Silicon Light Machines Corporation Method of sealing a hermetic lid to a semiconductor die at an angle
6908201, Jun 28 2002 Silicon Light Machines Corporation Micro-support structures
6922272, Feb 14 2003 Silicon Light Machines Corporation Method and apparatus for leveling thermal stress variations in multi-layer MEMS devices
6922273, Feb 28 2003 Silicon Light Machines Corporation PDL mitigation structure for diffractive MEMS and gratings
6927891, Dec 23 2002 Silicon Light Machines Corporation Tilt-able grating plane for improved crosstalk in 1×N blaze switches
6928207, Dec 12 2002 Silicon Light Machines Corporation Apparatus for selectively blocking WDM channels
6934070, Dec 18 2002 Silicon Light Machines Corporation Chirped optical MEM device
6947613, Feb 11 2003 Silicon Light Machines Corporation Wavelength selective switch and equalizer
6956878, Feb 07 2000 Silicon Light Machines Corporation Method and apparatus for reducing laser speckle using polarization averaging
6956995, Nov 09 2001 Silicon Light Machines Corporation Optical communication arrangement
6987600, Dec 17 2002 Silicon Light Machines Corporation Arbitrary phase profile for better equalization in dynamic gain equalizer
6991953, Sep 13 2001 Silicon Light Machines Corporation Microelectronic mechanical system and methods
7027202, Feb 28 2003 Silicon Light Machines Corporation Silicon substrate as a light modulator sacrificial layer
7042611, Mar 03 2003 Silicon Light Machines Corporation Pre-deflected bias ribbons
7049164, Sep 13 2001 Silicon Light Machines Corporation Microelectronic mechanical system and methods
7054515, May 30 2002 Silicon Light Machines Corporation Diffractive light modulator-based dynamic equalizer with integrated spectral monitor
7057795, Aug 20 2002 Silicon Light Machines Corporation Micro-structures with individually addressable ribbon pairs
7057819, Dec 17 2002 Silicon Light Machines Corporation High contrast tilting ribbon blazed grating
7068372, Jan 28 2003 Silicon Light Machines Corporation MEMS interferometer-based reconfigurable optical add-and-drop multiplexor
7133051, Sep 19 2003 Microsoft Technology Licensing, LLC Full scale video with overlaid graphical user interface and scaled image
7177081, Mar 08 2001 Silicon Light Machines Corporation High contrast grating light valve type device
7233367, Jun 05 2003 Samsung Electronics Co., Ltd. Display apparatus and control method of picture thereof
7286764, Feb 03 2003 Silicon Light Machines Corporation Reconfigurable modulator-based optical add-and-drop multiplexer
7321399, Dec 11 2001 INTERDIGITAL MADISON PATENT HOLDINGS Multiplexed analog-to-digital converter arrangement
7391973, Feb 28 2003 Silicon Light Machines Corporation Two-stage gain equalizer
7705860, Sep 19 2003 Microsoft Technology Licensing, LLC Full scale video with overlaid graphical user interface and scaled image
7907152, Sep 19 2003 Microsoft Technology Licensing, LLC Full scale video with overlaid graphical user interface and scaled image
7974485, Oct 27 2005 Nvidia Corporation Split-frame post-processing in a programmable video pipeline
8259233, Mar 07 2008 XIAMEN XM-PLUS TECHNOLOGY LTD System and method for processing a television picture-out-picture
8301016, Dec 31 2001 SYNAMEDIA LIMITED Decoding and output of frames for video trick modes
8358916, Dec 31 2001 SYNAMEDIA LIMITED Annotations for trick modes of video streams with simultaneous processing and display
8600217, Jul 14 2004 Cisco Technology, Inc System and method for improving quality of displayed picture during trick modes
8639052, Dec 14 2010 Canon Kabushiki Kaisha Image projection apparatus, control method, and program
9998750, Mar 15 2013 Cisco Technology, Inc Systems and methods for guided conversion of video from a first to a second compression format
Patent Priority Assignee Title
4656515, Mar 25 1985 RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, PRINCETON, NJ 08540, A CORP OF DE Horizontal compression of pixels in a reduced-size video image utilizing cooperating subsampling and display rates
4827348, May 02 1988 Senshin Capital, LLC Exposure control system for dual mode electronic imaging camera
5047857, Apr 20 1989 THOMSON CONSUMER ELECTRONICS, INC , A CORP OF DE Television system with zoom capability for at least one inset picture
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 28 1994PETTITT, GREGORY S Texas Instruments IncorporatedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0069410902 pdf
Mar 31 1994Texas Instruments Incorporated(assignment on the face of the patent)
Date Maintenance Fee Events
Mar 30 1999M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 28 2003M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
May 07 2003REM: Maintenance Fee Reminder Mailed.
Mar 20 2007M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 17 19984 years fee payment window open
Apr 17 19996 months grace period start (w surcharge)
Oct 17 1999patent expiry (for year 4)
Oct 17 20012 years to revive unintentionally abandoned end. (for year 4)
Oct 17 20028 years fee payment window open
Apr 17 20036 months grace period start (w surcharge)
Oct 17 2003patent expiry (for year 8)
Oct 17 20052 years to revive unintentionally abandoned end. (for year 8)
Oct 17 200612 years fee payment window open
Apr 17 20076 months grace period start (w surcharge)
Oct 17 2007patent expiry (for year 12)
Oct 17 20092 years to revive unintentionally abandoned end. (for year 12)